首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 117 毫秒
1.
Developing cotyledons of safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.) readily utilised exogenously supplied 14C-labelled fatty-acid substrates for the synthesis of triacylglycerols. The other major radioactive lipids were phosphatidylcholine and diacylglycerol. In safflower cotyledons, [14C]oleate was rapidly transferred to position 2 of sn-phosphatidylcholine and concomitant with this was the appearance of radioactive linoleate. The linoleate was further utilised in the synthesis of diacyl- and triacyl-glycerol via the reactions of the so-called Kennedy pathway. Supplying [14C]linoleate, however, resulted in a more rapid labelling of the diacylglycerols than from [14C]oleate. In contrast, sunflower cotyledons readily utilised both labelled acyl substrates for rapid diacylglycerol formation as well as incorporation into position 2 of sn-phosphatidylcholine. In both species, however, [14C]palmitate largely entered sn-phosphatidylcholine at position 1 during triacylglycerol synthesis. The results support our previous in-vitro observations with isolated microsomal membrane preparations that (i) the entry of oleate into position 2 of sn-phosphatidylcholine, via acyl exchange, for desaturation to linoleate is of major importance in regulating the level of polyunsaturated fatty acids available for triacylglycerol formation and (ii) Palmitate is largely excluded from position 2 of sn-phosphatidylcholine and enters this phospholipid at position 1 probably via the equilibration with diacylglycerol. Specie differences appear to exist between safflower and sunflower in relation to the relative importance of acyl exchange and the interconversion of diacylglycerol with phosphatidylcholine as mechanisms for the entry of oleate into the phospholipid for desaturation.Abbreviations FW fresh weight - TLC thin-layer chromatography  相似文献   

2.
Sten Stymne  Allan K. Stobart 《Planta》1985,164(1):101-104
Microsomal preparations from developing linseed (Linum usitatissimum L.) cotyledons catalyzed i) acyl exchange between acyl-CoA and position 2 of sn-phosphatidylcholine, ii) acylation of sn-glycerol 3-phosphate to yield phosphatidic acid, and iii) the utilisation of phosphatidic acid in the production of diacylglycerol and triacylglycerol. Selectivity studies for C18 acyl species of acyl-CoA indicated a bias for the channelling of oleate to phosphatidylcholine for, presumably, its desaturation, and the utilisation of the polyunsaturated fatty-acid products in the acyl-CoA pool for phosphatidic acid and subsequent triacylglycerol synthesis. The microsomal preparations were capable of returning glycerol backbone with associated acyl components to phosphatidylcholine from diacylglycerol where it may be further enriched with polyunsaturated C18 acids by desaturation. The acyl quality in linolenate-rich oilseeds appears to be under similar control to that found in linoleate-rich species. Present address: To whom the correspondence should be addressed  相似文献   

3.
Developing cocoa cotyledons accumulate initially an unsaturated oil which is particularly rich in oleate and linoleate. However, as maturation proceeds, the characteristic high stearate levels appear in the storage triacylglycerols. In the early stages of maturation, tissue slices of developing cotyledons (105 days post anthesis, dpa) readily accumulate radioactivity from [14C]acetate into the diacylglycerols and label predominantly palmitate and oleate. In older tissues (130 dpa), by contrast, the triacylglycerols are extensively labelled and, at the same time, there is an increase in the percentage labelling of stearate. Thus, the synthesis of triacylglycerol and the production of stearate are co-ordinated during development. The relative labelling of the phospholipids (particularly phosphatidylcholine) was rather low at both stages of development which contrasts with oil seeds that accumulate a polyunsaturated oil (e.g. safflower). Microsomal membrane preparations from the developing cotyledons readily utilised an equimolar [14C]acyl-CoA substrate (consisting of palmitate, stearate and oleate) and glycerol 3-phosphate to form phosphatidate, diacylglycerol and triacylglycerol. Analysis of the [14C]acyl constituents at the sn-1 and sn-2 positions of phosphatidate and diacylglycerol revealed that the first acylase enzyme (glycerol 3-phosphate acyltransferase) selectively utilised palmitate over stearate and excluded oleate, whereas the second acylase (lysophosphatidate acyltransferase) was highly selective for the unsaturated acyl-CoA. On the other hand, the third acylase (diacylglycerol acyltransferase) exhibited an almost equal selectivity for palmitate and stearate. Thus, stearate is preferentially enriched at position sn-3 of triacylglycerol at 120–130 dpa because of the relatively higher selectivity of the diacylglycerol acyltransferase for this fatty acid compared with those of the other two acylation enzymes.Abbreviation dpa days post anthesis We are grateful to Drs. G. Pettipher (Cadbury-Schweppes, Reading, UK), M. End and P. Hadley (Department of Horticulture, University of Reading) for the supply of cocoa pods and to the Agricultural and Food Research Council for financial support. We also wish to thank Dr. S. Stymne (Swedish University of Agricultural Sciences, Uppsala, Sweden) for a generous gift of acyl-CoA substrates.  相似文献   

