首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Corm tissue of Isoetes muricata Dur. was fixed in glutaraldehyde and postfixed in osmium tetroxide for electron microscopy. Very young secondary sieve elements can be distinguished from contiguous cambial cells by their distinctive plastids and by the presence of crystalline and/or fibrillar proteinaceous material in dilated cisternae of rough endoplasmic reticulum (ER). At maturity, the sieve elements are lined by the plasmalemma and a parietal, anastomosing network of smooth ER. Degenerate nuclei persist in all mature sieve elements. In addition, mature sieve elments contain plastids and mitochondria. Sieve-area pores are present in all walls. The lateral meristem of I. muricata consists of 2–3 layers of cells year-round. Judging from numerous collections made between October 1972 and July 1975, new sieve-element differentiation precedes cambial activity by about a month. Early in May, 1–2 cells immediately adjacent to already mature sieve elements differentiate directly into sieve elements without prior division. In early June, at about the time sieve-element differentiation is completed, cambial division begins. Division is sporadic, not uniform throughout the meristem. Dormancy callose accumulates in the secondary sieve elements in late October, and is removed in early May, at about the same time new sieve-element differentiation begins. Cells of the dormant cambium are characterized by the presence of numerous small vacuoles and large quantities of storage materials, including lipid droplets, starch grains, and tannin. By contrast, active cambial cells contain few large vacuoles with little or no tannin, and they have little storage material.  相似文献   

2.
Stem tissue of Lycopodium lucidulum Michx. was fixed in glutaraldehyde and postfixed in osmium tetroxide for electron microscopy. Although their protoplasts contain similar components, immature sieve elements can be distinguished from parenchymatous elements of the phloem at an early stage by their thick walls and correspondingly high population of dictyosomes and dictyosome vesicles. Late in maturation the sieve-element walls undergo a reduction in thickness, apparently due to an “erosion” or hydrolysis of wall material. At maturity, the plasmalemma-lined sieve elements contain plastids with a system of much convoluted inner membranes, mitochondria, and remnants of nuclei. Although the endoplasmic reticulum (ER) in most mature sieve elements was vesiculate, in the better preserved ones the ER formed a tubular network closely appressed to the plasmalemma. The sieve elements lack refractive spherules and P-protein. The protoplasts of contiguous sieve elements are connected with one another by pores of variable diameter, aggregated in sieve areas. As there is no consistent difference between pore size in end and lateral walls these elements are considered as sieve cells.  相似文献   

3.
The primary phloem of young internodes of Cucurbita maxima wasstudied with the electron microscope. Phloem parenchyma cellsare highly vacuolated and contain nuclei, endoplasmic reticulum,ribosomes, mitochondria, chloro-plasts, and occasional dictyosomes.As compared with parenchyma cells, the most distinctive featuresof companion cells are their extremely dense cytoplasm, lowdegree of vacuolation, lack of chloroplasts, and numerous sieve-elementconnexions. Companion cells contain plastids with few internalmembranes. At maturity the enucleate sieve element is linedby a plasmalemma, one or more cistema-like layers of endoplasmicreticulum, and a membrane which apparently delimits the parietallayer of cytoplasm from a large central cavity. In OsO4–-andglutaraldehyde-fixed elements, the central cavity is traversedby numerous strands, which run from cell to cell through thepores of sieve plates and lateral sieve areas, and which arederived ontogenetically from the slime bodies of immature cells.Numerous normal-appearing mitochondria are present in the parietallayer of cytoplasm. The pores of sieve plates and lateral sieveareas are lined with cytoplasm. The ultrastructural detailsof young sieve elements differ little from those of other youngnucleate cells. During sieve-element development, the sieveelement increases in vacuolation. At the same time, slime bodiesdevelop in the cytoplasm. With glutaraldehyde fixation, thesebodies often exhibit a double-layered limiting membrane. Asthe sieve element continues to differentiate, the slime bodiesincrease in size and the parietal layer of cytoplasm becomesvery narrow. Presently, the slime bodies begin to disperse andtheir contents fuse. This phenomenon occurs in the parietallayer of cytoplasm, while the latter is still delimited fromthe large central vacuole by a distinct tonoplast. The initiationof slime-body dispersal more or less coincides with perforationof the pore sites, and many pores are traversed by slime earlyin their development. Before slime-body dispersal, all dictyosomesand associated vesicles disappear from the cytoplasm. Eventually,the tonoplast diappears and the slime becomes distributed throughoutthe central cavity in the form of strands. Nuclei and ribosomesdisappear before breakdown of the tonoplast. Sieve elementsare connected with companion cells and parenchyma cells by plasmodesmata.  相似文献   

