首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Aphidicolin inhibits DNA synthesis and nuclear division in spores of Anemia phyllitidis. In spite of blocked DNA replication, spores germinate under continuous dark conditions, if induced by addition of 5 × 10−5 grams per milliliter gibberellic acid. Differentiation of aphidicolin-treated prothallia indicate the existence of a prepattern in the dry spore which is realized independent of cell division during early events of spore germination.  相似文献   

2.
Kinetics of the nuclear division cycle of Aspergillus nidulans.   总被引:14,自引:0,他引:14       下载免费PDF全文
We have analyzed the cell cycle kinetics of Aspergillus nidulans by using the DNA synthesis inhibitor hydroxyurea (HU) and a temperature-sensitive cell cycle mutant nimT that blocks in G2. HU rapidly inhibits DNA synthesis (S), and as a consequence progression beyond S to mitosis (M) is blocked. Upon removal of HU the inhibition is rapidly reversible. Conidia (asexual spores) of nimT were germinated at restrictive temperature to synchronize germlings in G2 and then downshifted to permissive temperature in the presence of HU. This procedure synchronizes the germlings at the beginning of S in the second cell cycle after spore germination. We have measured the total duration of S, G2, and M as the time required for these cells to recover from the HU block and undergo the next nuclear division. The duration of S was defined by the time course of sensitivity to reintroduction of HU during recovery from the initial HU block. The cell cycle time was measured as the nuclear doubling time, and the duration of mitosis was determined from the mitotic index. The duration of G1 was calculated by subtracting the combined durations of S, G2, and M from the nuclear doubling time, and the length of G2 was calculated by subtracting S and M from the aggregate length of S, G2, and M. We have also determined the duration of the phases of the cell cycle during the first cycle after spore germination. In these experiments spores were germinated directly in HU without first being blocked in G2. Because the durations of G1, S, G2, and M for the first cell cycle after spore germination were identical with those previously determined for spores presynchronized at the beginning of S in the second cell cycle, we conclude that dormant conidia of A. nidulans are arrested at, or before, the start of S.  相似文献   

3.
P K Herman  J Rine 《The EMBO journal》1997,16(20):6171-6181
Saccharomyces cerevisiae spore germination is a process in which quiescent, non-dividing spores become competent for mitotic cell division. Using a novel assay for spore uncoating, we found that spore germination was a multi-step process whose nutritional requirements differed from those for mitotic division. Although both processes were controlled by nutrient availability, efficient spore germination occurred in conditions that did not support cell division. In addition, germination did not require many key regulators of cell cycle progression including the cyclin-dependent kinase, Cdc28p. However, two processes essential for cell growth, protein synthesis and signaling through the Ras protein pathway, were required for spore germination. Moreover, increasing Ras protein activity in spores resulted in an accelerated rate of germination and suggested that activation of the Ras pathway was rate-limiting for entry into the germination program. An early step in germination, commitment, was identified as the point at which spores became irreversibly destined to complete the uncoating process even if the original stimulus for germination was removed. Spore commitment to germination required protein synthesis and Ras protein activity; in contrast, post-commitment events did not require ongoing protein synthesis. Altogether, these data suggested a model for Ras function during transitions between periods of quiescence and cell cycle progression.  相似文献   

4.
The inhibitory effects of ethylene on spore germination were investigated. In darkness spore germination was completely inhibited by 10 μ1 · 1−1 ethylene. Light partially overcame this inhibition, and the effect of continuous irradiation with white fluorescent light saturated at about 450 μW · cm−2. Monochromatic red, blue and far-red light were effective in overcoming ethylene inhibition, whereas green was not. Short periodic exposures to red or far-red light were not sufficient to overcome ethylene inhibition. This suggested that phytochrome was not involved. The photosynthetic inhibitor DCMU blocked the effect of light. Infrared gas analysis showed that photosynthesis saturated at about 450 μW · cm−2 in white light. Red, blue and far-red light were more efficient photosynthetically than green light; DCMU blocked photosynthesis. Normalized curves of photosynthesis and germination vs. light intensity showed a similar dependence on light energy. It was concluded that light appears to overcome the inhibitory effects of ethylene through some process dependent on photosynthesis.  相似文献   

