首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Polymer scaffold systems consisting of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) have proven to be possible matrices for the three-dimensional growth of chondrocyte cultures. However, the engineered cartilage grown on these PHBV scaffolds is currently unsatisfactory for clinical applications due to PHBV’s poor hydrophilicity, resulting in inadequate thickness and poor biomechanical properties of the engineered cartilage. It has been reported that the incorporation of Bioglass (BG) into PHBV can improve the hydrophilicity of the composites. In this study, we compared the effects of PHBV scaffolds and PHBV/BG composite scaffolds on the properties of engineered cartilage in vivo. Rabbit articular chondrocytes were seeded into PHBV scaffolds and PHBV/BG scaffolds. Short-term in vitro culture followed by long-term in vivo transplantation was performed to evaluate the difference in cartilage regeneration between the cartilage layers grown on PHBV and PHBV/BG scaffolds. The results show that the incorporation of BG into PHBV efficiently improved both the hydrophilicity of the composites and the percentage of adhered cells and promoted cell migration into the inner part the constructs. With prolonged incubation time in vivo, the chondrocyte-scaffold constructs in the PHBV/BG group formed thicker cartilage-like tissue with better biomechanical properties and a higher cartilage matrix content than the constructs in the PHBV/BG group. These results indicate that PHBV/BG scaffolds can be used to prepare better engineered cartilage than pure PHBV.  相似文献   

3.
The extracellular matrix (ECM) contains rich biological cues for cell recruitment, proliferationm, and even differentiation. The osteoinductive potential of scaffolds could be enhanced through human bone marrow mesenchymal stem cell (hBMSC) directly depositing ECM on surface of scaffolds. However, the role and mechanism of human umbilical cord mesenchymal stem cells (hUCMSC)‐secreted ECM in bone formation remain unknown. We tested the osteoinductive properties of a hUCMSC‐secreted ECM construct (hUCMSC‐ECM) in a large femur defect of a severe combined immunodeficiency (SCID) mouse model. The hUCMSC‐ECM improved the colonization of endogenous MSCs and bone regeneration, similar to the hUCMSC‐seeded scaffold and superior to the scaffold substrate. Besides, the hUCMSC‐ECM enhanced the promigratory molecular expressions of the homing cells, including CCR2 and TβRI. Furthermore, the hUCMSC‐ECM increased the number of migrated MSCs by nearly 3.3 ± 0.1‐fold, relative to the scaffold substrate. As the most abundant cytokine deposited in the hUCMSC‐ECM, insulin‐like growth factor binding protein 3 (IGFBP3) promoted hBMSC migration in the TβRI/II‐ and CCR2‐dependent mechanisms. The hUCMSC‐ECM integrating shRNA‐mediated silencing of Igfbp3 that down‐regulated IGFBP3 expression by approximately 60%, reduced the number of migrated hBMSCs by 47%. In vivo, the hUCMSC‐ECM recruited 10‐fold more endogenous MSCs to initiate bone formation compared to the scaffold substrate. The knock‐down of Igfbp3 in the hUCMSC‐ECM inhibited nearly 60% of MSC homing and bone regeneration capacity. This research demonstrates that IGFBP3 is an important MSC homing molecule and the therapeutic potential of hUCMSC‐ECM in bone regeneration is enhanced by improving MSC homing in an IGFBP3‐dependent mechanism.  相似文献   

