首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Using an antiserum raised against the purified atrial natriuretic peptide (ANP) receptor that has a disulfide-linked homodimeric structure and represents one subtype of the multiple ANP receptors, we showed that the receptor is coupled to the guanylate cyclase activation; formerly, this type of ANP receptor is not considered to be coupled to the cyclase. The specificity of the antiserum was determined by immunoblot analysis and immunoprecipitation. The anti-receptor antiserum did not compete with 125I-ANP for binding to the receptor but it lowered the affinity of the receptor. When added to bovine endothelial cell cultures, the antiserum blocked the cyclic GMP response of the cells triggered by ANP. These results indicate that the subtype of the ANP receptor recognized by the antiserum is responsible for the activation of particulate guanylate cyclase as well as the double function type receptor that has been assumed to contain both the receptor domain and the catalytic domain for cGMP synthesis on the same molecule. The presence of dissociative complexes of ANP receptor and particulate guanylate cyclase was also demonstrated by radiation inactivation analysis.  相似文献   

2.
Atrial natriuretic peptide (ANP) binding and ANP-induced increases in cyclic guanosine monophosphate (cGMP) levels have been observed in brain microvessels (Chabrier et al., 1987; Steardo and Nathanson, 1987), suggesting that this fluid-regulating hormone may play a role in the fluid homeostasis of the brain. This study was initiated to characterize the ANP receptors in primary cultures of brain microvessel endothelial cells (BMECs). The apparent equilibrium dissociation constant, Kd, for ANP increased from 0.25 nM to 2.5 nM, and the number of ANP binding sites as determined by Scatchard analysis increased from 7,100 to 170,000 sites/cell between 2 and 10 days of culture following monolayer formation. Time- and concentration-dependent studies on the stimulation of cGMP levels by ANP indicated that guanylate cyclase-linked ANP receptors were present in BMECs. The relative abilities of ANP, brain natriuretic peptide (BNP), and a truncated analog of ANP containing amino acids 5-27 (ANP 5-27) to modulate the accumulation of cGMP was found to be ANP greater than BNP much greater than ANP 5-27. Affinity cross-linking with disuccinimidyl suberate and radiolabeled ANP followed by gel electrophoresis under reducing conditions demonstrated a single band corresponding to the 60-70 kD receptor, indicating the presence of the nonguanylate cyclase-linked ANP receptor. Radiolabeled ANP binding was examined in the presence of various concentrations of either ANP, BNP, or ANP 5-27 and suggested that a large proportion of the ANP receptors present in blood-brain barrier endothelial cells bind all of these ligands similarly. These data indicate both guanylate cyclase linked and nonguanylate cyclase linked receptors are present on BMECs and that a higher proportion of the nonguanylate cyclase linked receptors is expressed. This in vitro culture system may provide a valuable tool for the examination of ANP receptor expression and function in blood-brain barrier endothelial cells.  相似文献   

3.
Recently a stimulatory effect of atrial natriuretic peptide (ANP) on the particulate guanylate cyclase system has been reported in the glomeruli from different species. Using cultures of homogeneous human glomerular cell lines, we found that rat and human ANP stimulated markedly cGMP formation in epithelial cells with a threshold dose of 1 nM. A 20-fold increase was obtained at 5 microM. Stimulation was also present but less substantial (2-fold at 5 microM) in mesangial cells. cGMP was formed rapidly and released in the medium. ANP and sodium nitroprusside, an activator of soluble guanylate cyclase, had additive effects on cGMP formation. ANP did not inhibit cAMP formation in both cell lines. These results demonstrate that, at least in the human species, epithelial cells represent the main target of ANP in the glomerulus. Synthesis of cGMP in the glomerular epithelial cells in response to ANP also suggests that the excess of urinary cGMP produced by the kidney which is observed after ANP administration is of glomerular rather than of tubular origin.  相似文献   