5.
The distribution and synthesis of nucleic acids and proteins during gibberellic acid-induced germination of spores of Anemia phyllitidis were studied in order to relate biochemical activity with morphogenetic aspects of germination. Germination is accompanied by the hydrolysis of storage protein granules and the localized appearance of cytoplasmic RNA, protein, and insoluble carbohydrates in a small area adjoining the spore wall and surrounding the nucleus. The protoplast of the spore enlarges in this region, the spore wall breaks and a protonemal cell is formed which contains many chloroplasts. A second division in the spore at right angles to the first yields a rhizoid cell. Autoradiography of 3H-thymidine incorporation has shown that DNA is synthesized both in the nucleus and in the immediately surrounding cytoplasm of the germinating spore until some time after the first division, although a strictly nuclear DNA synthesis is observed later. Synthesis of RNA and proteins is limited to the presumptive regions of the germinating spore which become the protonema and rhizoid, shifting to specific sites in these cells as germination proceeds. The nucleus of the spore continues to be biosynthetically active long after it ceases to divide.  相似文献   

6.
This paper describes the ontogenetic sequence of cell divisionsand associated DNA synthetic patterns observed in sectionedspores of Lygodium japonicum (Thunb.) Sw., collected at differentstages of germination. Following exposure to a saturating doseof red light, the spore undergoes an asymmetric division toform a basal cell, which retains nearly all of the storage inclusions,and an apical cell which expands and protrudes from the rupturedsporoderm. Division of the apical cell results in formationof a protonemal cell and an intermediate cell. Subsequently,the latter cell divides to form the primary rhizoid and a wedgecell adjacent to the protonemal cell. Secondary rhizoids mayarise from later divisions of either the basal cell or the wedgecell. In addition, the wedge cell appears to have the capacityto form a secondary prothal-lial filament. Histochemical localizationof cell constituents indicates an increasing concentration ofcytoplasmic RNA and protein in the presumptive protonemal regionof the spore cell prior to division. Autoradiography of 3H–thymidineincorporation has shown that synthesis of nuclear DNA precedeseach cell division. Although strictly nuclear DNA synthesisoccurs during early stages of germination, extra-nuclear DNAsynthesis increases greatly following division of the sporecell. The results are discussed in relation to earlier studieson cell division patterns seen in whole mount preparations ofgerminating spores of different species of Lygodium. Lygodium japonicum, spore germination, cell division, DNA synthesis  相似文献   

7.
8.
Deoxyribonucleic acid (DNA) polymerase III is not detectable in Bacillus subtilis spores; the enzyme activity appears 20 to 30 min after spore activation and rapidly increases just before the onset of the first round of DNA replication (30 min later); the level of polymerase III further increases and reaches its maximum (on a per-genome basis) when the cells enter the vegetative phase of growth; this level is six- to eightfold higher than the one observed during germination. In the stationary phase, the polymerase III drops to levels comparable to those found in germinating spores at the first round of replication. On the contrary, DNA polymerase I is present at appreciable levels in the dormant spore; it increases during vegetative growth by a factor of three and, during the stationary phase, reaches its maximum level which is sixfold higher than that observed in the spores. The block of protein synthesis during vegetative growth does not cause an appreciable reduction of the two enzymes (in absolute terms), showing that the regulation of their levels is probably not due to a balance between synthesis and breakdown. These results indicate that polymerase III is probably one of the factors controlling the initiation of DNA synthesis during spore germination.  相似文献   

9.
Summary Germinating spores of the sensitive fern,Onoclea sensibilis L., undergo premitotic nuclear migration before a highly asymmetric cell division partitions each spore into a large protonemal cell and a small rhizoid initial. Nuclear movement and subsequent rhizoid formation were inhibited by the microtubule (MT) inhibitors, colchicine, isopropyl-N-3-chlorophenyl carbamate (CIPC) and griseofulvin. Colchicine prevented polar nuclear movement and cell division so that spores developed into enlarged, uninucleate single cells. CIPC and griseofulvin prevented nuclear migration, but not cell division, so that spores divided into daughter cells of approximately equal size. In colchicine-treated spores, MT were not observed at any time during germination. CIPC prevented MT formation at a time coincident with nuclear movement in the control and caused a disorientation of the spindle MT. Both colchicine and CIPC appeared to act at a time prior to the onset of normal nuclear movement. The effects of colchicine were reversible but those of CIPC were not. Cytochalasin b had no effect upon nuclear movement or rhizoid differentiation. These results suggests that MT mediate nuclear movement and that a highly asymmetric cell division is essential for rhizoid differentiation.  相似文献   