4.
Microsomal membrane preparations from the immature cotyledons of safflower (Carthamus tinctorius) catalysed the interconversion of the neutral lipids, mono-, di-, and triacylglycerol. Membranes were incubated with neutral lipid substrates, 14C-labelled either in the acyl or glycerol moiety, and the incorporation of radioactivity into other complex lipids determined. It was clear that diacylglycerol gave rise to triacylglycerol and monoacylglycerol as well as phosphatidylcholine. Radioactivity from added [14C] triacylglycerol was to a small extent transferred to diacylglycerol whereas added [14C] monoacylglycerol was rapidly converted to diacylglycerols and triacylglycerols. The formation of triacylglycerol from diacylglycerol occurred in the absence of acyl-CoA and hence did not involve diacylglycerol acyltransferase (DAGAT) activity. Monoacylglycerol was not esterified by direct acylation from acyl-CoA. We propose that these reactions were catalyzed by a diacylglycerol: diacylglycerol transacylase which yielded triacylglycerol and monoacylglycerol, the reaction being freely reversible. The specific activity of the transacylase was some 25% of the diacylglycerol acyltransferase activity and, hence, during the net accumulation of oil, substantial newly formed triacylglycerol equilibrated with the diacylglycerol pool. In its turn the diacylglycerol rapidly interconverted with phosphatidylcholine, the major complex lipid substrate for Δ12 desaturation. Hence, the oleate from triacylglycerols entering phosphatidylcholine via this route could be further desaturated to linoleate. A model is presented which reconciles these observations with our current understanding of fatty acid desaturation in phosphatidylcholine and oil assembly in oleaceous seeds. Received: 8 November 1996 / Accepted: 5 February 1997  相似文献   

5.
1. 3-sn-Phosphatidylcholine was identified as the major lipid in cotyledons from the developing seeds of soya bean, linseed and safflower when tissue was steamed before lipid extraction. The proportion of oleate in this lipid decreased markedly and that of the polyunsaturated C18 fatty acids increased when detached developing cotyledons were incubated for up to 3h. Similar but less pronounced changes occurred in diacylglycerol, which had a fatty acid composition resembling that of the 3-sn-phosphatidylcholine from cotyledons of the same species. 2. [1-14C]Acetate supplied to detached cotyledons was incorporated into the acyl moieties of mainly 3-sn-phosphatidylcholine, 1,2-diacylglycerol and triacylglycerol. Initially label was predominantly in oleate, but subsequently entered at accelerating rates the linoleoyl moieties of the above lipids in soya-bean and safflower cotyledons and the linoleoyl and linolenyl moieties of these lipids in linseed cotyledons. In pulse–chase experiments label was rapidly lost from the oleate of 3-sn-phosphatidylcholine and accumulated in the linoleoyl and linolenoyl moieties of this phospholipid and of the di- and tri-acylglycerols. 3. [2-3H]Glycerol was incorporated into the glycerol moieties of mainly 3-sn-phosphatidylcholine and di- and tri-acylglycerols of developing linseed and soya-bean cotyledons. The label entered the phospholipid and diacylglycerol at rates essentially linear with time from the moment the substrate was supplied, and entered the triacylglycerol at an accelerating rate. With linseed cotyledons the labelled glycerol was incorporated initially mainly into species of 3-sn-phosphatidylcholine and diacylglycerol that contained oleate, but accumulated with time in more highly unsaturated species. In pulse–chase experiments with linseed cotyledons, label was lost from both 3-sn-phosphatidylcholine and diacylglycerol, preferentially from the dioleoyl species, and accumulated in triacylglycerol, mainly in species containing two molecules of linolenate. 4. The results suggest a rapid turnover of 3-sn-phosphatidylcholine during triacylglycerol accumulation in developing oilseeds, and are consistent with the operation of a biosynthetic route whereby oleate initially esterified to the phospholipid is first desaturated, then polyunsaturated fatty acids transferred to triacylglycerol, via diacylglycerol. The possible role of oleoyl phosphatidylcholine as a substrate for oleate desaturation is discussed.  相似文献   