4.
Here, we describe a porous 3-dimensional collagen scaffold material that supports capillary formation in vitro, and promotes vascularization when implanted in vivo. Collagen scaffolds were synthesized from type I bovine collagen and have a uniform pore size of 80 μm. In vitro, scaffolds seeded with primary human microvascular endothelial cells suspended in human fibrin gel formed CD31 positive capillary-like structures with clear lumens. In vivo, after subcutaneous implantation in mice, cell-free collagen scaffolds were vascularized by host neovessels, whilst a gradual degradation of the scaffold material occurred over 8 weeks. Collagen scaffolds, impregnated with human fibrinogen gel, were implanted subcutaneously inside a chamber enclosing the femoral vessels in rats. Angiogenic sprouts from the femoral vessels invaded throughout the scaffolds and these degraded completely after 4 weeks. Vascular volume of the resulting constructs was greater than the vascular volume of constructs from chambers implanted with fibrinogen gel alone (42.7±5.0 μL in collagen scaffold vs 22.5±2.3 μL in fibrinogen gel alone; p<0.05, n = 7). In the same model, collagen scaffolds seeded with human adipose-derived stem cells (ASCs) produced greater increases in vascular volume than did cell-free collagen scaffolds (42.9±4.0 μL in collagen scaffold with human ASCs vs 25.7±1.9 μL in collagen scaffold alone; p<0.05, n = 4). In summary, these collagen scaffolds are biocompatible and could be used to grow more robust vascularized tissue engineering grafts with improved the survival of implanted cells. Such scaffolds could also be used as an assay model for studies on angiogenesis, 3-dimensional cell culture, and delivery of growth factors and cells in vivo.  相似文献   

5.
Objectives: The aim of this study was to develop functionalized nanofibres as a simple delivery system for growth factors (GFs) and make nanofibre cell‐seeded scaffold implants a one‐step intervention. Materials and methods: We have functionalized polycaprolactone (PCL) nanofibres with thrombocytes adherent on them. Immobilized, these thrombocytes attached to nanofibre scaffolds were used as a nanoscale delivery system for native (autologous) proliferation and differentiation factors, in vitro. Pig chondrocytes were seeded on the thrombocyte‐coated scaffolds and levels of proliferation and differentiation of these cells were compared with those seeded on non‐coated scaffolds. Results: Immobilized thrombocytes on PCL nanofibres effectively enhanced chondrocyte proliferation due to time‐dependent degradation of thrombocytes and release of their GFs. Conclusions: These simply functionalized scaffolds present new possibilities for nanofibre applications, as smart cell scaffolds equipped with a GF delivery tool.  相似文献   

6.
Novel cardiovascular replacements are being developed by using degradable synthetic scaffolds, which function as a temporary guide to induce neotissue formation directly in situ. Priming of such scaffolds with fast‐releasing monocyte chemoattractant protein‐1 (MCP‐1) was shown to improve the formation of functional neoarteries in rats. However, the underlying mechanism has not been clarified. Therefore, the goal of this study was to investigate the effect of a burst‐release of MCP‐1 from a synthetic scaffold on the local recruitment of circulating leucocytes under haemodynamic conditions. Herein, we hypothesized that MCP‐1 initiates a desired healing cascade by recruiting favourable monocyte subpopulations into the implanted scaffold. Electrospun poly(ε‐caprolactone) scaffolds were loaded with fibrin gel containing various doses of MCP‐1 and exposed to a suspension of human peripheral blood mononuclear cells in static or dynamic conditions. In standard migration assay, a dose‐dependent migration of specific CD14+ monocyte subsets was observed, as measured by flow cytometry. In conditions of pulsatile flow, on the other hand, a marked increase in immediate monocyte recruitment was observed, but without evident selectivity in monocyte subsets. This suggests that the selectivity was dependent on the release kinetics of the MCP‐1, as it was overruled by the effect of shear stress after the initial burst‐release. Furthermore, these findings demonstrate that local recruitment of specific MCP‐1‐responsive monocytes is not the fundamental principle behind the improved neotissue formation observed in long‐term in vivo studies, and mobilization of MCP‐1‐responsive cells from the bone marrow into the bloodstream is suggested to play a predominant role in vivo.  相似文献   

7.
Articular cartilage repair might be stimulated by the controlled delivery of therapeutic factors. We tested the hypotheses whether TGF-ß1 can be released from a polymeric scaffold over a prolonged period of time in vitro and whether its transplantation modulates cartilage repair in vivo. Unloaded control or TGF-ß1 poly(ether-ester) copolymeric scaffolds were applied to osteochondral defects in the knee joints of rabbits. In vitro, a cumulative dose of 9 ng TGF-ß1 was released over 4 weeks. In vivo, there were no adverse effects on the synovial membrane. Defects treated with TGF-ß1 scaffolds showed no significant difference in individual parameters of chondrogenesis and in the average cartilage repair score after 3 weeks. There was a trend towards a smaller area (42.5 %) of the repair tissue that stained positive for safranin O in defects receiving TGF-ß1 scaffolds. The data indicate that TGF-ß1 is released from emulsion-coated scaffolds over a prolonged period of time in vitro and that application of these scaffolds does not significantly modulate cartilage repair after 3 weeks in vivo. Future studies need to address the importance of TGF-ß1 dose and release rate to modulate chondrogenesis.  相似文献   