4.
Atrial natriuretic peptide (ANP) receptors A and B are guanylyl cyclase receptors, whereas ANP-C receptors are coupled to adenylyl cyclase through inhibitory guanine nucleotide (Gi) protein. ANP has been shown to downregulate ANP-A and -B receptors and cGMP response in various tissues. In the present studies, we have examined the regulation of ANP-C receptor-adenylyl cyclase signal transduction by ANP and [des(Gln(18),Ser(19),Gln(20),Leu(21), Gly(22))ANP(4-23)-NH(2)](C-ANP(4-23)) that interacts specifically with ANP-C receptor in A10 smooth muscle cells (SMC). Treatment of the cells with C-ANP(4-23) for 24 h resulted in a reduction in ANP receptor binding activity. [(125)I]ANP(99-126) bound to control and C-ANP(4-23)-treated cell membranes at a single site with dissociation constants of 33.7 +/- 6 and 35.0 +/- 4.5 pM and B(max) of 74.0 +/- 5.0 and 57.6 +/- 4.0 fmol/mg of protein, respectively. C-ANP(4-23) inhibited adenylyl cyclase activity in a concentration-dependent manner in control cells. A maximal inhibition observed was about 30-40% with an apparent K(i) of about 1 nM; however, this inhibition was completely attenuated in cells pretreated with ANP(99-126) or C-ANP(4-23) (10(-7) M). However, the inhibition of adenylyl cyclase by 17-amino acid peptide (RRNHQEESNIGKHRELR) (R17A) of cytoplasmic domain of ANP-C receptor was attenuated by about 50% but was not completely abolished by C-ANP(4-23) treatment. The attenuation of C-ANP(4-23)-mediated inhibition of adenylyl cyclase was dependent on the concentration and time of pretreatment of the cells with C-ANP(4-23). In addition, angiotensin II- (Ang II-) mediated inhibition of adenylyl cyclase ( approximately 30%) was also abolished by C-ANP(4-23) treatment, indicating that the desensitization elicited by ANP was heterologous. In addition, C-ANP(4-23) treatment decreased the expression of Gialpha-2 and Gialpha-3 proteins by about 40 and 60%, respectively, and their mRNA by 40%. However, the levels of Gi proteins were not altered when the cells were treated for shorter period of time (2-4 h) or with lower concentrations of C-ANP(4-23) (10(-10) M). On the other hand, the levels of Gsalpha but not of Gbeta were increased by about 35% by C-ANP(4-23) treatment. Furthermore, the stimulations exerted by GTPgammaS, isoproterenol, FSK, and NaF on adenylyl cyclase were also augmented in cells treated with C-ANP(4-23). These results indicate that C-ANP(4-23) treatment of A10 cells desensitizes ANP-C receptor-mediated inhibition of adenylyl cyclase which may be due to the downregulation of ANP-C receptor and decreased expression of Gialpha proteins to which these receptors are coupled.  相似文献   

5.
We elucidated the role of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) in human and bovine adrenocortical steroidogenesis. The urinary volume, sodium excretion and cyclic GMP (cGMP) excretion and plasma cGMP were markedly increased by the synthetic alpha-human ANP (alpha-hANP) infusion in healthy volunteers. Plasma arginine vasopressin (AVP) and aldosterone levels were significantly suppressed. Both ANP and BNP inhibited aldosterone, 19-OH-androstenedione, cortisol and DHEA secretion dose-dependently and increased the accumulation of intracellular cGMP in cultured human and bovine adrenal cells. alpha-hANP significantly suppressed P450scc-mRNA in cultured bovine adrenal cells stimulated by ACTH. Autoradiography and affinity labeling of [125I]hANP, and Scatchard plot demonstrated a specific ANP receptor in bovine and human adrenal glands. Purified ANP receptor from bovine adrenal glands identified two distinct types of ANP receptors, one is biologically active, the other is silent. A specific BNP receptor was also identified on the human and bovine adrenocortical cell membranes. The binding sites were displaced by unlabelled ANP as well as BNP. BNP showed an effect possibly via a receptor which may be shared with ANP. The mean basal plasma alpha-hANP level was 25 +/- 5 pg/ml in young men. We confirmed the presence of ANP and BNP in bovine and porcine adrenal medulla. Plasma or medullary ANP or BNP may directly modulate the adrenocortical steroidogenesis. We demonstrated that the lack of inhibitory effect of alpha-hANP on cultured aldosterone-producing adenoma (APA) cells was due to the decrease of ANP-specific receptor, which caused the loss of suppression of aldosterone and an increase in intracellular cGMP.  相似文献   