4.
The sieve elements of Nereocystis from the base of phylloids contain numerous small vesicles, cytoplasm, ribosomes, and the usual organelles and membrane systems, including nuclei, plastids, mitochondria, dictyosomes, and endoplasmic reticulum. They have a thick secondary wall layer which is deposited along the longitudinal walls and at the sieve plate excluding the sieve pores. The sieve pores range in diameter from 100 to 400 nm and are lined by plasmalemma. The sieve elements from the hollow basal parts of the pneumatocyst show essentially the same features but have larger and fewer vesicles, relatively little cytoplasm, larger sieve pores, 400–900 nm in diameter, and may lack a nucleus. In old sieve elements there are large deposits of callose on the sieve plate and along the longitudinal wall; the vesicles seem to break down, and the protoplast appears necrotic. It is concluded that the trumpet hyphae and sieve tubes are basically the same type of cell, and that the trumpet-shape of the sieve elements is due to their passive stretching during extension growth of the organ in which they occur. There are minor but significant differences among the sieve elements from different regions of the thallus which may reflect possible levels of structural specialization of the sieve elements within the same plant.  相似文献   

5.
Summary At maturity, the enucleate sieve element of Primula obconica is lined with a parietal layer of cytoplasm consisting of plasmalemma, one or more cisterna-like layers of endoplasmic reticulum, numerous mitochondria and plastids, and a membrane which apparently separates these cytoplasmic components from a large central cavity. The central cavity contains numerous longitudinally oriented slime tubules. We believe these tubules normally form strands which run the length of the cell and traverse consecutive cells through the sieve-plate pores. Developmental aspects are discussed.This research has been supported by NSF Grant GB 3193.  相似文献   

6.
Summary The minor veins ofCucurbita pepo leaves were examined as part of a continuing study of leaf development and phloem transport in this species. The minor veins are bicollateral along their entire length. Mature sieve elements are enucleate and lack ribosomes. There is no tonoplast. The sieve elements, which are joined to each other by sieve plates, contain mitochondria, plastids and endoplasmic reticulum as well as fibrillar and tubular (190–195 diameter) P-protein. Fibrillar P-protein is dispersed in mature abaxial sieve elements but remains aggregated as discrete bodies in mature adaxial sieve elements. In both abaxial and adaxial mature sieve elements tubular P-protein remains undispersed. Sieve pores in abaxial sieve elements are narrow, lined with callose and are filled with P-protein. In adaxial sieve elements they are wide, contain little callose and are unobstructed. The intermediary cells (companion cells) of the abaxial phloem are large and dwarf the diminutive sieve elements. Intermediary cells are densely filled with ribosomes and contain numerous small vacuoles and many mitochondria which lie close to the plasmalemma. An unusually large number of plasmodesmata traverse the common wall between intermediary cells and bundle sheath cells suggesting that the pathway for the transport of photosynthate from the mesophyll to the sieve elements is at least partially symplastic. Adaxial companion cells are of approximately the same diameter as the adaxial sieve elements. They are densely packed with ribosomes and have a large central vacuole. They are not conspicuously connected by plasmodesmata to the bundle sheath.  相似文献   

7.
At maturity the sieve elements of Ulmus americana L. contain a parietal network of very fine strands of slime which is continuous from one sieve element to the next through the sieve-plate pores. Upon injury this parietal network, which is derived from the slime bodies of immature sieve elements, sometimes becomes distorted into longitudinally oriented strands. Some of these strands frequently extend the length of the cells and often are continuous from one sieve element to the next through the sieve-plate pores. At times past such strands have erroneously been interpreted as normal constituents of the mature sieve-element protoplast. Many mature sieve elements of U. americana contain nuclei, which apparently persist for the life of the sieve elements. In addition, some evidence has been found in mature sieve elements for the presence of a membrane which delimits the parietal layer of cytoplasm, including its network of slime strands, from the vacuolar region of the cell.  相似文献   

