首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To increase our knowledge of the TRH functions in brain and the processes of TRH compartmentalization and release, we studied the in vitro release of endogenous TRH in different brain areas. We also determined the correlation between TRH levels and release under both basal and stimulated conditions. TRH concentration was measured in tissues and media by specific radioimmunoassay. TRH-like material detected in olfactory bulb and hypothalamic incubates (basal or K+ stimulated) were shown to be chromatographically identical to synthetic TRH. Different brain regions showed high variability in the basal release of TRH (1-20% of tissue content). This suggests the existence of different pools. The response to depolarizing stimulus (56 mM K+) was significant only in the following regions: median eminence, total hypothalamus, preoptic area, nucleus accumbens-lateral septum, amygdala, mesencephalon, medulla oblongata and the cervical region of the spinal cord. These regions have been shown to contain a high number of receptors, a high concentration of TRH nerve endings and are susceptible to TRH effects. These results support the hypothesis that TRH functions as neuromodulator in these areas.  相似文献   

2.
Abstract: Hippocampal thyrotropin-releasing hormone (TRH) release was examined after seizures were induced by electroconvulsive shock (ECS). Rat hippocampal slices taken 12, 24, or 48 h after 3 days of alternate-day ECS treatment or sham-ECS treatment were stimulated with potassium with or without calcium in a superfusion system containing in-line charcoal adsorbent to concentrate TRH. Released TRH and tissue TRH were measured by radioimmunoassay. The TRH content of hippocampal slices was increased fivefold over sham-ECS levels 12, 24, and 48 h after ECS, but this was not associated with an increase in basal TRH release. Potassium-stimulated TRH release was significantly elevated over basal release 12, 24, and 48 h after ECS. Potassium-stimulated calcium-dependent TRH release increased linearly after ECS, reaching its highest level 48 h after seizure. Thus, although enhanced calcium-dependent TRH release was associated with elevated tissue levels, this relationship was not proportional in that tissue TRH was elevated to the same extent at all times after ECS, whereas potassium-evoked calcium-dependent TRH release increased gradually over time after seizure. These results suggest that postictal elevations in TRH are associated with an enhanced capacity for release that develops as a result of a time-dependent shift of TRH from a storage compartment to a readily releasable pool. The observed elevation in stimulated TRH release may be relevant to seizure-induced modulation of TRH receptors in vivo.  相似文献   

3.
Blocks of tissue from the hypothalamus, olfactory bulb, or striatum of rats were incubated in vitro to study the basal and potassium-stimulated release of endogenous catecholamines. When ethanol (100-250 mM) was added to these preparations in vitro no changes in release were observed. When ethanol (3.0 g X kg-1) was injected intraperitoneally in vivo, however, and 3,4-dihydroxyphenylethylamine (DA, dopamine) release was measured in vitro at various times after drug administration, significant increases in the basal release and decreases in the potassium-stimulated release were observed in striatum and olfactory bulb. In striatum, these changes showed a more rapid onset and a longer duration than in olfactory bulb. In both brain regions, DA release did not differ from controls at 4-6 h after the ethanol injection, although blood ethanol concentrations remained elevated. This may imply the tissue's acquisition of acute functional tolerance to the drug. Similar increases and decreases in the basal and the potassium-induced release of DA from striatal tissues were also found at 1 h after injection of a lower dose of ethanol (1.0 g X kg-1). In terms of behavior, this lower dose of ethanol produced only mild intoxication and ataxia, in contrast to the loss of righting reflex following the higher dose.  相似文献   

4.
The influence of time of day on elbow flexion torque was studied. Thirteen physical education students, 7 males and 6 females, made maximal and submaximal isometric contractions at 90° of elbow flexors using a dynamometer. The torque developed was measured on each contraction. The myoelectric activity of the biceps muscle was also measured at the same time by surface electromyography (EMG) and quantified from the root mean square (RMS) activity. Torque and surface EMGs were measured at 6:00, 9:00, 12:00, 15:00, 18:00, 21:00, and 24:00 h over the same day. Oral temperature before each test session was measured on each occasion after a 30-min rest period. We observed a diurnal rhythm in elbow flexor torque with an acro-phase at 18:00 h and a bathyphase at 6:00 h, in phase with the diurnal rhythm in oral temperature. However, the diurnal rhythm of temperature did not appear to have any influence on the torque. Links between neuromuscular efficiency and RMS/torque ratio were evaluated by measuring muscle activity along with torque. We also assessed variations in the level of maximal activity of the muscle under maximal voluntary contraction. Neuromuscular efficiency fluctuated during the day, with maximal and minimal efficiency at 18:00 h and 9:00 h, respectively, whereas activation level was maximal at 18:00 h and minimal at 9:00 h. The diurnal rhythm of torque was accounted for by variations in both central nervous system command and the contractile state of the muscle.  相似文献   