6.
Vascular endothelial cells have been shown to contain atrial natriuretic peptide (ANP)-sensitive Na-K-Cl cotransport system whose activity is regulated by intracellular cGMP levels. Addition of ANP to culture medium stimulated 86Rb+ uptake in bovine endothelial cells with a concomitant increase in cGMP contents. This action of ANP was mimicked by 8-bromo-cGMP and completely diminished by furosemide. These results indicate that ANP selectively activates the Na-K-Cl cotransporter in vascular endothelial cells via cGMP and offer new insight into the physiological significance of endothelial ANP receptors.  相似文献   

7.
In a previous study, we reported that cyclic GMP (cGMP) selectively down-regulates the clearance receptor (C-receptor) for atrial natriuretic peptide (ANP) in the cultured bovine pulmonary artery endothelial (CPAE) cell line. The present study was undertaken in order to examine the effect of cGMP on the internalization of the ANP-receptor complex in CPAE cells. Maximum binding of [125I]APIII to the cells significantly decreased following the treatment with 1 mM 8-bromo-cGMP for 48 or 72 h. Scatchard analysis of the binding assay data from the treated cells showed a decrease in Bmax (616 to 411 fmol/mg protein) without a significant change in Kd. Removal of cell surface-bound APIII by acetic acid revealed that not only the surface binding, but also the internalization of APIII significantly decreased in 8-bromo-cGMP-treated cells, indicating a decrease in receptor-mediated uptake of ANP into the cells. These results suggest that cGMP regulates the clearance of ANP by vascular endothelial cells.  相似文献   

8.
Guanylyl cyclase subtype A (GCA) is the main receptor that mediates the effects of atrial natriuretic peptide (ANP) in the regulation of plasma volume and blood pressure. The dynamics of the dissociation of ANP from GCA were investigated in cultured Chinese hamster ovary (CHO) cells stably transfected with wild-type (WT) or mutant GCA receptors. The rate of dissociation of specifically bound (125)I-ANP-(1-28) from intact CHOGCAWT cells at 37 degrees C was extremely rapid (K(off) = 0.49 +/- 0.02 min(-1)), whereas in isolated membranes prepared from these cells, the dissociation at 37 degrees C was >10-fold slower (K(off) = 0.035 +/- 0.006 min(-1)). The dissociation of ANP from CHOGCAWT cells showed remarkable temperature dependence. Between 22 and 37 degrees C, K(off) increased approximately 8 times, whereas between 4 and 22 degrees C, it increased only 1.5 times. Total deletion of the cytoplasmic domain or of the catalytic guanylyl cyclase sequence within this domain abolished ANP-induced increases in cGMP, dramatically slowed receptor-ligand dissociation by at least 10-fold, and abolished the temperature dependence of the dissociation of ANP. Deletion of the kinase-like domain led to maximal constitutive activation of guanylyl cyclase, markedly decreased K(off) to 0.064 +/- 0.006 min(-1), and also abolished the temperature dependence of dissociation. Substitution of Ser(506) by Ala and particularly the double substitution of Gly(505) and Ser(506) by Ala within the kinase-like domain markedly reduced ANP-induced increases in cGMP, whereas K(off) decreased modestly (albeit significantly) to 0.36 +/- 0.03 and 0.24 +/- 0.02 min(-1), respectively. As a whole, the results demonstrate for the first time that temperature per se or ATP alone cannot account for rapid GCA receptor-ligand dissociation under physiological conditions and suggest that ligand dissociation is modulated in part by the interaction of still unidentified cytosolic factors with the cytoplasmic domain of GCA.  相似文献   