8.
Summary Mesophyll containing the minor veins from leaves ofTetragonia expansa Murr. was examined in preparation for a study of effects of beet yellows virus on the leaf tissues of this plant. The sieve elements throughout the minor veins exhibit the characteristics commonly found in this type of cell in dicotyledons. The cells are connected with one another by sieve plates and with contiguous parenchyma cells by branched plasmodesmata. Mature sieve elements are enucleate and lack ribosomes. No tonoplast was discerned in these cells. Mitochondria, plastids, and sparse endoplasmic reticulum are retained in mature cells. The plastids, which contain a massive fibrous ring of proteinaceous material, resemble the sieve element plastids ofBeta. The P-protein in the sieve elements is occasionally composed of tubules; more commonly it is represented by loose helices. The tracheary elements have scalariform secondary thickenings. In regions free of these thickenings, the primary wall largely disintegrates; only some loosely arranged fibrils remain. The mesophyll and vascular parenchyma cells contain the various organelles characteristic of living plant cells but vary in degree of vacuolation and in density of cytoplasm. Some vascular parenchyma cells have particularly dense protoplasts. They contain numerous ribosomes and their background matrix consists of a dense population of fine fibrils. Occasional vascular parenchyma cells contain the tubular spiny cell component first recognized inBeta. This work was supported in part by National Science Foundation grant GB-5506.  相似文献   

9.
The immature sieve cell of Pinus strobus contains all of the protoplasmic components commonly encountered in young cell types. In addition, it contains slime bodies with distinct double-layered limiting membranes. The mature sieve cell is lined by a narrow layer of cytoplasm consisting of a plasmalemma, one or more layers of anastomosing tubules of endoplasmic reticulum, numerous mitochondria, starch granules and crystal-like bodies. Each mature cell contains a necrotic nucleus. Ribosomes and dictyosomes are lacking. Strands derived ontogenetically from the slime bodies of the immature cell traverse the central cavity and are continuous with those of neighboring sieve cells through the plasmalemma-lined pores of the sieve areas. Sieve-area pores are also traversed by numerous endoplasmic membranes. A membrane was not found separating the parietal layer of cytoplasm from the large central cavity.  相似文献   

10.
Heinz-Dietmar Behnke 《Planta》1973,110(4):321-328
Summary Plastids have been identified in the sieve elements and/or companion cells of 14 monocotyledon species. In contrast to earlier reports, plastids are present in the sieve elements of Smilax and the companion cells of Tradescantia. The development and fine structure of the sieve-element plastids in Smilax do not differ from the type found in all of the 230 angiosperm species we have studied so far contain prominent plastids. The companion cells are easily identified by their specialized plasmatic connections with the sieve elements. The leucoplasts in the companion cells of Tradescantia are identical with those reported for many angiosperms.  相似文献   

11.
Abstract

Researches on ultrastructure of Avena coleoptile. 3. The sieve elements. — A study on the ultrastructural organization of the mature sieve elements of Avena coleoptile has been carried out. Data suggest that functional phloem tubes are alive and remain alive until they are working. Judging on morphological basis, the metabolic activity of sieve elements should be of peculiar type and low in comparison to that of the companion cells. In fact the cytoplasm is located in a narrow parietal strand, mitochondria, Golgi apparatus and endoplasmic reticulum are present, but they appear very modified; plastids and nucleus are absent. The cytoplasm is bounded externally by a normal plasmalemma, whilst the vacuole has no visible limits: a tonoplast is, therefore not identifiable.

The strands connecting the superimposed sieve elements with one another through the sieve plate result to be made by a double membrane system very similar to the endoplasmic reticulum, which we believe to realize cytoplasmic continuity between phloem tubes.

The data reported are more favorable to the existence in the sieve tubes of an active mechanism of translocation of organic solutes than a passive mass-flow.

The collaboration of companion cells in the translocation mechanism has been discussed.  相似文献   

12.
Developing sieve elements of pennycress (Thlaspi arvense L.) were studied with the electron microscope. The maturation of sieve elements involved loss of ribosomes from cytoplasm; degeneration of nulcei; modification of endoplasmic reticulum (ER); loss of tonoplast; and disappearance of dictyosomes and dictyosomes vesicles, coated vesicles, microtubules, and microbodies. Such changes produce a mature, presumably conducting cell that contains no nucleus or central vacuole but which retains a thin layer of peripheral cytoplasm with plastids, mitochondria, and smooth ER. Some similar changes have been described in a variety of developing sieve elements of angiosperms, but coated vesicles and microbodies previously have not been followed through sieve-element maturation. Likewise, few developmental studies have been made of plant sieve elements that exhibit two types of P-protein, the tubular type and the granular P-protein body.  相似文献   

