首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Pharmacological characterization of the Nb2 cell peripheral-type benzodiazepine receptor (PBR) was determined using selected 1,4-benzodiazepines, PK 11195, and protoporphyrin IX (PPIX) to compete for specific [3H] Ro5-4864 binding. These data suggest that PPIX possesses an affinity for the Nb2 cell PBR (Ki = 142 nM). We have previously reported that the peripheral benzodiazepine ligands, Ro5-4864 and PK 11195, modulate prolactin-stimulated mitogenesis in the Nb2 cell(1). In contrast, PPIX, a putative endogenous ligand for the PBR had no effect on prolactin-stimulated mitogenesis in the Nb2 cell over the concentration range from 10(-15) M to 10(-6) M. Taken together these data show that PPIX has an affinity for the Nb2 cell PBR but does not modulate prolactin-stimulated mitogenesis at concentrations which should bind to the Nb2 cell PBR.  相似文献   

2.
M Awad  M Gavish 《Life sciences》1991,49(16):1155-1161
The specific binding of [3H]PK 11195 and [3H]Ro 5-4864 to human cerebral cortex, kidney, and colon membranes was studied in order to determine whether peripheral type benzodiazepine receptors (PBR) characteristics located in human tissues are similar to those located in calf or rat tissues. While [3H]PK 11195 (0.05-10 nM, final concentration) bound with high affinity (KD about 2 nM) to human cerebral cortex, kidney, and colon membranes, yielding maximal numbers of binding sites of 255 +/- 23, 1908 +/- 28, and 1633 +/- 98 fmol/mg protein, respectively, the specific binding of [3H]Ro 5-4864 (1.25-40 nM, final concentration), was barely detectable (nonspecific binding about 90% of the total binding). Furthermore, unlabeled PK 11195 was two orders of magnitude more potent than unlabeled Ro 5-4864 in displacing [3H]PK 11195 specific binding from human cerebral cortex and kidney membranes. These results indicate that PBR binding characteristics located in human tissues are similar (but not identical) to those located in calf tissues, but not to those located in rat tissues.  相似文献   

3.
The effects of the peripheral-type benzodiapine receptor (PBR) ligands Ro 5-4864 and PK 11195 were studied in the spontaneously beating guinea pig atrium and in a model for myocardial ischemia in the rat. In the former, Bay K 8644 produced positive chronotropic and inotropic responses; intracarotid administration of this agonist (5 or 10 micrograms kg-1) to anesthetized rats elicited a transient increase in mean arterial blood pressure accompanied by alterations in the ECG pattern. Ro 5-4864 and PK 11195 (10 microM) completely blocked the positive chronotropic effect of Bay K 8644 in the atrium, PK 11209, a structural analog of PK 11195 with a low affinity for PBR, was inactive, and the central benzodiazepine receptor ligand clonazepam had a marginal effect. Ro 5-4864 potentiated whereas PK 11195 inhibited the myocardial ischemia produced by Bay K 8644 in the rat. Furthermore, PK 11195 blocked the combined response to Bay K 8644 and Ro 5-4864. Addition of Ro 5-4864 (10 microM) to the organ bath potentiated the inotropic effect of Bay K 8644 in the atria; PK 11195 at the same concentration inhibited this effect. Clonazepam and PK 11209 were both inactive in this regard. Nifedipine, a potent calcium channel antagonist, completely blocked the inotropic and chronotropic responses to Bay K 8644. PK 11195 and Ro 5-4864 did not affect this action. These findings strongly suggest that there is a functional association between PBR and voltage-operated calcium channels in the guinea pig atrium and rat cardiovascular system.  相似文献   