8.
9.
10.
A cell leakproof porous poly(DL ‐lactic‐co‐glycolic acid) (PLGA)‐collagen hybrid scaffold was prepared by wrapping the surfaces of a collagen sponge except the top surface for cell seeding with a bi‐layered PLGA mesh. The PLGA‐collagen hybrid scaffold had a structure consisting of a central collagen sponge formed inside a bi‐layered PLGA mesh cup. The hybrid scaffold showed high mechanical strength. The cell seeding efficiency was 90.0% when human mesenchymal stem cells (MSCs) were seeded in the hybrid scaffold. The central collagen sponge provided enough space for cell loading and supported cell adhesion, while the bi‐layered PLGA mesh cup protected against cell leakage and provided high mechanical strength for the collagen sponge to maintain its shape during cell culture. The MSCs in the hybrid scaffolds showed round cell morphology after 4 weeks culture in chondrogenic induction medium. Immunostaining demonstrated that type II collagen and cartilaginous proteoglycan were detected in the extracellular matrices. Gene expression analyses by real‐time PCR showed that the genes encoding type II collagen, aggrecan, and SOX9 were upregulated. These results indicated that the MSCs differentiated and formed cartilage‐like tissue when being cultured in the cell leakproof PLGA‐collagen hybrid scaffold. The cell leakproof PLGA‐collagen hybrid scaffolds should be useful for applications in cartilage tissue engineering. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

11.
The osteoarthritis (OA) progression is now considered to be related to inflammation. Anemonin (ANE) is a small natural molecule extracted from various kinds of Chinese traditional herbs and has been shown to inhibiting inflammation response. In this study, we examined whether ANE could attenuate the progression of OA via suppression of IL‐1β/NF‐κB pathway activation. Destabilization of the medial meniscus (DMM) was performed in 10‐week‐old male C57BL/6J mice. ANE was then intra‐articularly injected into joint capsule for 8 and 12 weeks. Human articular chondrocytes and cartilage explants challenged with interleukin‐1β (IL‐1β) were treated with ANE. We found that ANE delayed articular cartilage degeneration in vitro and in vivo. In particular, proteoglycan loss and chondrocyte hypertrophy were significantly decreased in ANE ‐treated mice compared with vehicle‐treated mice. ANE decreased the expressions of matrix metalloproteinase‐13 (MMP13), A disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5), collagen X (Col X) while increasing Aggrecan level in murine with DMM surgery. ANE treatment also attenuated proteoglycan loss in human cartilage explants treated with IL‐1β ex vivo. ANE is a potent protective molecule for OA; it delays OA progression by suppressing ECM loss and chondrocyte hypertrophy partially by suppressing IL‐1β/NF‐κB pathway activation.  相似文献   