10.
Morphological changes and synthesis of DNA, RNA, protein, and cell wall were investigated during germination of resting spores of Bacillus subtilis exposed transiently to the cyclic polypeptide antibiotics, polymyxin B and gramicidin S, and the aminoglycoside antibiotics, streptomycin, kanamycin, and gentamicin. Normal germinated spores showed breaks of the spore coat, a diminution in size and a fibrillar appearance of the cortex, a swelling core, a cell wall as thick as that of vegetable cells, some mesosomes and DNA fibrils. On the other hand, no breaks of the spore coat, a spore core with a slight swelling and irregular form, a thin cell wall, no demonstration of the nuclear material and no granularity in the cytoplasm were characteristic of the germinated spores derived from polymyxin B- and gramicidin S-treated resting spores. With gramicidin S-treated germinated spores a few vacuoles were formed in the cytoplasm. Both polymyxin B- and gramicidin S-treated germinated spores showed little or no synthesis of DNA, RNA, and protein. The vegetative cells derived from streptomycin-treated resting spores demonstrated several finely granular regions in the cytoplasm and a disorder of the fibrillar nucleoid, and their autolysis occurred early. Their DNA and RNA synthesis was normal, whereas protein synthesis was low. In spite of no occurrence of cell division and very low protein synthesis, the most striking characteristics of the outgrowing cells derived from kanamycin-treated resting spores were a markedly thickened cell wall and a continuous incorporation of labeled D-alanine suggesting cell wall synthesis; RNA synthesis was slightly lower and DNA synthesis was almost normal. The outgrowing cells from gentamicin-treated resting spores also revealed relatively thick cell walls and a very slight incorporation of labeled D-alanine. Their DNA and RNA synthesis was fairly low and protein synthesis was almost completely inhibited. These results coincide with the growth curves of individual antibiotic-treated resting spores.  相似文献   

11.
The object of this study was to characterize the pattern ofcell morphogenesis and synthesis of nucleic acids and proteinsduring phytochrome-controlled germination of spores of the fern,Pteris vittata. Phytochrome activation and germination wereinitiated in fully imbibed spores by exposure to a saturatingdose of red light. At timed intervals thereafter, spores werefixed in acrolein and embedded in glycol methacrylate for examinationin the light microscope. The first sign of germination, visiblein sections of the spore 12 h after irradiation, was the hydrolysisof storage protein granules. This was followed by a migrationof the nucleus from its central location to one side of thespore. Subsequently, the protoplast enlarged at the site ofthe nucleus and appeared outside the exine as a papillate structure.An asymmetrical division of the protoplast gave rise to a smallcolourless rhizoid cell and a large, chloroplast-containingprotonemal cell. During the early phase of germination, DNAwas synthesized both in the nucleus and cytoplasm as judgedby autoradiography of [3H]thymidine incorporation. [3H]Uridine,a precursor of RNA synthesis, was incorporated into the nucleolusand the rest of the nuclear material of germinating spores.Protein synthesis monitored by [3H]leucine incorporation occurredboth in the nucleus and cytoplasm during the early stage ofgermination, although a strictly cytoplasmic protein synthesiswas observed later. Addition of cycloheximide completely inhibitedgermination of photoinduced spores and incorporation of labelledprecursors of macromolecule synthesis into cellular components.Actinomycin D was much less effective as an inhibitor of germinationand, even in high concentrations of the drug which effectivelyinhibited DNA and RNA synthesis in spores, proteolysis and proteinsynthesis appeared normal. These findings are discussed withrespect to the regulation of nucleic acid and protein synthesisduring spore germination and the role of phytochrome in theprocess.  相似文献   