4.
The in vitro and in vivo regulation of [3H]Ro 5-4864 binding to peripheral benzodiazepine receptors (PBR) by ion transport/exchange inhibitors was studied in the kidney. The potencies of 9-anthroic acid, furosemide, bumetanide, hydrochlorothiazide and SITS as inhibitors of [3H]Ro 5-4864 binding to renal membranes were consistent with their actions as anion transport inhibitors (Ki approximately equal to 30 - 130 microM). In contrast, spironolactone, amiloride, acetazolamide, and ouabain were less potent (Ki = 100-1000 microM). Administration of furosemide to rats for five days resulted in a profound diuresis (approximately equal to 350% increase in urine volume) accompanied by a significant increase in PBR density (43%) that was apparent by the fifth day of treatment. Administration of hydrochlorothiazide or Ro 5-4864 for five days also caused diuresis and increased renal PBR density. Both the diuresis and increased density of PBR produced by Ro 5-4864 were blocked by coadministration of PK 11195, which alone had no effect on either PBR density or urine volume. The equilibrium binding constants of [3H]Ro 5-4864 to cardiac membranes were unaffected by administration of any of these drugs. These findings suggest that renal PBR may be selectively modulated in vivo and in vitro by administration of ion transport/exchange inhibitors.  相似文献   

5.
The binding of [3H]PK 11195 and [3H]Ro 5-4864 to membrane preparations from cerebral cortex and peripheral tissues of various species was studied. [3H]PK 11195 (0.05-10 nM) bound with high affinity to rat and calf cerebral cortical and kidney membranes. [3H]Ro 5-4864 (0.05-30 nM) also successfully labeled rat cerebral cortical and kidney membranes, but in calf cerebral cortical and kidney membranes, its binding capacity was only 3 and 4%, respectively, of that of [3H]PK 11195. Displacement studies showed that unlabeled Ro 5-4864, diazepam, and flunitrazepam were much more potent in displacing [3H]PK 11195 from rat cerebral cortex and kidney membranes than from calf tissues. The potency of unlabeled Ro 5-4864 in displacing [3H]PK 11195 from the cerebral cortex of various other species was also tested, and the rank order of potency was rat = guinea pig greater than cat = dog greater than rabbit greater than calf. Analysis of these displacement curves revealed that Ro 5-4864 bound to two populations of binding sites from rat and calf kidney and from rat, guinea pig, rabbit, and calf cerebral cortex but to a single population of binding sites from cat and dog cerebral cortex. Using [3H]PK 11195 as a ligand, the rank order of binding capacity in cerebral cortex of various species was cat greater than calf greater than guinea pig greater than rabbit greater than dog greater than rat, whereas when [3H]Ro 5-4864 was used, the rank order of binding capacity was cat greater than guinea pig greater than rat greater than rabbit greater than calf greater than dog.  相似文献   

6.
S Mihara  M Fujimoto 《Life sciences》1989,44(22):1713-1720
Peripheral benzodiazepine (BZ) binding sites were characterized in porcine aortic smooth muscle membrane preparation. [3H]PK11195 bound with high affinity to the membranes (Kd = 8.6 + 0.9 nM), whereas [3H]Ro5-4864 bound slightly to the membranes. The Ki value of Ro5-4864 obtained from the inhibition of [3H]PK 11195 binding was 1200 + 200 nM, which was 480 times weaker than that obtained in rat kidney. Furthermore, the Ro5-4864 effect was temperature-insensitive. When [3H]PK 11195 binding was examined in porcine, human and rat platelets, Ro5-4864 inhibited the binding in porcine and human platelets one order of magnitude less potently than that in rat platelets. These results suggest that low affinity for Ro5-4864 in porcine aorta smooth muscle originates in porcine tissue, but not in smooth muscle.  相似文献   

7.
M Awad  M Gavish 《Life sciences》1988,43(2):167-175
The present study demonstrates a differential effect of various detergent treatments on [3H]Ro 5-4864 and [3H]PK 11195 binding to peripheral benzodiazepine binding sites (PBS). Triton X-100 (0.0125%) caused a decrease of about 70% in [3H]Ro 5-4864 binding to membranes from various peripheral tissues of rat, but had only a negligible effect on [3H]PK 11195 binding. A similar effect of Triton X-100 was observed on guinea pig and rabbit kidney membranes. The decrease in [3H]Ro 5-4864 binding after treatment with Triton X-100 was apparently due to a decrease in the density of PBS, since the affinity remained unaltered. The detergents 3-[(3-cholamidopropyl)-dimethylammonio]-1-propane sulfonate (CHAPS), Tween 20, deoxycholic acid, or digitonin (0.0125%) caused only a minor change in [3H]Ro 5-4864 and [3H]PK 11195 binding to rat kidney membranes; but when concentrations were substantially increased (0.1%), all detergents caused a decrease of at least 50% in [3H]Ro 5-4864 binding, while [3H]PK 11195 binding to rat kidney membranes remained unaffected by the first three detergents, with only a minor decrease (15%) after treatment with digitonin. These results may further support the assumption that Ro 5-4864 and PK 11195 are agonist and antagonist, respectively, of PBS and interact with two different conformations or domains in the peripheral-type benzodiazepine binding site molecule.  相似文献   