13.
Summary Phloem tissues ofMicrosorium scolopendria (Polypodiaceae) andPsilotum nudum (Psilotaceae) were examined with light and electron microscopes. The characteristic refractive spherules in the sieve elements ofM. scolopendria apparently develop from endoplasmic reticulum-derived cytoplasmic vesicles. In both taxa they have not been observed to be spatially related to plastids or mitochondria. Refractive spherules contain protein and often occur in the peripheral cytoplasm of mature sieve elements. InM. scolopendria they also occur in pericycle cells. Significant differences in refractive spherule substructure occur between the two taxa studied.  相似文献   

14.
Summary Tissue of one-year-old leaves ofWelwitschia mirabilis was fixed in glutaraldehyde and postfixed in osmium tetroxide for electron microscopy. Mature sieve cells contain nuclei composed of peripherally-distributed chromatin material and an intact envelope with pores. During sieve-cell development many mitochondria become closely associated spatially with the nucleus. In addition to a nucleus and mitochondria, the mature, plasmalemma-lined sieve cell contains plastids and abundant smooth endoplasmic reticulum, which generally occurs in massive aggregates at the sieve areas. Dictyosomes and ribosomes are lacking and a tonoplast is not discernible in mature sieve cells. P-protein is not present at any stage of development.This work was supported in part by a grant from the South African Council for Scientific and Industrial Research and in part by the U.S. National Science Foundation (GB 31417).  相似文献   

15.
Hypocotyl tissue of Pinus resinosa Ait. was fixed in glutaraldehyde-paraformaldehyde and postfixed in osmium tetroxide for electron microscopy. Although young sieve cells contain all the components characteristic of young, nucleate cells, they can be identified early in their development. Increase in wall thickness occurs early and rapidly. Concurrently, the plastids, which already contain starch granules, form both crystalline and fibrillar inclusions. As the sieve cell approaches maturity, an extensive network of smooth, tubular endoplasmic reticulum (ER), which becomes mostly parietal in distribution, is formed. At maturity, massive aggregates of this ER occur on both sides of sieve areas. These ER aggregates are interconnected with one another longitudinally by the parietal ER. In addition, the mature, plasmalemma-lined sieve cell contains a degenerate nucleus, mitochondria, and intact plastids. Dictyosomes, ribosomes, and vacuolar membranes are lacking. P-protein is not present at any stage of development.  相似文献   

16.
The structure of the mature leaves of 13 species from 9 families of homosporous leptosporangiate ferns was examined by light and electron microscopy. In 11 species (Adiantum pedatum L., Athyrium angustum Roth., Cyathea dregei Sm., Lygodium palmatum Sw., Mohria caffrorum (L.) Desv., Oleandra distenta Kuntae, Pellaea calomelanos (Sw.) Link, Pityrogramma calomelanos (L.) Link var. austro-americana (Domn.) Farw., Trichomanes melanotrichum Schlechtend., Vittaria guineensis Desv., and Woodwardia orientalis Sw.) the lamina veins are collateral; in two (Phlebodium aureum and Platycerium bifurcatum), bicollateral as well as collateral veins are present. The vascular bundles in the midribs of C. dregei and those in the petioles and midribs of Phlebodium and Platycerium are concentric. All of the vascular bundles in the homosporous leptosporangiate ferns studied are delimited by a tightly arranged cylinder of endodermal cells with Casparian strips. Within the veins without parenchymatic xylem sheaths, some sieve elements commonly abut tracheary elements with hydrolyzed primary walls. The majority of vascular parenchyma cells contact both sieve elements and tracheary elements, although some parenchyma cells are associated with only one type of conducting cell. Transfer cells (parenchyma cells with wall ingrowths) occur in the veins of 6 species examined. Most of the vascular parenchyma cells, however, have no distinctive structural characteristics. The sieve elements of the homosporous leptosporangiate ferns are very similar structurally and each consists of a plasmalemma, a parietal, anastomosing network of smooth endoplasmic reticulum (ER), and variable numbers of refractive spherules, plastids and mitochondria. The sieve elements of L. palmatum also contain plasmalemma tubules. The parenchymatic cells of the leaf (mesophyll, endodermal and vascular parenchyma cells) are united by desmotubule-containing plasmodesmata. The sieve elements are connected to each other by sieve pores and to parenchymatic cells by pore-plasmodesma connections. The sieve-area pores contain variable amounts of membranous material, apparently ER membranes, but do not occlude them. These membranes commonly are found in continuity with the parietal ER of the lumen. Based upon the relative frequencies of cytoplasmic connections between cell types, the photosynthates may move from the mesophyll to the site of phloem loading via somewhat different pathways in different species of homosporous leptosporangiate ferns.  相似文献   