9.
Guinea pig caecal circular smooth muscle cells were used to determine whether brain natriuretic peptide (BNP) can inhibit the contractile response produced by cholecystokinin-octapeptide (CCK-8). In addition, we examined the effect of an inhibitor of cAMP-dependent protein kinase, an inhibitor of particulate or soluble guanylate cyclase, an atrial natriuretic peptide (ANP) antagonist (ANP 1-11), and selective receptor protection on the BNP-induced relaxation of these muscle cells. The effect of BNP on cAMP formation was also examined. BNP inhibited the contractile response produced by CCK-8 in a dose-response manner, with an IC50 value of 8.5 nM, and stimulated the production of cAMP. The inhibitor of cAMP-dependent protein kinase and the inhibitor of soluble guanylate cyclase significantly inhibited the relaxation produced by BNP. In contrast, the inhibitor of particulate guanylate cyclase did not have any significant effect on the relaxation produced by BNP. ANP 1-11 significantly but partially inhibited the relaxation produced by BNP. The muscle cells where CCK-8 and ANP binding sites were protected completely preserved the inhibitory response to ANP, but partially preserved the inhibitory response to BNP. The muscle cells where CCK-8 and BNP binding sites were protected completely preserved the inhibitory response to both ANP and BNP. This study demonstrates that BNP induces relaxation of these muscle cells via both ANP binding sites coupled to soluble guanylate cyclase and distinct BNP binding sites coupled to adenylate cyclase.  相似文献   

10.
Receptors for atrial natriuretic peptide (ANP) are heterogeneous: an approximately 140-kDa receptor exhibits ANP-stimulated guanylate cyclase activity whereas an approximately 65-kDa receptor is thought to act only as a clearance-storage protein. We have used photoaffinity labeling techniques to show that the human cell line, HeLa, contains predominantly the approximately 140-kDa ANP receptor. In contrast, several other cell lines contain primarily the approximately 65-kDa receptor. In HeLa cells, ANP bound specifically to high affinity binding sites (Kd approximately 2 nM) and stimulated a rapid, dose-dependent accumulation of cGMP. These cell lines can thus provide useful models to study the multiple mechanisms of ANP action.  相似文献   

11.
Two classes of guanylyl cyclases (GC) form intracellular cGMP. One is a receptor for atrial natriuretic peptide (ANP) and the other for nitric oxide (NO). The ANP receptor guanylyl cyclase (GC-A) is a membrane-bound, single subunit protein. Nitric oxide activated or soluble guanylyl cyclases (NOGC) are heme-containing heterodimers. These have been shown to be important in cGMP mediated regulation of arterial vascular resistance and renal sodium transport. Recent studies have shown that cGMP produced by both GCs is compartmentalized in the heart and vascular smooth muscle cells. To date, however, how intracellular cGMP generated by ANP and NO is compartmentalized and how it triggers specific downstream targets in kidney cells has not been investigated. Our studies show that intracellular cGMP formed by NO is targeted to cytosolic and cytoskeletal compartments whereas cGMP formed by ANP is restricted to nuclear and membrane compartments. We used two dimensional difference in gel electrophoresis and MALDI-TOF/TOF to identify distinct sub-cellular targets that are specific to ANP and NO signaling in HK-2 cells. A nucleocytoplasmic shuttling protein, heterogeneous nuclear ribonucleo protein A1 (hnRNP A1) is preferentially phosphorylated by ANP/cGMP/cGK signaling. ANP stimulation of HK-2 cells leads to increased cGK activity in the nucleus and translocation of cGK and hnRNP A1 to the nucleus. Phosphodiestaerase-5 (PDE-5 inhibitor) sildenafil augmented ANP-mediated effects on hnRNPA1 phosphorylation, translocation to nucleus and nuclear cGK activity. Our results suggest that cGMP generated by ANP and SNAP is differentially compartmentalized, localized but not global changes in cGMP, perhaps at different sub-cellular fractions of the cell, may more closely correlate with their effects by preferential phosphorylation of cellular targets.  相似文献   

12.
The effect of synthetic porcine brain natriuretic peptide (pBNP), a novel brain peptide with sequence homology to alpha-human atrial natriuretic peptide (hANP), on receptor binding and cGMP generation, was studied in cultured rat vascular smooth muscle cells (VSMC) and compared with that of alpha-hANP. 125I-pBNP bound to the cells in a time-dependent manner similar to that of 125I-alpha-hANP. Scatchard analysis indicated a single class of binding sites for pBNP with affinity and capacity identical to those of alpha-hANP. pBNP and alpha-hANP were almost equipotent in inhibiting the binding of either radioligand and stimulating intracellular cGMP generation. These data indicate that BNP and ANP interact with the same receptor sites to activate guanylate cyclase in rat VSMC.  相似文献   