8.
Astrocytes are the most numerous cell type within the central nervous system. Earlier, high-affinity binding sites for [3H]PK 11195 and [3H]Ro 5-4864 with the properties of the peripheral-type benzodiazepine receptor were detected in primary cultures of astrocytes. TSPO/PBR was shown to be localized in mitochondria. Recently, we showed that TSPO/PBR ligands, Ro 5-4864 and PK11195, were able to modulate the function of non-specific pore (PTP) in brain and liver mitochondria as well as protein phosphorylation in the presence of threshold calcium concentrations. In the present study for the first time the function of astrocyte mitochondria were studied under condition of PTP opening. Parameters of PTP induction were measured by means of simultaneous registrations of the membrane potential, calcium accumulation and calcium release as well as detection of the oxygen consumption with selective electrodes. Four phosphorylated proteins in range of 67 kDa, 46 kDa, 48 kDa and 3.5 kDa have been found under these conditions. It was established that in astrocyte mitochondria TSPO/PBR exists in monomer form (18 kDa). The phosphorylation level of these proteins was found to be modulated by TSPO/PBR ligands, Ro 5-4864 and PK11195, in a range of concentrations from 0.01 to 1 μM, in the same way as it was earlier described for brain mitochondria [Azarashvili et al., J Neurochem., 2005].  相似文献   

9.
A new class of N,N-diethyl-(2-arylpyrazolo[1,5-a]pyrimidin-3-yl)acetamides (3f-y), as azaisosters of Alpidem, was prepared following a novel synthetic method and their affinities for both the peripheral (PBR) and the central (CBR) benzodiazepine receptors were evaluated. Binding assays were carried out using both [3H]PK 11195 and [3H]Ro 5-4864 as radioligands for PBR, whereas [3H]Ro 15-1788 was used for CBR, in rat kidney and rat cortex, respectively. The tested compounds exhibited a broad range of binding affinities from as low as 0.76 nM to inactivity and most of them proved to be high selective ligands for PBR. The preliminary SAR studies suggested some of the structural features required for high affinity and selectivity; particularly the substituents on the pyrimidine moiety seemed to play an important role in PBR versus CBR selectivity. A subset of the highest affinity compounds was also tested for their ability to stimulate steroid biosynthesis in C6 glioma rat cells and some of these were found to increase pregnenolone formation with potency similar to Ro 5-4864 and PK 11195.  相似文献   

10.
Previous studies have demonstrated that gastric mucosa contained high levels of the polypeptide diazepam binding inhibitor, the endogenous ligand of the peripheral-type benzodiazepine receptor (PBR). However, the expression and function of this receptor protein in these tissues have not been investigated. Immunohistochemistry identified an intense PBR immunoreactivity in the mucous and parietal cells of rat gastric fundus and in the mucous cells of antrum. Immunoelectron microscopy revealed the mitochondrial localization of PBR in these cells. Binding of isoquinoline PK 11195 and benzodiazepine Ro5-4864 to gastric membranes showed that fundus had more PBR-binding sites than antrum, displaying higher affinity for PK 11195 than Ro5-4864. In a Ussing chamber, PK 11195 and Ro5-4864 increased short-circuit current (I(sc)) in fundic and antral mucosa in a concentration-dependent manner in the presence of GABA(A) and central benzodiazepine receptor (CBR) blockers. This increase in I(sc) was abolished after external Cl(-) substitution and was sensitive to chloride channels or transporter inhibitors. PK 11195-induced chloride secretion was also 1) sensitive to verapamil and extracellular calcium depletion, 2) blocked by thapsigargin and intracellular calcium depletion, and 3) abolished by the mitochondrial pore transition complex inhibitor cyclosporine A. PK 11195 had no direct effect on H(+) secretion, indicating that it stimulates a component of Cl(-) secretion independent of acid secretion in fundic mucosa. These data demonstrate that mucous and parietal cells of the gastric mucosa express mitochondrial PBR functionally coupled to Ca(2+)-dependent Cl(-) secretion, possibly involved in the gastric mucosa protection.  相似文献   