12.
The aim of this research is to explore the effect of miR‐200b‐3p targeting DNMT3A on the proliferation and apoptosis of osteoarthritis (OA) cartilage cells. Quantitative RT‐PCR was performed to analyse the expression of miR‐200b‐3p, DNMT3A, MMP1, MMP3, MMP9, MMP13 and COL II in normal and OA cartilage tissues. The dual‐luciferase reporter assay and Western blot assay were conducted to confirm the targeting relationship between miR‐200b‐3p and DNMT3A. We also constructed eukaryotic expression vector to overexpress miR‐200b‐3p and DNMT3A. We detected the expression level of MMPs and COL II in stable transfected cartilage cells using RT‐PCR and Western blot. Cell proliferation and apoptosis were evaluated using the MTS, pellet culture and Hoechst 33342 staining method. Finally, we explored the effect of miR‐200b‐3p targeting DNMT3A on the proliferation and apoptosis of OA cartilage cells. The results of RT‐PCR indicated that both miR‐200b‐3p and COL II were down‐regulated in OA cartilage tissues, while the expression of DNMT3A and MMPs was up‐regulated in OA cartilage tissues. The expressions of DNMT3A, MMPs and COL II detected by Western blot showed the same trend of the results of RT‐PCR. The dual‐luciferase reporter assay and Western blot assay confirmed the targeting relationship between miR‐200b‐3p and DNMT3A. In overexpressed miR‐200b‐3p cartilage cells, DNMT3A and MMPs were significantly down‐regulated, COL II was significantly up‐regulated, cell viability was enhanced and apoptosis rate was decreased (P < 0.05). In overexpressed DNM3T cartilage cells, MMPs were significantly up‐regulated, COL II was significantly down‐regulated, cell viability was weakened and apoptosis rate was increased (P < 0.05). MiR‐200b‐3p inhibited the secretion of MMPs, promoted the synthesis of COL II and enhanced the growth and proliferation of OA cartilage cells through inhibiting the expression of DNMT3A.  相似文献   

13.
Polyhydroxyalkanoates (PHA) are hydrophobic biopolymers with huge potential for biomedical applications due to their biocompatibility, excellent mechanical properties and biodegradability. A porous composite scaffold made of medium‐chain‐length poly(3‐hydroxyalkanoates) (mcl‐PHA) and hydroxyapatite (HA) was fabricated using particulate leaching technique and NaCl as a porogen. Different percentages of HA loading was investigated that would support the growth of osteoblast cells. Ultrasonic irradiation was applied to facilitate the dispersion of HA particles into the mcl‐PHA matrix. The different P(3HO‐co‐3HHX)/HA composites were investigated using field emission scanning electron microscopy (FESEM), X‐ray diffraction (XRD) and energy dispersive X‐ray analysis (EDXA). The scaffolds were found to be highly porous with interconnecting pore structures and the HA particles were homogeneously dispersed in the polymer matrix. The scaffolds biocompatibility and osteoconductivity were also assessed following the proliferation and differentiation of osteoblast cells on the scaffolds. From the results, it is clear that scaffolds made from P(3HO‐co‐3HHX)/HA composites are viable candidate materials for bone tissue engineering applications.  相似文献   

14.
Implantation of peripheral blood aspirates induced towards chondrogenic differentiation upon genetic modification in sites of articular cartilage injury may represent a powerful strategy to enhance cartilage repair. Such a single‐step approach may be less invasive than procedures based on the use of isolated or concentrated MSCs, simplifying translational protocols in patients. In this study, we provide evidence showing the feasibility of overexpressing the mitogenic and pro‐anabolic insulin‐like growth factor I (IGF‐I) in human peripheral blood aspirates via rAAV‐mediated gene transfer, leading to enhanced proliferative and chondrogenic differentiation (proteoglycans, type‐II collagen, SOX9) activities in the samples relative to control (reporter rAAV‐lacZ) treatment over extended periods of time (at least 21 days, the longest time‐point evaluated). Interestingly, IGF‐I gene transfer also triggered hypertrophic, osteo‐ and adipogenic differentiation processes in the aspirates, suggesting that careful regulation of IGF‐I expression may be necessary to contain these events in vivo. Still, the current results demonstrate the potential of targeting human peripheral blood aspirates via therapeutic rAAV transduction as a novel, convenient tool to treat articular cartilage injuries.  相似文献   

