首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
Two ornamental plants of Althaea rosea Cav. and Malva crispa L. were exposed to various concentrations of lead (Pb) (0, 50, 100, 200 and 500 mg·kg?1) for 70 days to evaluate the accumulating potential and the tolerance characteristics. The results showed that both plant species grown normally under Pb stress, and A. rosea had a higher tolerance than M. crispa, while M. crispa had a higher ability in Pb accumulation than A. rosea. Besides, lower Pb concentration (50 mg·kg?1) stimulated the shoot biomass in both plant species. Pb accumulation in plants was consistent with the increase of Pb levels, and the main accumulation sites were the roots and the older leaves. In addition, the photosynthetic pigments content and chlorophyll fluorescence parameters were influenced by Pb stress. In such case, both of the plants could improve the activities of antioxidant enzymes of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX), and the contents of the total soluble sugar and soluble protein, which reached the highest value at Pb 100 mg·kg?1, as well as the accumulation of the total thiols (T-SH) and non-protein thiols (NP-SH) to adapt to Pb stress. Thus, it provides the theoretical basis and possibility for ornamental plants of A. rosea and M. crispa in phytoremediation of Pb contaminated areas.  相似文献   

3.
The effects of feeding on root by the larvae and three types of Momordica cochinchinensis Spreng (Cucubitaceae) leaves (young, mature and senescent) by the adults of Aulacophora foveicollis Lucas (Coleoptera: Chrysomelidae) were studied under laboratory conditions. Total larval developmental time was 19.7 ± 0.2 days by feeding on young roots. Adult males lived for 28.4 ± 1, 65.7 ± 1.1 and 22.8 ± 1.3 days on young, mature and senescent leaves, respectively; whilst adult females lived for 34.3 ± 1.2, 68.5 ± 0.9 and 26.4 ± 1.4 days on young, mature and senescent leaves, respectively. Fecundity was highest in mature leaves fed insects (202.2 ± 10.6). Total carbohydrate, protein, lipid, nitrogen and amino acid were much higher in root followed by mature leaves than young and senescent leaves. Moisture content was highest in mature leaves than the roots, young and senescent leaves. Phenols were greatest in young leaves followed by mature leaves and least in senescent leaves and roots of the said plant. Flavonols were higher in young leaves and least in root. These results suggest that A. foveicollis adults perform better on mature leaves than young and senescent leaves for their nutrition.  相似文献   

4.
Cyclotides are small plant disulfide-rich and cyclic proteins with a diverse range of biological activities. Cyclotide-like genes show key sequence features of cyclotides and are present in the Poaceae. In this study the cDNA of the nine cyclotide-like genes were cloned and sequenced using 3′RACE from Zea mays. The gene expression of two of these genes (Zmcyc1 and Zmcyc5) were analyzed by real-time PCR in response to biotic (Fusarium graminearum, Ustilago maydis and Rhopalosiphum maydis) and abiotic (mechanical wounding, water deficit and salinity) stresses, as well as in response to salicylic acid and methyl jasmonate elicitors to mimic biotic stresses. All isolated genes showed significant similarity to other cyclotide-like genes and were classified in two separate clusters. Both Zmcyc1 and Zmcyc5 were expressed in all studied tissues with the highest expression in leaves and lowest expression in roots. Wounding, methyl jasmonate and salicylic acid significantly induced the expression of Zmcyc1 and Zmcyc5 genes, but the higher expression was observed for Zmcyc1 as compared with Zmcyc5. Expression levels of these two genes were also induced in inoculated leaves with F. graminearum, U. maydis and also in response to insect infestation. In addition, the 1000-base-pairs (bp) upstream of the promoter of Zmcyc1 and Zmcyc5 genes were identified and analyzed using the PlantCARE database and consequently a large number of similar biotic and abiotic cis-regulatory elements were identified for these two genes.  相似文献   