13.
We isolated cDNAs encoding a 115 kd human atrial natriuretic peptide (alpha ANP) receptor (ANP-A receptor) that possesses guanylate cyclase activity, by low-stringency hybridization with sea urchin Arbacia punctulata membrane guanylate cyclase probes. The human ANP-A receptor has a 32 residue signal sequence followed by a 441 residue extracellular domain homologous to the 60 kd ANP-C receptor. A 21 residue transmembrane domain precedes a 568 residue cytoplasmic domain with homology to the protein kinase family and to a subunit of the soluble guanylate cyclase. COS-7 cells transfected with an ANP-A receptor expression vector displayed specific [125I]alpha ANP binding, and exhibited alpha ANP stimulated cGMP production. These data demonstrate a new paradigm of cellular signal transduction where extracellular ligand binding allosterically regulates cyclic nucleotide second-messenger production by a receptor cytoplasmic catalytic domain.  相似文献   

14.
Native rat atrial natriuretic peptide (NANP) was shown to bind with high affinity and to increase intracellular levels of cGMP in cultured rat Leydig tumor cells. A linear analog of NANP which lacks the disulfide-linked bridge structure also bound with high affinity but did not increase levels of intracellular cGMP or antagonize the increase of this cyclic nucleotide by NANP. These data are consistent with the existence of two functional subpopulations of ANP receptors on cultured rat Leydig tumor cells; one which is capable of activating guanylate cyclase and one which is not linked to this enzyme.  相似文献   

15.
Down-regulation of atrial natriuretic peptide (ANP) receptors was investigated using a cultured bovine pulmonary artery endothelial (CPAE) cell line. Endothelial cells have been shown to possess two subtypes of ANP receptors, a guanylate cyclase-coupled receptor (B-receptor) and a clearance receptor (C-receptor). The treatment with APIII, rat ANP (103-126), at concentrations of 10(-8) to 10(-6) M for 24 h, resulted in a significantly (p less than 0.01) greater decrease in maximum 125I-APIII binding to CPAE cells than the identical concentration of API, rat ANP (103-123). APIII at concentrations of 10(-8) to 10(-6) M stimulated cyclic GMP (cGMP) production 3.3-17.5-fold greater than similar concentrations of API. From these findings, we hypothesized that cGMP produced following ANP binding to the B-receptor participates in ANP receptor regulation. M&B 22948, a selective inhibitor of cGMP-specific phosphodiesterase, significantly (p less than 0.01) potentiated the effect of both API and APIII on 125I-APIII binding, while M&B 22948 itself had no significant effect on 125I-APIII binding. Treatment of the cells with 1 mM 8-bromo-cGMP also significantly (p less than 0.01) decreased 125I-APIII binding to the cells, and a potentiation of this effect was observed by M&B 22948. Scatchard analysis of binding data from 8-bromo-cGMP-treated cells showed a significant decrease in Bmax (1.79 +/- 0.15 to 1.20 +/- 0.07 fmol/mg protein, p less than 0.05) without a significant change in Kd. Affinity cross-linking of 125I-APIII to 8-bromo-cGMP-treated cells showed a decrease in the labeling of 60- and 70-kDa bands corresponding to the C-receptor. In addition, the APIII-stimulated cGMP response remained unchanged in the 8-bromo-cGMP-treated cells, indicating that the B-receptor was not down-regulated. We conclude that cGMP regulates ANP-binding sites on the endothelial cell and that the evidence indicates that the C-receptor may preferentially be down-regulated by cGMP in CPAE cells.  相似文献   