6.
The synthesis of triacylglycerols was investigated in microsomes (microsomal fractions) prepared from the developing cotyledons of sunflower (Helianthus annuus). Particular emphasis was placed on the mechanisms involved in controlling the C18- unsaturated-fatty-acid content of the oils. We have demonstrated that the microsomes were capable of: the transfer of oleate from acyl-CoA to position 2 of sn-phosphatidylcholine for its subsequent desaturation and the return of the polyunsaturated products to the acyl-CoA pool by further acyl exchange; the acylation of sn-glycerol 3-phosphate with acyl-CoA to yield phosphatidic acid, which was further utilized in diacyl- and tri-acylglycerol synthesis; and (3) the equilibrium of a diacylglycerol pool with phosphatidylcholine. The acyl exchange between acyl-CoA and position 2 of sn-phosphatidylcholine coupled to the equilibration of diacylglycerol and phosphatidylcholine brings about the continuous enrichment of the glycerol backbone with C18 polyunsaturated fatty acids for triacylglycerol production. Similar reactions were found to operate in another oilseed plant, safflower (Carthamus tinctorius L.). On the other hand, the microsomes of avocado (Persea americana) mesocarp, which synthesize triacylglycerol via the Kennedy [(1961) Fed. Proc. Fed. Am. Soc. Exp. Biol. 20, 934-940] pathway, were deficient in acyl exchange and the diacylglycerol in equilibrium phosphatidylcholine interconversion. The results provide a working model that helps to explain the relationship between C18- unsaturated-fatty-acid synthesis and triacylglycerol production in oilseeds.  相似文献   

7.
Microsomal preparations from the developing cotyledons of safflower (Carthamus tinctorius) catalysed the acylation of sn-glycerol 3-phosphate in the presence of acyl-CoA. The resulting phosphatidate was further utilized in the synthesis of diacyl- and tri-acylglycerol by the reactions of the so-called 'Kennedy pathway' [Kennedy (1961) Fed. Proc. Fed. Am. Soc. Exp. Biol. 20, 934-940]. Diacylglycerol equilibrated with the phosphatidylcholine pool when glycerol backbone, with the associated acyl groups, flowed from phosphatidate to triacylglycerol. The formation of diacylglycerol from phosphatidate through the action of a phosphatidate phosphohydrolase (phosphatidase) was substantially inhibited by EDTA and, under these conditions, phosphatidate accumulated in the microsomal membranes. The inhibition of the phosphatidase by EDTA was alleviated by Mg2+. The presence of Mg2+ in all incubation mixtures stimulated quite considerably the synthesis of triacylglycerol in vitro. Microsomal preparations incubated with acyl-CoA, sn-glycerol 3-phosphate and EDTA synthesized sufficient phosphatidate for the reliable analysis of its intramolecular fatty acid distribution. In the presence of mixed acyl-CoA substrates the sn-glycerol 3-phosphate was acylated exclusively in position 1 with the saturated fatty acids, palmitate and stearate. The polyunsaturated fatty acid linoleate was, however, utilized largely in the acylation of position 2 of sn-glycerol 3-phosphate. The affinity of the enzymes involved in the acylation of positions 1 and 2 of sn-glycerol 3-phosphate for specific species of acyl-CoA therefore governs the non-random distribution of the different acyl groups in the seed triacylglycerols. The acylation of sn-glycerol 3-phosphate in position 1 with saturated acyl components also accounts for the presence of these groups in position 1 of sn-phosphatidylcholine through the equilibration of diacylglycerol with the phosphatidylcholine pool, which occurs when phosphatidate is utilized in the synthesis of triacylglycerol. These results add further credence to our previous proposals for the regulation of the acyl quality of the triacylglycerols that accumulate in developing oil seeds [Stymne & Stobart (1984) Biochem. J. 220, 481-488; Stobart & Stymne (1985) Planta 163, 119-125].  相似文献   