11.
The peripheral benzodiazepine receptor (PBR) has been known to have many functions such as a role in cell proliferation, cell differentiation, steroidogenesis, calcium flow, cellular respiration, cellular immunity, malignancy, and apoptosis. However, the presence of PBR has not been examined in mesenchymal stem cells. In this study, we demonstrated the expression of PBR in human bone marrow stromal cells (hBMSCs) and human adipose stromal cells (hATSCs) by RT-PCR and immunocytochemistry. To determine the roles of PBR in cellular functions of human mesenchymal stem cells (hMSCs), effects of diazepam, PK11195, and Ro5-4864 were examined. Adipose differentiation of hMSCs was decreased by high concentration of PBR ligands (50 microM), whereas it was increased by low concentrations of PBR ligands (<10 microM). PBR ligands showed a biphasic effect on glycerol-3-phosphate dehydrogenase (GPDH) activity. High concentration of PBR ligands (from 25 to 75 microM) inhibited proliferation of hMSCs. However, clonazepam, which does not have an affinity to PBR, did not affect adipose differentiation and proliferation of hMSCs. The PBR ligands did not induce cell death in hMSCs. PK11195 (50 microM) and Ro5-5864 (50 microM) induced cell cycle arrest in the G(2)/M phase. These results indicate that PBR ligands play roles in adipose differentiation and proliferation of hMSCs.  相似文献   

12.
High affinity binding of isoquinolines, such as PK 11195, is a conserved feature of peripheral-type benzodiazepine receptors (PBR) across species. However, species differences in PBR ligand binding have been described based on the affinity for N1-alkyl-1,4-benzodiazepines, such as Ro5-4864. Ro5-4864 binds with high affinity to the rat receptor but has low affinity for the bovine PBR. Photolabeling with an isoquinoline ligand, [3H]PK 14105, identifies a 17-kDa protein, the PBR isoquinoline binding protein (PBR/IBP), in both species. To further elucidate the role of the PBR/IBP in determining PBR benzodiazepine and isoquinoline binding characteristics, the bovine PBR/IBP was cloned and expressed. Using a cDNA encoding a rat PBR/IBP to screen a fetal bovine adrenal cDNA library, a bovine cDNA encoding a polypeptide of 169 residues was cloned. The bovine and rat PBR/IBPs had similar hydropathy profiles exhibiting five potential transmembrane domains. Transfecting the cloned bovine PBR/IBP cDNA into COS-7 cells resulted in an 11-fold increase in the density of high affinity [3H]PK 11195 binding sites which had only low affinity for Ro5-4864. Expression of the bovine PBR/IBP yields a receptor which is pharmacologically distinct from both endogenous COS-7 PBR and the rat PBR based on the affinity for several N1-alkyl-1,4-benzodiazepine ligands. These results suggest the PBR/IBP is the minimal functional component required for PBR ligand binding characteristics and the different protein sequences account for the species differences in PBR benzodiazepine ligand binding.  相似文献   

13.
The effect of nanomolar concentrations of PBR/TSPO ligands—Ro 5-4864, PK11195, and PPIX—on Ca2+-induced permeability transition pore (PTP) opening in isolated rat brain mitochondria was investigated. PBR/TSPO agonist Ro 5-4864 (100 nM) and endogenous ligand PPIX (1 μM) were shown to stimulate PTP opening, while antagonist PK11195 (100 nM) suppressed this process. Correlation between PBR ligand action on PTP opening and phosphorylation of a 3.5 kDa polypeptide was investigated. In intact brain mitochondria, incorporation of [γ-32P]ATP into 3.5 kDa peptide was decreased in the presence of Ro 5-4864 and PPIX and increased in the presence of PK11195. At threshold Ca2+ concentrations leading to PTP opening, PBR/TSPO ligands were found to stimulate dephosphorylation of the 3.5 kDa peptide. Specific anti-PBR/TSPO antibody prevented both PTP opening and dephosphorylation of the 3.5-kDa peptide. The peptide was identified as subunit c of FoF1-ATPase by Western blot using specific anti-subunit c antibody. The results suggest that subunit c of FoF1-ATPase could be an additional target for PBR/TSPO ligands action, is subjected to Ca2+- and TSPO-dependent phosphorylation/dephosphorylation, and is involved in PTP operation in mitochondria.  相似文献   