5.
Transgenic hairy roots of Datura spp., established using strain A4 of Agrobacterium rhizogenes, are genetically stable and produce high levels of tropane alkaloids. To increase biomass and tropane alkaloid content of this plant tissue, four Pseudomonas strains, Pseudomonas fluorescens P64, P66, C7R12, and Pseudomonas putida PP01 were assayed as biotic elicitors on transgenic hairy roots of Datura stramonium, Datura tatula, and Datura innoxia. Alkaloids were extracted from dried biomass, and hyoscyamine and scopolamine were quantified using liquid chromatography-tandem mass spectrometry analysis. D. stramonium and D. innoxia biomass production was stimulated by all Pseudomonas spp. strains after a 5-d treatment. All strains of P. fluorescens increased hyoscyamine yields compared to untreated cultures after both 5 and 10 d of treatment. Hyoscyamine yields were highest in D. tatula cultures exposed to a 5-d treatment with C7R12 (16.633 + 0.456 mg g?1 dry weight, a 431% increase) although the highest yield increases compared to the control were observed in D. stramonium cultures exposed to strains P64 (511% increase) and C7R12 (583% increase) for 10 d. D. innoxia showed the highest scopolamine yields after elicitation with P. fluorescens strains P64 for 5 d (0.653 + 0.021 mg g?1 dry weight, a 265% increase) and P66 for 5 and 10 d (5 d, 0.754 + 0.0.031 mg g?1 dry weight, a 321% increase; 10 d 0.634 + 0.046 mg g?1 dry weight, a 277% increase). These results show that the Pseudomonas strains studied here can positively and significantly affect biomass and the yields of hyoscyamine and scopolamine from transgenic roots of the three Datura species.  相似文献   

6.
As one of the most important phytohormones, the abscisic acid (ABA) is often used to breed stress-tolerant crop lines with both higher yields and active ingredient contents. In higher plants, the 9-cis-epoxycarotenoid dioxygenase (NCED) has been found to be a regulatory enzyme involved in ABA biosynthesis. In research, the novel gene SmNCED3 was isolated from S. miltiorrhiza. The open reading frame of SmNCED3 was 1725-bp, and it was encoding 574 amino acids with a calculated molecular mass of 63,822 kDa, which was verified by the expression of SmNCED3 in E. coli. The deduced SmNCED3 amino acid sequence had high sequence homology with NCED sequences from other plants and contained a putative chloroplast transit targeting signal peptide at its N terminus. Phylogenetic analysis demonstrated that SmNCED3 had a closer affinity to NCED3 in Arabidopsis thaliana (AtNCED3). The 1732-bp 5′ flanking sequence of SmNCED3 was also cloned. It contained several phytohormone response elements, biotic or abiotic stress-related elements, and plant development-related elements. Real-time PCR revealed that SmNCED3 was highly expressed in leaves, and was strongly induced by exogenous ABA. A subcellular localization experiment indicated that SmNCED3 was located in chloroplast stroma, chloroplast membranes, and thylakoid membranes. The overexpression of SmNCED3 promoted ABA accumulation. These results indicated that SmNCED3 might be a rate-limiting gene regulating ABA biosynthesis, and improving abiotic stresses tolerance and active ingredient contents in plants.  相似文献   

7.
Nitrogen (N) is a macronutrient essential for plant growth and development. Meanwhile, grafting is a method used to alleviate stress tolerance of various biotic and abiotic factors. This study aims to investigate how pumpkin grafting (PG) improves N use efficiency of watermelon. A commercial watermelon cultivar “Zaojia 8424” [Citrullus lanatus (Thunb.) Matsum. and Nakai.] was self-grafted and then grafted onto pumpkin (Cucurbita maximaC. moschata) rootstock cv. Qingyan Zhenmu No. 1. The grafted plants were exposed to two levels of N (9 and 0.2 mM) under hydroponic conditions. The grafted plants were harvested at days 11 and 22 after low N (0.2 mM) treatment. PG improved the N use efficiency of watermelon scion through the vigorous root system of pumpkin rootstock that enhanced the uptake and accumulation of N, P, K, Ca, Mg, B, and Mn in watermelon. Gene expressions of nitrate reductase (Cla002787, Cla002791, and Cla023145) and nitrite reductase (Cla013062) genes were increased, promoting N assimilation. Mesophyll thickness and SPAD index (relative chlorophyll measurement) were also improved. Furthermore, pumpkin rootstock also enhanced the supply of zeatine riboside (ZR) and isopentenyl adenosine (iPA) in the leaves, promoting shoot growth. All these lead to improved plant growth and nitrogen use efficiency of pumpkin rootstock-grafted watermelon plants.  相似文献   