8.
Microsomes isolated from the developing cotyledons of the seeds of the safflower varieties, very-high-linoleate, Gila and high-oleate, were capable of exchanging the acyl groups in acyl-CoA with the fatty acids in position 2 of phosphatidylcholine. The specificity of the 'acyl-exchange' towards the acyl moiety in acyl-CoA was selective in the order: oleate greater than linoleate greater than linolenate. Stearoyl-CoA was completely selected against when presented in a mixed substrate with unsaturated 18-carbon acyl-CoAs. Microsomes, of the very-high-linoleate safflower variety, rapidly desaturated in situ-labelled [14C]oleoylphosphatidylcholine in the presence of NADH. Little oleate desaturation, however, was observed in the microsomes of the high-oleate variety. Microsomes of the Gila and high-oleate varieties of safflower rapidly synthesised phosphatidic acid by the acylation of glycerol 3-phosphate with acyl-CoA. The phosphatidic acid was metabolised to diacylglycerol, which was further acylated to triacylglycerol. A strong selectivity for linoleoyl-CoA was found for the acylation of glycerol 3-phosphate in both the Gila and high-oleate microsomes. On the basis of these results, we propose that the pattern of 18-carbon unsaturated fatty acids in the triacylglycerols of all 'oil'-producing seeds is a direct reflection of the fatty acids in the acyl-CoA pool. This, in turn, is governed by: A, the rate and specificity of the acyl exchange between acyl-CoA and phosphatidylcholine; B, the rate of oleate (and linoleate) desaturation in phosphatidylcholine; and C, the rate and specificity of the glycerophosphate acyltransferase.  相似文献   

9.
Microsomal preparations from the developing cotyledons of safflower (Carthamus tinctorius) catalyse the acylation of sn-glycerol 3-phosphate in the presence of acyl-CoA. Under these conditions the radioactive glycerol in sn-glycerol 3-phosphate accumulates in phosphatidic acid, phosphatidylcholine, diacyl- and tri-acylglycerol. The incorporation of glycerol into phosphatidylcholine is via diacylglycerol and probably involves a cholinephosphotransferase. The results show that the glycerol moiety and the acyl components in phosphatidylcholine exchange with the diacylglycerol during the biosynthesis of diacylglycerol from phosphatidic acid. The continuous reversible transfer of diacylglycerol with phosphatidylcholine, which operates during active triacylglycerol synthesis, will control in part the polyunsaturated-fatty-acid quality of the final seed oil.  相似文献   

10.
Manaf AM  Harwood JL 《Planta》2000,210(2):318-328
Glycerol 3-phosphate acyltransferase (GPAT, EC 2.3.15) catalyses the first step of the Kennedy pathway for acyl lipid formation. This enzyme was studied using high-speed particulate fractions from oil palm (Elaeis guineensis Jacq.) tissue cultures and mesocarp acetone powders. The fractions were incubated with [14C]glycerol 3-phosphate and incorporation of radioactivity into Kennedy pathway intermediates studied. Optimal conditions were broadly similar between the two preparations but those from fruit mesocarp clearly contained more active enzymes for the subsequent stages of the Kennedy pathway – as exemplified by the appreciable accumulation of radioactivity in triacylglycerol. Experiments with different acyl-CoA substrates showed that the GPAT in both high-speed particulate preparations had a significant preference for palmitate. Glycerol 3-phosphate acyltransferase was solubilised from both preparations with optimal solubilisation being achieved at 0.5% (w/v) CHAPS concentrations. Solubilised GPATs were purified further using DE52 ion-exchange chromatography and Sephadex G-100 molecular exclusion chromatography. Purifications of up to about 70-fold were achieved. The purified GPATs showed a strong preference for palmitoyl-CoA compared to other acyl-CoA donors, in keeping with the importance of palmitate in palm oil. Received: 22 April 1999 / Accepted: 29 July 1999  相似文献   