14.
The presence of benzodiazepine binding sites in rat vas deferens was detected using [3H]Ro 5-4864 as a radioligand. The binding of [3H]Ro 5-4864 to the mitochondrial sites is saturable, reversible, and temperature and time dependent. The association rate constant (k1) was 8.7 +/- 0.7 x 10(7) M-1 min-1, and the dissociation rate constant (k-1) was 0.031 +/- 0.003 min-1. The dissociation constant (KD) determined by saturation binding was 5.22 +/- 0.56 nM. The density of binding was 4,926 +/- 565 fmol/mg of protein. The Hill coefficient of binding was 0.99 +/- 0.01, an indication that [3H]Ro 5-4864 binds to a single site. The [3H]Ro 5-4864 binding was inhibited competitively by Ro 5-4864 and 2-hydroxy-5-nitrobenzyl-6-thioguanosine and noncompetitively by PK 11195, nitrendipine, alpha,beta-methylene-ATP, and carboxyatractyloside and was not affected by clonazepam, dicyclohexylcarbodiimide, or protoporphyrin IX. Our data indicate that [3H]Ro 5-4864 binding sites are not identical to those labeled by PK 11195. These binding sites are modulated by the ADP/ATP mitochondrial carrier, and an interaction of dihydropyridines and [3H]Ro 5-4864 binding sites in rat vas deferens is suggested.  相似文献   

15.
The effect of peripheral benzodiazepine receptor (PBR) ligands on free radical production was investigated in primary cultures of rat brain astrocytes and neurons as well as in BV-2 microglial cell lines using the fluorescent dye dichlorofluorescein-diacetate. Free radical production was measured at 2, 30, 60 and 120 min of treatment with the PBR ligands 1-(2-chlorophenyl-N-methylpropyl)-3-isoquinolinecarboxamide (PK11195), 7-chloro-5-(4-chlorophenyl)-1,3-dihydro-1-methyl-2H-1,4-benzodiazepin-2-one (Ro5-4864) and protoporphyrin IX (PpIX) (all at 10 nm). In astrocytes, all ligands showed a significant increase in free radical production at 2 min. The increase was short-lived with PK11195, whereas with Ro5-4864 it persisted for at least 2 h. PpIX caused an increase at 2 and 30 min, but not at 2 h. Similar results were observed in microglial cells. In neurons, PK11195 and PpIX showed an increase in free radical production only at 2 min; Ro5-4864 had no effect. The central-type benzodiazepine receptor ligand, clonazepam, was ineffective in eliciting free radical production in all cell types. As the PBR may be a component of the mitochondrial permeability transition (MPT) pore, and free radical production may occur following induction of the MPT, we further investigated whether cyclosporin A (CsA), an inhibitor of the MPT, could prevent free radical formation by PBR ligands. CsA (1 micro m) completely blocked free radical production following treatment with PK11195 and Ro5-4864 in all cell types. CsA was also effective in blocking free radical production in astrocytes following PpIX treatment, but it failed to do so in neurons and microglia. Our results indicate that exposure of neural cells to PBR ligands generates free radicals, and that the MPT may be involved in this process.  相似文献   

16.
17.
The density of bovine peripheral-type benzodiazepine receptors (PBR) in four tissues was highest in adrenal cortex. The adrenal cortex PBR cofractionated with a mitochondrial membrane marker enzyme and could be solubilized with intact ligand binding properties using digitonin. The membrane bound and soluble mitochondrial receptors were pharmacologically characterized and showed the rank order of potency to inhibit [3H]PK 11195 binding was PK 11195 greater than protoporphyrin IX greater than benzodiazepines (clonazepam, diazepam, or Ro5-4864). [3H]PK 11195 binding to bovine adrenal mitochondria was unaffected by diethylpyrocarbonate, a histidine residue modifying reagent that decreased binding to rat liver mitochondria by 70%. [3H]PK 14105 photolabeled the bovine PBR and the Mr was estimated under nondenaturing (200 kDa) and denaturing (17 kDa) conditions. These results demonstrate the bovine peripheral-type benzodiazepine receptor is pharmacologically and biochemically distinct from the rat receptor, but the receptor component photolabeled by an isoquinoline ligand has a similar molecular weight.  相似文献   