8.
9.
10.
Variability of 31 somatic hybrids of Solanum pinnatisectum Dun. with Solanum tuberosum L. for leaf morphology, plant vigor, resistance to Phytophthora infestans, ploidy level, and cytoplasm type was evaluated in vitro. The composition of these somatic hybrids was as follows: [S. pinnatisectum Dun. (2n = 2x = 24; cytoplasmic type Wγ) + S. tuberosum L. (2n = 4x = 48; cytoplasmic type Tß)]. Based on leaf morphology and plant growth vigor, plants were divided into three groups, including plants close to tbr parent with unlobed leaves, small plants with scarcely dissected leaves, and vigorous plants with asymmetrically and pinnately lobed leaves. Nine of the somatic hybrids were found to be highly resistant to P. infestans. Somatic hybrids were either tetraploid or hexaploid, with hexaploids being predominant. The cytoplasm of somatic hybrids was either Tßγ or Wßγ, with Tßγ being more common. Overall, in contrast to leaf morphology and growth vigor, level of resistance to P. infestans was not related to either ploidy level or type of cytoplasm. These findings demonstrate that early in vitro selection of promising hybrids can be useful in breeding programs.  相似文献   

11.
12.
13.
Plant growth promoting bacteria (PGPB) may help to reduce the toxicity of heavy metals on plants growing in polluted soils. In this work, Sulla coronaria inoculated with four Cd resistant bacteria (two Pseudomonas spp. and two Rhizobium sullae) were cultivated in hydroponic conditions treated by Cd; long time treatment 50 µM CdCl2 for 30 days and short time treatment; 100 µM CdCl2 for 7 days. Results showed that inoculation with Cd resistant PGPB enhanced plant biomass, thus shoot and root dry weights of control plants were enhanced by 148 and 35% respectively after 7 days. Co-inoculation of plants treated with 50 and 100 µM Cd increased plant biomasses as compared to Cd-treated and uninoculated plants. Cadmium treatment induced lipid peroxidation in plant tissues measured through MDA content in short 7 days 100 µM treatment. Antioxidant enzyme studies showed that inoculation of control plants enhanced APX, SOD and CAT activities after 30 days in shoots and SOD, APX, SOD, GPOX in roots. Application of 50 µM CdCl2 stimulated all enzymes in shoots and decreased SOD and CAT activities in roots. Moreover, 100 µM of CdCl2 increased SOD, APX, CAT and GPOX activities in shoots and increased significantly CAT activity in roots. Metal accumulation depended on Cd concentration, plant organ and time of treatment. Furthermore, the inoculation enhanced Cd uptake in roots by 20% in all treatments. The cultivation of this symbiosis in Cd contaminated soil or in heavy metal hydroponically treated medium, showed that inoculation improved plant biomass and increased Cd uptake especially in roots. Therefore, the present study established that co-inoculation of S. coronaria by a specific consortium of heavy metal resistant PGPB formed a symbiotic system useful for soil phytostabilization.  相似文献   