11.
Triacylglycerols of both Tropaeolum majus L. and Limnanthes douglasii R. Br. are predominantly esterified with very long-chain acyl groups at each position of the glycerol backbone. In order to elucidate whether these acyl groups are directly chanelled into the triacylglycerols via the stepwise acylation of glycerol-3-phosphate, seed oil formation has been investigated in developing embryos of both plant species. [1-14C]Acetate labelling experiments using embryos at different stages of development, as well as the determination of the properties of the microsomal acyl-CoA:sn-glycerol-3-phosphate acyltransferase (EC 2.3.1.15) and acyl-CoA:sn-1-acylglycerol-3-phosphate acyltransferase (EC 2.3.1.51), revealed differences between the two plant species, especially with respect to the incorporation of very longchain acyl groups into the C2 position of the triacylglycerols. In microsomal fractions of developing embryos of L. douglasii both a glycerol-3-phosphate and a 1-acylglycerol-3-phosphate acyltransferase were detected which utilize very long-chain acyl-CoA thioesters as substrates. Thus, in seeds of L. douglasii very long-chain acyl groups can enter not only the C1, but also the C2 position of the triacylglycerols in the course of de-novo biosynthesis. A comparison of the properties of the acyltransferases of developing embryos with those of the corresponding activities of leaves indicates an embryo specific expression of an erucoyl-CoA-dependent microsomal 1-acylglycerol-3-phosphate acyltransferase in L. douglasii. The microsomal glycerol-3-phosphate acyltransferase of developing embryos of T. majus displayed properties very similar to those of the corresponding activity of L. douglasii. On the other hand, the microsomal 1-acylglycerol-3-phosphate acyltransferases of the two plant species showed strikingly different substrate specificities. Irrespective of the acyl groups of 1-acylglycerol-3-phosphate and regardless of whether acyl-CoA thioesters were offered separately or in mixtures, the enzyme of T. majus, in contrast to that of L. douglasii, was inactive with erucoyl-CoA. These results of the enzyme studies correspond well with those of the [1-14C]acetate labelling experiments and thus indicate that T. majus has developed mechanisms different from those of L. douglasii for the incorporation of erucic acid into the C2 position of its triacylglycerols.Abbreviations GPAT acyl-CoA:sn-glycerol-3-phosphate acyltransferase (EC 2.3.1.15) - LPAT acyl-CoA:sn-1-acylglycerol-3-phosphate acyltransferase (EC 2.3.1.51) This work was supported by the Bundesministerium für Forschung und Technologie (Förderkennzeichen 0316600A).  相似文献   

12.
The reactions leading to triacylglycerol (TAG) synthesis in oilseeds have been well characterized. However, quantitative analyses of acyl group and glycerol backbone fluxes that comprise extraplastidic phospholipid and TAG synthesis, including acyl editing and phosphatidylcholine-diacylglycerol interconversion, are lacking. To investigate these fluxes, we rapidly labeled developing soybean (Glycine max) embryos with [14C]acetate and [14C]glycerol. Cultured intact embryos that mimic in planta growth were used. The initial kinetics of newly synthesized acyl chain and glycerol backbone incorporation into phosphatidylcholine (PC), 1,2-sn-diacylglycerol (DAG), and TAG were analyzed along with their initial labeled molecular species and positional distributions. Almost 60% of the newly synthesized fatty acids first enter glycerolipids through PC acyl editing, largely at the sn-2 position. This flux, mostly of oleate, was over three times the flux of nascent [14C]fatty acids incorporated into the sn-1 and sn-2 positions of DAG through glycerol-3-phosphate acylation. Furthermore, the total flux for PC acyl editing, which includes both nascent and preexisting fatty acids, was estimated to be 1.5 to 5 times the flux of fatty acid synthesis. Thus, recycled acyl groups (16:0, 18:1, 18:2, and 18:3) in the acyl-coenzyme A pool provide most of the acyl chains for de novo glycerol-3-phosphate acylation. Our results also show kinetically distinct DAG pools. DAG used for TAG synthesis is mostly derived from PC, whereas de novo synthesized DAG is mostly used for PC synthesis. In addition, two kinetically distinct sn-3 acylations of DAG were observed, providing TAG molecular species enriched in saturated or polyunsaturated fatty acids.  相似文献   