16.
The involvement of atrial natriuretic peptide (ANP) in the regulation of thyroid gland is supported by the presence of high-affinity ANP receptors and the identification of the peptide in thyroid follicular cells. The aim of this work was to study the action of ANP on parameters of thyroid hormone biosynthesis and analyze the intracellular mechanism of the ANP action in cultured bovine thyroid follicles. The addition of ANP (0.1-10 nM) to the culture medium for 24 h inhibited the TSH (thyroid-stimulating hormone)-stimulated iodide uptake with a maximal inhibition at 1 nM ANP. When thyrocytes were incubated with 10 nM ANP the inhibitory effect slightly increased from 24 to 72 h. Thyroglobulin (Tg) mRNA expression was reduced by 1 and 10 nM ANP. After 24 h of treatment with the cGMP analogue, N(2),2'-O-dibutyrylguanosine 3':5'-cyclic monophosphate [(Bu)(2)cGMP] (0.1 and 1 mM), an inhibition of iodide uptake and Tg mRNA expression was obtained, evidencing a cGMP-mediated inhibitory signal in the thyroid cell. A reduction of the cAMP production was induced by incubation of thyroid follicles with 1 and 10 nM ANP for 24 h. Under a similar treatment the cGMP accumulation was increased only by 10 nM ANP. The inhibitory effect of ANP on Tg mRNA level was reverted in the presence of pertussis toxin, an inhibitor of the G(i)-protein-mediated reduction of the adenylate cyclase activity. These results indicate an inhibitory action of ANP on parameters of thyroid hormone biosynthesis. A G(i)-protein-mediated reduction of the cAMP production seems to be the main factor involved in the ANP action although a role of the cGMP pathway should not be discarded specially at high ANP levels.  相似文献   

17.
Atrial natriuretic peptide (ANP) is secreted by the heart in response mainly to atrial distension and circulates in plasma in picomolar concentrations. It binds to receptors in blood vessels which it relaxes, renal glomeruli where it induces increased glomerular filtration rate, renal papilla to produce natriuresis, adrenal glomerulosa celts to inhibit aldosterone secretion, and median eminence and pituitary where it may inhibit vasopressin secretion. In experimental models of hypertension plasma levels of ANP are uniformly elevated, except in spontaneously hypertensive rats, in which plasma ANP may only rise transiently. The action of ANP on smooth muscle cells of the blood vessel wall results in production of cyclic GMP, which appears to be the second messenger producing relaxation of pre-contracted blood vessels. Mechanisms other than cGMP generation have been proposed but remain unproven as mediators of ANP action. Receptors for ANP in blood vessels are of two subtypes: B-receptors (or R1-receptors), which contain guanylate cyclase in their structure, and C-receptors (or R2-receptors), which have not been shown to the present to be biologically active. Our studies on vascular ANP receptors are reviewed. In several experimental models of hypertension such as saralasin-insensitive 2-kidney, 1-clip and 1-kidney, 1-clip Goldblatt hypertensive rats and in DOCA-salt hypertensive rats, we have found elevated plasma ANP, as well as decreased binding and ANP-induced vascular relaxation and blood pressure-lowering effects of ANP. Both the B and C ANP receptors appear decreased in density, even after acid washing of membranes to remove any retained circulating ANP. In SHR we have found that plasma ANP was higher than in control WKY rats only transiently at 8 weeks. Binding was significantly lower in 4 and 8 week-old SHR, but cGMP generation and relaxation produced by ANP were increased in the 4 week-old SHR but normal at 8, 12 or 16 weeks. Expression of B-receptors was exaggerated in 4 week-old SHR relative to C receptors in comparison to age-matched WKY and Wistar rats. These results may underly the normalization of blood pressure found in SHR when a small dose of ANP is infused intravenously, in contrast to other models of experimental hypertension which appear to be more resistant to ANP-induced blood pressure lowering effects. In humans with essential hypertension, plasma ANP was increased in patients with moderate to severe uncontrolled high blood pressure, associated with echocardiographic evidence of left ventricular hypertrophy. In these patients, platelet ANP binding was significantly reduced. If these sites resemble vascular ANP sites in their behavior, severely hypertensive patients may be less sensitive to ANP, which may contribute to blood pressure elevation.  相似文献   

18.
19.
The interaction between the receptor (Rc) for atrial natriuretic peptide (ANP) and the effector enzyme particulate guanylate cyclase (GC) has been studied by radiation inactivation. Irradiation of bovine lung membranes produced an increase in GC activity at low radiation doses followed by a dose-dependent reduction at higher doses. This deviation from linearity in the inactivation curve disappeared when lung membranes were pretreated with ANP. Essentially identical results were also obtained with adrenal membranes. Based on these radiation inactivation data, the following dissociative mechanism of activation of particulate guanylate cyclase by ANP has been proposed: Rc.GC(inactive) + ANP----Rc.ANP + GC(active).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号