14.
The cuticle, composed primarily of wax and cutin, covers most plant aerial surfaces and plays a vital role in interactions between plants and their environment. Some ATP-binding cassette G subfamily (ABCG) members are involved in cuticular lipid molecule exportation to outside in the plant surface. Thellungiella salsugineum, a relative of Arabidopsis thaliana with a heavy cuticle, has extreme stress tolerance. TsABCG11, an ABCG transporter was cloned (GenBank accession number JQ389853), and its structure was studied. qRT-PCR showed that TsABCG11 expression varied in different organs of T. salsugineum and was upregulated under ABA, NaCl, drought and cold conditions. The rosette leaves from 4-week-old TsABCG11 overexpressed (OE) Arabidopsis plants displayed lower rates of water loss and decreased chlorophyll-extracted rates compared to wild-type plants. TsABCG11-OE plants also exhibited significantly increased total cuticular wax and cutin monomer amounts, mainly due to prominent changes in the C29, C31, and C33 alkanes in the wax and C18:2 dioic in cutin monomers, respectively. TsABCG11-OE seedlings exhibit lower root growth inhibition under 100 mM of NaCl or 1 µM of ABA than the wild type. Four-week-old TsABCG11-OE plants exhibited higher photosynthetic rates and water-use efficiency under cold stress (4 °C) than control plants. These results indicate that TsABCG11 plays an important role in cuticle lipid exportation and is involved in abiotic stresses, probably having a close relationship with extreme stress tolerance in T. salsugineum.  相似文献   

15.
We previously introduced the bar gene, along with chitinase and AP24 genes, into the pineapple genome. The present report focuses on the evaluation of the first vegetative generation of a transgenic clone containing these genes. Three materials were compared: macropropagated controls (non-transformed), micropropagated controls (non-transformed), and micropropagated transformed plants. From each group, 50% of the plants were sprayed with FINALE® 3 mo after the experiment initiation. The characterization was performed after 1 yr of field growth. FINALE® killed all non-transgenic plants. Plants that survived the herbicide application showed 2n?=?50 chromosomes in their roots after 1 yr in the field. Micropropagated transformed plants sprayed with FINALE® did not show phenotype differences from micropropagated transformed plants not sprayed with the herbicide. Between the micropropagated transformed plants sprayed with FINALE® and the micropropagated control plants, the following differences were observed: modifications in levels of cell wall-linked, free and total phenolics, and total proteins. Moreover, changes of the fruit mass without crown were also recorded. Between the micropropagated transformed plants sprayed with FINALE® and the macropropagated control plants, levels of chlorophyll b, total chlorophyll pigments, and proteins were different. Furthermore, activities of phenylalanine ammonia-lyase, superoxide dismutase, and glutamine synthetase were dissimilar. The plant height and diameter, and the crown height were also different. Until now, we have evaluated transformed pineapple plants during hardening and field growth. Although some unexpected variations were recorded, we believe they are not relevant enough to justify rejection of transgenesis as an important tool for pineapple genetic improvement.  相似文献   

16.
Arachis glabrata Benth (perennial peanut) is a rhizomatous legume with high forage value and great potential for soil conservation as well as it displays valuable plant genetic resources for the cultivated edible peanut improvement. In this study, we developed for the first time successful protocols for micropropagation and cryopreservation of A. glabrata. First fully expanded leaflets from greenhouse-growing plants were efficiently established in vitro (93%) and displayed high frequency of bud induction (58%) on MS medium with 6 mg L?1 1-fenil-3-(1,2,3-tiadiazol-5-il)urea [TDZ]. Whole plant regeneration was achieved via direct organogenesis by transferring the induced buds to MS media. Immature unexpanded leaves from micropropagated plants were effectively cryopreserved by using the droplet-vitrification technique. Maximum survival (~ 70%) and further regeneration (60–67%) were obtained by preconditioning immature leaves on semisolid MS with 0.3 M sucrose (1 d), exposing to loading solution consisting of 0.4 M sucrose plus 2 M glycerol (30 min) followed by glycerol-sucrose plant vitrification solution PVS3 (150 min in ice), and direct plunging into liquid nitrogen in droplets of PVS3 deposited on cryoplates. Tissues were rewarmed by plunging the aluminum foils directly in liquid MS enriched with 1.2 M sucrose (15 min) at room temperature. Growth recovery and plant regeneration were efficiently achieved via shoot organogenesis, and somatic embryogenesis by culturing cryostored explants on MS added with 6 mg L?1 TDZ. Genetic stability of plants derived from cryopreserved leaves was confirmed by random amplified polymorphic DNA markers. The protocols established in this study have great potential for rapid multiplication and conservation of selected A. glabrata genotypes.  相似文献   