15.
In many tissue engineering approaches, the basic difference between in vitro and in vivo conditions for cells within three‐dimensional (3D) constructs is the nutrition flow dynamics. To achieve comparable results in vitro, bioreactors are advised for improved cell survival, as they are able to provide a controlled flow through the scaffold. We hypothesize that a bioreactor would enhance long‐term differentiation conditions of osteogenic cells in 3D scaffolds. To achieve this either primary rat osteoblasts or bone marrow stromal cells (BMSC) were implanted on uniform‐sized biphasic calcium phosphate (BCP) scaffolds produced by a 3D printing method. Three types of culture conditions were applied: static culture without osteoinduction (Group A); static culture with osteoinduction (Group B); dynamic culture with osteoinduction (Group C). After 3 and 6 weeks, the scaffolds were analysed by alkaline phosphatase (ALP), dsDNA amount, SEM, fluorescent labelled live‐dead assay, and real‐time RT‐PCR in addition to weekly alamarBlue assays. With osteoinduction, increased ALP values and calcium deposition are observed; however, under static conditions, a significant decrease in the cell number on the biomaterial is observed. Interestingly, the bioreactor system not only reversed the decreased cell numbers but also increased their differentiation potential. We conclude from this study that a continuous flow bioreactor not only preserves the number of osteogenic cells but also keeps their differentiation ability in balance providing a suitable cell‐seeded scaffold product for applications in regenerative medicine.  相似文献   

16.
The aim of this study was to determine the mechanism underlying the association between one‐carbon metabolism and DNA methylation during chronic degenerative joint disorder, osteoarthritis (OA). Articular chondrocytes were isolated from human OA cartilage and normal cartilage biopsied, and the degree of cartilage degradation was determined by safranin O staining. We found that the expression levels of SHMT‐2 and MECP‐2 were increased in OA chondrocytes, and 3′UTR reporter assays showed that SHMT‐2 and MECP‐2 are the direct targets of miR‐370 and miR‐373, respectively, in human articular chondrocytes. Our experiments showed that miR‐370 and miR‐373 levels were significantly lower in OA chondrocytes compared to normal chondrocytes. Overexpression of miR‐370 or miR‐373, or knockdown of SHMT‐2 or MECP‐2 reduced both MMP‐13 expression and apoptotic cell death in cultured OA chondrocytes. In vivo, we found that introduction of miR‐370 or miR‐373 into the cartilage of mice that had undergone destabilization of the medial meniscus (DMM) surgery significantly reduced the cartilage destruction in this model, whereas introduction of SHMT‐2 or MECP‐2 increased the severity of cartilage destruction. Together, these results show that miR‐370 and miR‐373 contribute to the pathogenesis of OA and act as negative regulators of SHMT‐2 and MECP‐2, respectively.  相似文献   

17.
In natural tissues cells are embedded in a three‐dimensional fibrous network of biopolymers like collagen, hyaluronic acid etc. This extracellular matrix (ECM) influences the cell fate, the differentiation status, metabolic processes and provides structural integrity. For a three‐dimensional or physiological cell cultivation that are required in biomedical applications (e.g. tissue engineering, BioMEMS) scaffolds are needed. These scaffolds mimic the ECM according to their biocompatibility which comprises aspects of surface compatibility and importantly for tissue engineering applications aspects of structural compatibility. We have evaluated scaffold design parameters for the three‐dimensional cultivation of chondrocytes for the tissue engineering of artificial cartilage. Two‐photon polymerization is a powerful technique for fabrication of polymeric three‐dimensional micro‐ and submicro‐structures. The photoinitiation system for two‐photon polymerization is excited by simultaneous absorption of two photons leading to chemical polymerization reactions. Due to a tight confinement of the excitation volume around the focal point, this method can produce micrometer sized objects maintaining a high spatial resolution down to 100 nm. Two‐photon processes require very high photon densities which are provided by pulsed femtosecond lasers. The potential of this approach for microfabrication of scaffolds for tissue engineering is demonstrated by investigation of the cell response to microstructures with complex three‐dimensional geometry and feature sizes in the range of few micrometers.  相似文献   