12.
Possible involvement of protein synthesis in the germination of Onoclea sensibilis spores was investigated by temporarily applying 0.1 mm cycloheximide before and after photoinduction. Cycloheximide was shown to inhibit protein synthesis, but not to act as an uncoupler of respiration. When cycloheximide was added before or shortly after photoinduction, spore germination was inhibited with the half-maximal inhibition attained in 30 to 45 minutes and the maximal inhibition in 2 hours of incubation. When the time of the inhibitor treatment was delayed after photoinduction, the spores escape from the inhibitory effect of cycloheximide slowly during the first 8 hours and abruptly thereafter with a half-maximal time of 10 hours. If spores are washed free of exogenous cycloheximide and subsequently irradiated, their ability to germinate can be reinstated in distilled water with a half-maximal time of 12 hours. The kinetics of recovery were identical and of apparent first order, regardless of whether cycloheximide treatments were given before or after photoinduction. These results are interpreted to indicate that the normal course of germination of Onoclea spores requires the continuous synthesis of a short lived enzyme that functions in the germination processes at about 10 hours after photoinduction. The cycloheximide-sensitive step follows in the germination processes an anaerobiosis-sensitive step, but precedes the time of acetocarmine uptake or visible signs of protrusion.  相似文献   

13.
V. Raghavan 《Protoplasma》1993,175(1-2):75-84
Summary Chloroplast activities of dark-imbibed (non-germinating) and photoinduced (germinating) spores of the sensitive fern,Onoclea sensibilis were compared to gain insight into the germination process. There were no changes in the number of chloroplasts or in the chlorophyll contents of the spore during dark-imbibition and during the early phase of germination. Levels of increase in the Chloroplast DNA content of dark-imbibed and photoinduced spores were nearly the same and were associated with autoradiographic incorporation of [3H]thymidine into the cytoplasm. However, incorporation of the label into the nucleus occurred only during photoinduction of spores. Analysis of Chloroplast and nuclear DNA contents by dot-blot hybridization with labeled gene-specific probes has confirmed that chloroplast DNA content of the spore increases during dark-imbibition and photoinduction, while increase in nuclear DNA occurs only in photoinduced spores. Chloroplasts isolated from dark-imbibed and photoinduced spores incorporated [3H]TTP into an acid-insoluble fraction identified as DNA. The results show that physiological activities of chloroplasts of dark-imbibed and photoinduced spores ofO. sensibilis are similar and support an exclusive role for nuclear DNA synthesis in spore germination.  相似文献   

14.
The rates of RNA, protein and DNA synthesis were estimated in synchronously germinating spores ofStreptomyces granaticolor. Rapid uptake of labelled precursors of RNA and proteins was observed after 20 s. The germination process took place through a sequence of time + ordered events. RNA synthesis started after 3 min of germination, protein synthesis began at 4 min and net DNA synthesis at 60–70 min of germination. A characteristic feature of germination was the biphasic pattern in the rate of RNA and protein synthesis. Spores ofStreptomyces granaticolor were sensitive to actinomycin D, rifampicin and chloramphenicol even at the start of germination. Protein synthesis during germination was dependent on new mRNA synthesis and was independent during the first 60–70 min on replication of the spore genome.  相似文献   

15.
Berberine, an alkaloid originally extracted from the plant Coptis chinensis and other herb plants, has been used as a pharmacological substance for many years. The therapeutic effect of berberine has been attributed to its interaction with nucleic acids and blocking cell division. However, levels of berberine entering individual microbial cells minimal for growth inhibition and its effects on bacterial spores have not been determined. In this work the kinetics and levels of berberine accumulation by individual dormant and germinated spores were measured by laser tweezers Raman spectroscopy and differential interference and fluorescence microscopy, and effects of berberine on spore germination and outgrowth and spore and growing cell viability were determined. The major conclusions from this work are that: (1) colony formation from B. subtilis spores was blocked ~ 99% by 25 μg/mL berberine plus 20 μg/mL INF55 (a multidrug resistance pump inhibitor); (2) 200 μg/mL berberine had no effect on B. subtilis spore germination with L-valine, but spore outgrowth was completely blocked; (3) berberine levels accumulated in single spores germinating with ≥ 25 μg/mL berberine were > 10 mg/mL; (4) fluorescence microscopy showed that germinated spores accumulated high-levels of berberine primarily in the spore core, while dormant spores accumulated very low berberine levels primarily in spore coats; and (5) during germination, uptake of berberine began at the time of commitment (T1) and reached a maximum after the completion of CaDPA release (Trelease) and spore cortex lysis (Tlysis).  相似文献   