17.
The plant stress hypothesis posits that a herbivore’s reproductive success increases when it feeds on stressed plants, while the plant vigor hypothesis predicts that a herbivore preferentially feeds on more vigorous plants. We examined these opposing hypotheses by growing spider mites (Tetranychus urticae) on the leaves of stressed and healthy (vigorous) cucumber plants. Host plants were grown under controlled conditions at low, moderate, and high concentrations of NaCl (to induce salinity stress), at low, moderate, and high fertilizer concentrations (to support growth), and without these additions (control). The effects of these treatments were evaluated by measuring fresh and dry plant biomass, carotenoid and chlorophyll content, antioxidant enzyme activity, and concentrations of PO43?, K+, and Na+ in plant tissues. The addition of low concentrations of fertilizer increased dry mass, protein, and carotenoid content relative to controls, suggesting a beneficial effect on plants. The highest NaCl treatment (2560 mg L?1) resulted in increased Na+ and protein content relative to control plants, as well as reduced PO43?, K+, and chlorophyll levels and reduced catalase and ascorbate peroxidase enzyme activity levels. Analysis of life table data of T. urticae mites raised on leaves from the aforementioned plant groups showed the intrinsic rate of increase (r) for mites was 0.167 day?1 in control specimens, 0.125 day?1 for mites reared on plants treated with a moderate concentration of fertilizer (10 mL L?1), and was highest (0.241 day?1) on plants grown under moderate salinity conditions (1920 mg L?1 NaCl). Reproductive success of T. urticae did not differ on plants watered with a moderate concentration of NaCl or a high concentration of fertilizer. The moderately-stressed plants formed a favorable environment for the development and reproduction of spider mites, supporting the plant stress hypothesis.  相似文献   

18.
19.

Key message

SpAQP1 was strongly induced by salt in an ABA-independent way, promoted seed germination and root growth in transgenic tobaccos and increased salt tolerance by increasing the activities of antioxidative enzymes.

Abstract

Aquaporin (AQP) plays crucial roles in the responses of plant to abiotic stresses such as drought, salt and cold. Compared to glycophytes, halophytes often have excellent salt and drought tolerances. To uncover the molecular mechanism of halophyte Sesuvium portulacastrum tolerance to salt, in this study, an AQP gene, SpAQP1, from S. portulacastrum was isolated and characterized. The amino acid sequence of SpAQP1 shared high homology with that of plant plasma membrane intrinsic proteins (PIPs) and contained the distinct molecular features of PIPs. In the phylogenic tree, SpAQP1 was evidently classified as the PIP2 subfamily. SpAQP1 is expressed in roots, stems and leaves, and was significantly induced by NaCl treatment and inhibited by abscisic acid (ABA) treatment. When heterologously expressed in yeast and tobacco, SpAQP1 enhanced the salt tolerance of yeast strains and tobacco plants and promoted seed germination and root growth under salt stress in transgenic plants. The activity of antioxidative enzymes including superoxide dismutase, peroxidase and catalase was increased in transgenic plants overexpressing SpAQP1. Taken together, our studies suggested that SpAQP1 functioned in the responses of S. portulacastrum to salt stress and could increase salt tolerance by enhancing the antioxidative activity of plants.
  相似文献   

20.
The goal of this project was to regenerate Artemisia abrotanum L., Southern wormwood, by means of organogenesis from leaves. In vitro plant propagation may greatly support the molecular characterization of the medicinal qualities of A. abrotanum. Young, intact leaves were excised from mature plants and surface sterilized. Abundant callus growth, as well as shoot formation, was produced on an MS medium supplemented with 4.44 μM BA and 0.54 μM or 0.81 μM NAA. Shoots, with some residual callus, rooted equally well in MS media with 0.49 μM IBA, 0.54 μM NAA, or without hormones. Rooted plants were best acclimated in potting soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号