18.
IntroductionMesenchymal stem cells (MSCs) have immunosuppressive activity and can differentiate into bone and cartilage; and thus seem ideal for treatment of rheumatoid arthritis (RA). Here, we investigated the osteogenesis and chondrogenesis potentials of MSCs seeded onto nano-fiber scaffolds (NFs) in vitro and possible use for the repair of RA-affected joints.MethodsMSCs derived from healthy donors and patients with RA or osteoarthritis (OA) were seeded on poly-lactic-glycolic acid (PLGA) electrospun NFs and cultured in vitro.ResultsHealthy donor-derived MSCs seeded onto NFs stained positive with von Kossa at Day 14 post-stimulation for osteoblast differentiation. Similarly, MSCs stained positive with Safranin O at Day 14 post-stimulation for chondrocyte differentiation. Surprisingly, even cultured without any stimulation, MSCs expressed RUNX2 and SOX9 (master regulators of bone and cartilage differentiation) at Day 7. Moreover, MSCs stained positive for osteocalcin, a bone marker, and simultaneously also with Safranin O at Day 14. On Day 28, the cell morphology changed from a spindle-like to an osteocyte-like appearance with processes, along with the expression of dentin matrix protein-1 (DMP-1) and matrix extracellular phosphoglycoprotein (MEPE), suggesting possible differentiation of MSCs into osteocytes. Calcification was observed on Day 56. Expression of osteoblast and chondrocyte differentiation markers was also noted in MSCs derived from RA or OA patients seeded on NFs. Lactic acid present in NFs potentially induced MSC differentiation into osteoblasts.ConclusionsOur PLGA scaffold NFs induced MSC differentiation into bone and cartilage. NFs induction process resembled the procedure of endochondral ossification. This finding indicates that the combination of MSCs and NFs is a promising therapeutic technique for the repair of RA or OA joints affected by bone and cartilage destruction.  相似文献   

19.
A novel magnetically actuated scaffold was used to explore the effects of strain stimulus on the proliferation and spatial distribution of smooth muscle cells and improve cell viability in the scaffold interior by pumping nutrients throughout the structure. Magnetically actuable scaffolds were fabricated in a tube shape by winding electrospun sheets of a biodegradable polymer modified with magnetic Fe2O3 nanoparticles. Prior to rolling, the sheets were seeded with smooth muscle cells and wound into tubes with diameter 5.2 mm and wall thickness 0.2 mm. The tubular scaffolds were actuated by a magnetic field to induce a cyclic crimping deformation, which applies strain stimulus to the cells and pumps nutrient fluid through the porous tube walls. Comparison with non‐actuated controls shows that magnetic actuation increases the total cell count throughout the scaffold after 14 days of incubation. Furthermore, whereas cell density as a function of position through the tube wall thickness showed a minimum in the mid‐interior in the controls after 14 days due to cell starvation, the actuated scaffolds displayed a maximum cell density. Comparison of cell distributions with the expected spatial variations in strain amplitude and nutrient flux implies that both strain stimulus and nutrient pumping are significant factors in cell proliferation. Biotechnol. Bioeng. 2013; 110: 936–946. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Although Hif‐2α is a master regulator of catabolic factor expression in osteoarthritis development, Hif‐2α inhibitors remain undeveloped. The aim of this study was to determine whether Cirsium japonicum var. maackii (CJM) extract and one of its constituents, apigenin, could attenuate the Hif‐2α‐induced cartilage destruction implicated in osteoarthritis progression. In vitro and in vivo studies demonstrated that CJM reduced the IL‐1β‐, IL‐6, IL‐17‐ and TNF‐α‐induced up‐regulation of MMP3, MMP13, ADAMTS4, ADAMTS5 and COX‐2 and blocked osteoarthritis development in a destabilization of the medial meniscus mouse model. Activation of Hif‐2α, which directly up‐regulates MMP3, MMP13, ADAMTS4, IL‐6 and COX‐2 expression, is inhibited by CJM extract. Although cirsimarin, cirsimaritin and apigenin are components of CJM and can reduce inflammation, only apigenin effectively reduced Hif‐2α expression and inhibited Hif‐2α‐induced MMP3, MMP13, ADAMTS4, IL‐6 and COX‐2 expression in articular chondrocytes. IL‐1β induction of JNK phosphorylation and IκB degradation, representing a critical pathway for Hif‐2α expression, was completely blocked by apigenin in a concentration‐dependent manner. Collectively, these effects indicate that CJM and one of its most potent constituents, apigenin, can lead to the development of therapeutic agents for blocking osteoarthritis development as novel Hif‐2α inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号