13.
Acyl exchange between acyl-CoA and position 2 of sn-phosphatidylcholine occurs in the microsomal preparations of developing safflower cotyledons. Evidence is presented to show that the acyl exchange is catalysed by the combined back and forward reactions of an acyl-CoA:lysophosphatidylcholine acyltransferase (EC 2.3.1.23). The back reaction of the enzyme was demonstrated by the stimulation of the acyl exchange with free CoA and by the observation that the added CoA was acylated with acyl groups from position 2 of sn-phosphatidylcholine. Re-acylation of the, endogenously produced, lysophosphatidylcholine with added acyl-CoA occurred with the same specificity as that observed with added palmitoyl lysophosphatidylcholine. A similar acyl exchange, catalysed by an acyl-CoA:lysophosphatidylcholine acyltransferase, occurred in microsomal preparations of rat liver. The enzyme from safflower had a high specificity for oleate and linoleate, whereas arachidonate was the preferred acyl group in the rat liver microsomal preparations. The rate of the back reaction was 3-5% and 0.2-0.4% of the forward reaction in the microsomal preparations of safflower and rat liver respectively. Previous observations, that the acyl exchange in safflower microsomal preparations was stimulated by bovine serum albumin and sn-glycerol 3-phosphate, can now be explained by the lowered acyl-CoA concentrations in the incubation mixture with albumin and in the increase in free CoA in the presence of sn-glycerol 3-phosphate (by rapid acylation of sn-glycerol 3-phosphate with acyl groups from acyl-CoA to yield phosphatidic acid). Bovine serum albumin and sn-glycerol 3-phosphate, therefore, shift the equilibrium in acyl-CoA:lysophosphatidylcholine acyltransferase-catalysed reactions towards the rate-limiting step in the acyl exchange process, namely the removal of acyl groups from phosphatidylcholine. The possible role of the acyl exchange in the transfer of acyl groups between complex lipids is discussed.  相似文献   

14.
In the yeast Saccharomyces cerevisiae, the molecular species profile of the major membrane glycerophospholipid phosphatidylcholine (PC) is determined by the molecular species-selectivity of the biosynthesis routes and by acyl chain remodeling. Overexpression of the glycerol-3-phosphate acyltransferase Sct1p was recently shown to induce a strong increase in the cellular content of palmitate (C16:0). Using stable isotope labeling and mass spectrometry, the present study shows that wild type yeast overexpressing Sct1p incorporates excess C16:0 into PC via the methylation of PE, the CDP-choline route, and post-synthetic acyl chain remodeling. Overexpression of Sct1p increased the extent of remodeling of PE-derived PC, providing a novel tool to perform mechanistic studies on PC acyl chain exchange. The exchange of acyl chains occurred at both the sn-1 and sn-2 positions of the glycerol backbone of PC, and required the phospholipase B Plb1p for optimal efficiency. Sct1p-catalyzed acyl chain exchange, the acyl-CoA binding protein Acb1p, the Plb1p homologue Plb2p, and the glycerophospholipid:triacylglycerol transacylase Lro1p were not required for PC remodeling. The results indicate that PC serves as a buffer for excess cellular C16:0.  相似文献   