18.
Saturable binding site for 3H-flunitrazepam (KD = 43 +/- 7 nM, Bmax = 391 +/- 58 fmoles/cell, i.e. 250,000 sites/cell) is characterized on Mouse peritoneal inflammatory macrophages. The affinity for different ligands (PK 11195 greater than Ro 5-4864 greater than diazepam greater than flunitrazepam greater than clonazepam greater than Ro 15-1788) shows that this site is of peripheral type. In vivo the humoral response in Mice to Sheep red blood cells was stimulated by administration of 1 mg/kg of PK 11195 (+85%), Ro 5-4864 (+80%) and diazepam (+58%). Clonazepam and Ro 15-1788 are devoid of activity. This suggests that molecules which show affinity for the "peripheral type" benzodiazepine binding site might modulate the immune response.  相似文献   

19.
Astrocytes and astrocytoma cells actively express the diazepam-binding inhibitor (DBI) gene, suggesting that DBI-processing products may regulate glial cell activity. In the present study, we have investigated the possible effect of one of the DBI-derived peptides, the triakontatetraneuropeptide (TTN), on [(3)H]thymidine incorporation in cultured rat astrocytes. Reversed-phase HPLC analysis of incubation media indicated that TTN is the major form of DBI-derived peptides released by cultured astrocytes. At very low concentrations (10(-14)-10(-11) M), TTN induced a dose-dependent increase in [(3)H]thymidine incorporation, whereas at higher concentrations (10(-10)-10(-5) M) the effect of TTN gradually declined. In the same range of concentrations, the specific peripheral-type benzodiazepine receptor (PBR) agonist Ro 5-4864 mimicked the bell-shaped stimulatory effect of TTN on [(3)H]thymidine incorporation. The PBR antagonist PK11195 (10(-6) M) suppressed the stimulatory action of both TTN and Ro 5-4864 on [(3)H]thymidine incorporation, whereas the central-type benzodiazepine receptor antagonist flumazenil (10(-6) M) had no effect. The present study demonstrates that the endozepine TTN stimulates DNA synthesis in rat glial cells through activation of PBRs. These data strongly suggest that TTN exerts an autocrine/paracrine stimulatory effect on glial cell proliferation.  相似文献   

20.
Vinpocetine (ethyl apovincaminate), a synthetic derivative of the Vinca minor alkaloid vincamine, is widely used for the treatment of cerebrovascular-related diseases. One of the proposed mechanisms underlying its action is to protect against the cytotoxic effects of glutamate overexposure. Glutamate excitotoxicity leads to the disregulation of mitochondrial function and neuronal metabolism. As Vinpocetine has a binding affinity to the peripheral-type benzodiazepine receptor (PBR) involved in the mitochondrial transition pore complex, we investigated whether neuroprotection can be at least partially due to Vinpocetine’s effects on PBRs.Neuroprotective effects of PK11195 and Ro5-4864, two drugs with selective and high affinity to PBR, were compared to Vinpocetine in glutamate excitotoxicity assays on primary cortical neuronal cultures. Vinpocetine exerted a neuroprotective action in a 1–50 μM concentration range while PK11195 and Ro5-4864 were only slightly neuroprotective, especially in high (>25 μM) concentrations. Combined pretreatment of neuronal cultures with Vinpocetine and PK11195 or Ro5-4864 showed increased neuroprotection in a dose-dependent manner, indicating that the different drugs may have different targets. To test this hypothesis, mitochondrial membrane potential (MMP) of cultured neurons was measured by flow cytometry. 25 μM Vinpocetine reduced the decrease of mitochondrial inner membrane potential induced by glutamate exposure, but Ro5-4864 in itself was found to be more potent to block glutamate-evoked changes in MMP. Combination of Ro5-4864 and Vinpocetine treatment was found to be even more effective.In summary, the present results indicate that the neuroprotective action of vinpocetine in culture can not be explained by its effect on neuronal PBRs alone and that additional drug targets are involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号