17.
Roots of Equisetum hyemale L. var. affine (Engelm.) A. A. Eat. were fixed in glutaraldehyde, postfixed in osmium tetroxide, and sieve elements of various ages were examined with the electron microscope. Young sieve elements are distinguished by their position within the vascular cylinder and by the presence of numerous refractive spherules, which originate within dilated portions of the endoplasmic reticulum (ER). Early in development, the sieve-element walls undergo a substantial increase in thickness. This is followed by the appearance of massive ER aggregates in the cytoplasm and then by a phase involving stacking and sequestering of the remaining ER. Nuclear degeneration is initiated shortly after the appearance of the ER aggregates. The chromatin condenses into masses of variable size along the inner surface of the nuclear envelope. The envelope then ruptures and chromatin is released into the cytoplasm. During the period of nuclear degeneration, mitochondria and plastids undergo structural modification, while components such as dictyosomes, microtubules, and ribosomes degenerate and disappear. The remaining cytoplasmic components assume a parietal position in the cell, leaving the lumen of the cell clear in appearance. At maturity, the plasmalemma-lined sieve element contains plastids, mitochondria, some ER, and refractive spherules. At this time many of the refractive spherules are discharged into the region of the wall. Pores between sieve elements occur largely on the end walls. During pore development, tubules of ER apparently traverse the pores, but because of the presence of massive callose deposits in the material examined, the true condition of mature pores could not be determined. The connections between mature sieve elements and pericycle cells are characterized by the presence of massive wall thickenings on the pericycle-cell side. Plasmodesmata in the wall thickening are matched by pores on the sieve-element side. Ontogenetic and cytoplasmic factors argue against use of the term “companion cell” for the vascular parenchyma cells associated with the sieve elements.  相似文献   

18.
The guard cells of Opuntia contain numerous mitochondria, elements of endoplasmic reticulum, dictyosomes, and microbodies. A complex array of small to large vacuoles which contain small, membrane-bounded vesicles occur in each guard cell. The variety of cytoplasmic constituents and vacuoles suggest that the guard cells are complex in function. A highly reduced grana-fretwork system within the plastids indicates that the photosynthetic capacity of the guard cells is probably rather low. No plasmodesmata occur in the walls between the guard cells and the subsidiary cells while there are numerous invaginations of the guard cell plasmalemmas. Many of the variations in the plasmalemma probably indicate that the plasmalemma is a highly active interface.  相似文献   

19.
The physiological phloem equivalents, leptoids, of the polytrichaceous moss Atrichum undulatum appear to be similar to the nacreous sieve elements that occur in many higher plants. These leptoids are elongated cells with nacreous thickenings on their radial and tangential walls. Their oblique end walls, which lack such thickenings, are traversed by numerous pores through which the plasmalemma, endoplasmic reticulum, and cytoplasm are continuous between adjacent leptoids of a longitudinal file. These end walls closely resemble the simple sieve areas of the sieve elements found in Polypodium vulgare. The leptoid sieve pores have a median expanded area and frequently are occluded by small amorphous protein plugs at each end. Also, callose was observed as electron-luscent areas both on the faces of the end walls and as a thin cylinder surrounding the lateral area of each pore. Amorphous and granular cytoplasmic contents of the leptoids appear to be morphologically similar to the slime (P-protein) found in the sieve-tube elements of many angiosperms. Differentiating leptoids are characterized by the formation of numerous membrane-bound protein bodies in close association with polysomes and endoplasmic reticulum. As the leptoid matures, the contents of the protein bodies become dispersed in the cytoplasm. Ultrastructurally and ontogenetically the leptoids in the gametophores of A. undulatum appear almost identical to the sieve elements of P. vulgare and therefore should be considered sieve elements rather than phloem-like equivalents.  相似文献   

20.
A close sheathing of the plastids by endoplasmic reticulum has been observed. This is restricted to the companion cells and developing sieve tubes of the phloem of Acer pseudoplatanus and the resin canal cells and leaf callus cells from Pinus pinea. The sheathing is transitory in callus and sieve tubes but is a permanent feature of the companion and the resin canal cells. Possible functional relationships between the two organelles are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号