15.
The last step in triacylglycerols (TAG) biosynthesis in oil seeds, the acylation of diacylglycerols (DAG), is catalysed by two types of enzymes: the acyl-CoA:diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase (PDAT). The relative contribution of these enzymes in the synthesis of TAG has not yet been defined in any plant tissue. In the presented work, microsomal preparations were obtained from sunflower and safflower seeds at different stages of development and used in DGAT and PDAT enzyme assays. The ratio between PDAT and DGAT activity differed dramatically between the two different species. DGAT activities were measured with two different acyl acceptors and assay methods using two different acyl-CoAs, and in all cases the ratio of PDAT to DGAT activity was significantly higher in safflower than sunflower. The sunflower DGAT, measured by both methods, showed significant higher activity with 18:2-CoA than with 18:1-CoA, whereas the opposite specificity was seen with the safflower enzyme. The specificities of PDAT on the other hand, were similar in both species with 18:2-phosphatidylcholine being a better acyl donor than 18:1-PC and with acyl groups at the sn-2 position utilised about fourfold the rate of the sn-1 position. No DAG:DAG transacylase activity could be detected in the microsomal preparations.  相似文献   

16.
The native lipid composition and the capacity of cell-free extracts to biosynthesize acyl lipids in vitro were determined for the first time using the recently reported microspore-derived (MD) embryo system from the Brassica campestris low erucic acid line BC-2 (Baillie et al. 1992). The total lipid fraction isolated from midcotyledonary stage MD embryos (21 days in culture) was composed primarily of triacylglycerol (76%) with an acyl composition quite similar to that of mature BC-2 seed. When incubated in the presence of glycerol-3-phosphate, 14C 181-CoA, and reducing equivalents, homogenates prepared from 21-day cultured MD embryos were able to biosynthesize glycerolipids via the Kennedy pathway. The maximum in vitro rate of triacylglycerol biosynthesis could more than account for the known rate of lipid accumulation in vivo. The homogenate catalyzed the desaturation of 181 to 182 and to a lesser extent, 183. The newly-synthesized polyunsaturated fatty acids initially accumulated in the polar lipid fraction (primarily phosphatidic acid and phosphatidylcholine) but began to appear in the triacylglycerol fraction after longer incubation periods. As expected for a low erucic acid cultivar, homogenates of MD embryos from the BC-2 line were incapable of biosynthesizing very long chain monounsaturated fatty acyl moieties (201 and 221) from 181-CoA in vitro. Nonetheless, embryo extracts were still capable of incorporating these fatty acyl moieties into triacylglycerols when supplied with 14C 201-CoA or 14C 221-CoA. Collectively, the data suggest that developing BC-2 MD embryos constitute an excellent experimental system for studying pathways for glycerolipid bioassembly and the manipulation of this process in B. campestris.Abbreviations CPT sn-1,2-diacylglycerol cholinephosphotransferase - DAG diacylglycerol - DGAT diacylglycerol acyltransferase - DGDG digalactosyldiacylglycerol - G-3-P glycerol-3-phosphate - G-3-PAT glycerol-3-phosphate acyltransferase - LPA lyso-phosphatidic acid - LPAT lyso-phosphatidic acid acyltransferase - LPC lyso-phosphatidylcholine - LPCAT acyl-CoA: lyso-phosphatidylcholine acyltransferase - LPE lyso-phosphatidylethanolamine - MGDG monogalactosyldiacylglycerol - PA phosphatidic acid - PA Phosphatase, phosphatidic acid phosphatase - PC phosphatidylcholine - PE phosphatidylethanolamine - PG phosphatidylglycerol - TAG triacylglycerol - 181-CoA oleoyl-Coenzyme A - 181 oleic acid, cis-9-octadecenoic acid - 182 linoleic acid, cis-9,12-octadecadienoic acid - 183 -linolenic acid, cis-9,12,15-octadecatrienoic acid - 201 cis-11-eicosenoic acid - 221 erucic acid, cis-13-docosenoic acid; all other fatty acids are designated by number of carbon atoms: number of double bonds National Research Council of Canada Publication No. 35896  相似文献   