16.
During synchronized germination of spores of Dictyostelium discoideum, protein synthesis begins almost concomitantly with syntheses of messenger-like RNA (mlRNA) and 4–5S RNA (presumably tRNA) in the swollen spore stage and the initiation of ribosomal RNA (rRNA) synthesis is somewhat delayed. DNA synthesis occurs in the early stages of the amoeba emergence phase. Cycloheximide (200 μg/ml) blocked spore germination as well as total protein synthesis, whereas actinomycin D (60 μg/ml) did not affect either. This concentration of actinomycin D selectively inhibited formation of rRNA but did not influence the synthesis of mlRNA. Examinations of RNA labeled with [14C]uracil during germination indicated that polysomes initially detectable in the course of the germination process contain 14C-labeled mlRNA. It was concluded that at least some of mRNA synthesized during germination of D. discoideum spores is involved in protein synthesis required for the germination.  相似文献   

17.
Regulation of Cell Division in Escherichia coli   总被引:4,自引:0,他引:4       下载免费PDF全文
The rate of cell division was measured in cultures of Escherichia coli B/r strain after periods of partial or complete inhibition of deoxyribonucleic acid (DNA) synthesis. The rate of DNA synthesis was temporarily decreased by removing thymidine from the growth medium or replacing it with 5-bromouracil. After restoration of DNA synthesis, a temporary period of accelerated cell division was observed. The results were consistent with the idea that chromosome replication begins when an initiator complement of fixed size accumulated in the cell. The increase in the potential for the initiation of new replication points during inhibition of DNA synthesis results in an increase in the rate of cell division after an interval which encompasses the time for the arrival of these replication points to the termini of the chromosomes and the time from this event to division.  相似文献   

18.
Pretreatment with ethidium bromide (5 μg/ml) followed by a water wash had no effect on unheated Bacillus subtilis spores, but the viability of these spores after heating was much lower than that of similarly heated spores exposed to water alone. The fate of water- or ethidium bromide-treated spores, unheated or heated, was followed by allowing them to germinate and outgrow in a minimal or a complex liquid medium. Spores exposed to ethidium bromide and then heated (85°C, 10 min) exhibited a developmental block during germination and outgrowth. Many of them were blocked at the stage when the bacterium emerged from the germinated spore. When 0.35 μg of ethidium bromide per ml was added to heated spores in the germination-growth medium, the outgrowth of heated spores was inhibited to the same extent as were pretreated spores. Ethidium bromide acted in the first hour of germination of heated spores since addition after this time was ineffective in inhibiting recovery events. Repair of heat-damaged spore DNA was detected during the first 2 h of germination. The addition of ethidium bromide (final concentration, 0.35 μg/ml) inhibited DNA repair during early outgrowth. Increased sensitivity of spores to heat after pretreatment with sublethal concentrations of ethidium bromide was due to the inhibition of the repair of heat-damaged DNA.  相似文献   

19.
Application of 2,5-norbornadiene, a competitive inhibitor of ethylene, effectively inhibited the germination of Botrytis cinerea Pers. ex Fr. spores. The transfer of spores from 2,5-norbornadiene to air relieved inhibition by norbornadiene, indicating that its effects are non-toxic and reversible. Ethephon (2-chloroethylophosphonic acid), which stimulates spore germination of B. cinerea , does not affect germination in the presence of norbornadiene. However, ethephon appeared to be effective in relieving inhibition, when norbornadiene was removed from the atmosphere surrounding spores. The addition of ethylene to an atmosphere enriched with norbornadiene, counteracted the inhibition of spore germination. The inhibition of spore germination by 2,5-norbornadiene and the reversal of this effect by ethephon or ethylene, indicate that the action of ethylene is indispensable for germination of B. cinerea spores.  相似文献   

20.
Following a geometrically asymmetrical cell division during germination of spores of the fern Onoclea sensibilis L., the small cell differentiates into a rhizoid and the large cell divides to form the protonema. Using silver-staining of two-dimensional gels, we have examined the soluble proteins of spores during germination and of separated rhizoid protoplasts and protonemal cells. Of over 500 polypeptides followed, nearly 25% increased or decreased in prominence during spore germination and the initial phases of rhizoid elongation. Soluble proteins from purified protoplasts of young rhizoids were quantitatively different from those of protonemal cells and germinated spores. Nine polypeptides which appeared after cell division were substantially more prominent in rhizoid protoplasts than in whole germinated spores and have been putatively designated rhizoid-specific polypeptides. The differences in the soluble protein composition of young rhizoids and protonemal cells probably reflect the differential organelle distribution between the two cells as well as differential net protein synthesis in the cytoplasms of the two cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号