17.
Hans Kleinig  Bodo Liedvogel 《Planta》1979,144(5):473-477
The coronae of Narcissus pseudonarcissus flowers incorporated [1-14C]acetate almost exclusively into the fatty acid moieties of glycerolipids. After a 4 h incubation, the newly synthesized acids were: stearate plus palmitate (50%); oleate (17%); linoleate (32%); and linolenate (0.5%). Phosphatidylcholine and diacylglycerol were the principal labelled lipids. In pulse experiments these acids were further desaturated, with time, to an appreciable extent and, concurrently, transferred essentially from phosphatidylcholine to diacylglycerol, diacylgalactosylglycerol, and diacylgalabiosylglycerol. The labelling of diacylgalactosylglycerol and diacylgalabiosylglycerol paralleled the appearance of linolenate. The distribution of labelled acids in phosphatidylcholine, diacylgalactosylglycerol, and diacylgalabiosylglycerol was very different. The results were compared with those obtained in vitro with isolated coronae chromoplasts and discussed in relation to current schemes of fatty acid and glycerolipid synthesis in plant cells.  相似文献   

18.
R. Garcés  C. Sarmiento  M. Mancha 《Planta》1994,193(4):473-477
For the first time, an active fatty-acid metabolism is indicated for triacylglycerols (TAG) of developing sunflower (Helianthus annuus L.) seeds. When the developing seeds were transferred to low temperature, the total amount of oleate found in TAG decreased as that of linoleate increased, while the contents of total lipids and TAG remained unchanged. These results suggest that oleate from TAG was used for desaturation. This occurred first in microsomal TAG, but after a long cold period it was observed mainly in the oil-body fraction. Thesn-2 position of TAG was preferentially enriched in linoleate. Apparently, more linoleate than necesary for the maintenance of membrane fluidity was synthesized at the expense of TAG oleate.  相似文献   

19.
The pathway for the synthesis of diacylglycerol in larval Manduca sexta midgut was studied. Fifth instar larvae were fed with [9,10–3H]–oleic acid–labeled triolein and the incorporation of the label into lipid intermediates was analyzed as a function of time. The results showed that the triacylglycerol was hydrolyzed to fatty acids and glycerol in the midgut lumen. In midgut tissue, the labeled fatty acids were rapidly incorporated into phosphatidic acid, diacylglycerol and triacylglycerol, but no significant labeling of monoacylglycerol was observed. Dual-labeling experiments were performed in order to characterize the kinetics of diacylglycerol biosynthesis in the midgut, its incorporation into hemolymph lipophorin and its clearance from hemolymph. The results were best described by a model in which the rate-limiting step in diacylglycerol biosynthesis was the uptake of fatty acid from the lumen of the midgut. Once in the cell the fatty acid was rapidly incorporated in phosphatidic acid and diacylglycerol. Diacylglycerol was converted to triacylglycerol or exported into hemolymph. The interconversion of diacylglycerol and triacylglycerol was fairly rapid, suggesting that triacylglycerol serves as a reservoir from which diacylglycerol can be produced. This mechanism permits the cell to maintain a low steady-state concentration of diacylglycerol and yet efficiently absorb fatty acids from the lumen of the midgut.  相似文献   

20.
The main glycerolipids (monogalactosyl-, digalactosyl-, sulphoquinovosyl diacylglycerol, phosphatidylglycerol) from five blue-green algae (Microcystis, Anabaena, Nostoc, Oscillatoria, Tolypothrix) were analyzed for fatty acid composition, occurrence of diglyceride species and positional distribution of fatty acids between thesn-1- andsn-2-position of glycerol. In contrast to eucaryotic plants biosynthetically closely related lipids (monogalactosyl-, digalactosyl-, trigalactosyl diacylglycerol) show nearly identical diglyceride moieties, whereas sulphoquinovosyl diacylglycerol and phosphatidylglycerol are separated from galactolipids by composition as well as occurrence of fatty acids. On the other hand the positional distribution of fatty acids in all lipids is controlled exclusively by chain length and not by degree of unsaturation with C18-fatty acids at thesn-1- and C16-fatty acids at thesn-2-position. These results show that in procaryotic organisms the diversity in diglyceride portions of lipids is reduced as compared to eucaryotic organisms, but nevertheless does exist.Abbreviations MGD, DGD, TGD, SQD monogalactosyl-, digalactosyl-, trigalactosyl-, sulphoquinovosyl diacylglycerol - PG phosphatidyl glycerol  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号