5.
The aim of this study was to determine whether exposure to extremely low frequency magnetic field (ELF-MF) affects the normal diurnal rhythm of the pain threshold in mice. Pain thresholds were evaluated in mice using the hot plate test. A significant increase of pain threshold during night was observed compared to that during day. This rhythm was attenuated by both constant exposure to light (LL) and constant exposure to darkness (DD) for 5 days. Under DD exposure, the diurnal rhythm in pain threshold was restored when mice were exposed to ELF-MF (60 Hz, 1.5 mT for 12 h daily, from 08:00 to 20:00 h) for 5 days. The diurnal rhythm was not reversed under dark with reversed ELF-MF cycle (exposure to 1.5 mT from 20:00 to 08:00 h, next day) for 5 days, although pain threshold in the ELF-MF exposed period of night was slightly decreased. The diurnal rhythm of melatonin analgesic effect related to pain threshold was also observed under DD by the exposure of ELF-MF for 5 days, but not for 5 nights. The present results suggest that ELF-MF may participate in the diurnal rhythm of pain threshold by acting on the system that is associated with environmental light-dark cycle.  相似文献   

6.
The diurnal variation of TRH concentrations in different parts of hypothalamus was studied in 80 male rats, which were killed in groups of 5 at 3 h intervals. The hypothalamus was dissected into three parts: I) medial basal hypothalamus (MBH), II) anterior hypothalamus, and III) dorsal hypothalamus. Anterior pituitary and serum TSH concentrations were also measured. TRH concentrations were higher in MBH than in the other parts of the hypothalamus: at night 300–450 pg/mg of wet weight of tissue. When the lights were turned on, MBH-TRH levels began to decrease, reaching a nadir of 210 pg/mg at 12 noon. After 15 h, MBH-TRH levels began to increase again. The changes in TRH levels in anterior hypothalamus were usually opposite to those in MBH (r = ?0.6185). Serum TSH levels were about 800 ng/ml during the day and were decreased to about one half of these levels when the lights were turned off. Serum TSH levels were positively correlated with anterior hypothalamic TRH levels (r = 0.6457) and inversely correlated with MBH-TRH levels (r = ?0.7747). Anterior pituitary TSH levels showed small but statistically insignificant variations. In conclusion, there were statistically interrelated diurnal rhythms in anterior hypothalamic and MBH-TRH levels and serum TSH concentrations.  相似文献   

7.
N Zisapel  I Nir  M Laudon 《FEBS letters》1988,232(1):172-176
The binding of 125I-melatonin to synaptosomes prepared from whole brains of male rats of the CD strain and from the brain, hypothalamus and striatum of male rats of the Sabra-Wistar strain was assessed throughout a 24 h period. The animals were maintained under a daily schedule of 14 h light (05:00-19:00 h) and 10 h darkness. In whole brain preparations the density of binding sites at 18:00 h was higher by about 70% than at 02:00 h with no variations in apparent affinity of the binding sites throughout the daily period. Specific binding of 125I-melatonin was found in both hypothalamus and striatum of the male rat with a distinct diurnal variation in binding site density in the hypothalamus only. The density of 125I-melatonin-binding sites in the hypothalamus was maximal between 10:00 and 18:00 h and dropped sharply after the lights went off. The apparent 125I-melatonin-binding affinities in these regions were constant and very similar to those in whole brain preparations. The daily variations in densities of 125I-melatonin-binding sites in discrete brain areas may represent a diurnal rhythmicity in the responsiveness of the neuroendocrine axis to melatonin.  相似文献   

8.
TRH-like immunoreactivity distinct from TRH is present in various tissues and fluids. In order to determine whether TRH-like molecules are secreted by the hypothalamus, we analyzed tissues and media from hypothalamic slices incubated in Krebs Ringer bicarbonate. Media from basal or high KCl conditions contained 3 TRH-like molecules evidenced by reverse phase high performance liquid chromatography followed by TRH radioimmunoassay. Peak I corresponded to authentic TRH (73% of total immunoreactivity) and peaks II and III had a higher retention time. These additional TRH-like forms were neither detected in hypothalamic tissue nor in tissue or medium from olfactory bulb. Gel filtration analysis of hypothalamic media revealed only one TRH-like peak eluting as TRH, suggesting that the molecular weights of peaks II and III are similar to that of TRH. Peak II retention time was similar to that of pglu-phe-proNH2. We analysed if they could be produced by post secretory metabolism of TRH. Incubation of hypothalamic slices with [3H-Pro]-TRH did not produce radioactive species comigrating with peaks II or III. However, it induced rapid degradation to [3H-Pro]-his-prodiketopiperazine ([3H]-HPDKP). Inhibitor profile suggested that pyroglutamyl aminopeptidase II, but not pyroglutamyl aminopeptidase I, is responsible for [3H]-HPDKP production. These data are consistent with the hypothesis that pyroglutamyl aminopeptidase II is the main aminopeptidase degrading TRH in hypothalamic extracellular fluid. Furthermore, we suggest that the hypothalamus releases additional TRH-like molecules, one of them possibly pglu-phe-proNH2, which may participate in control of adenohypophyseal secretions.  相似文献   

9.
用离体静态培育系统进行的初步研究表明 ,在幼鲤 ,多巴胺 (DA)显著刺激下丘脑片段和脑垂体碎片释放GnRH ,并且是剂量依存的 ;促甲状腺素释放激素 (TRH)和γ -氨基酸丁酸 (GABA)对GnRH的释放没有影响。在成鲤 ,DA抑制下丘脑片段和脑垂体碎片释放GnRH ,而TRH和GABA刺激GnRH的释放 ;DA对GABA刺激的GnRH释放也具有抑制作用 ;TRH和GABA的协同作用对下丘脑和脑垂体GnRH释放活动的影响明显低于TRH和GABA的单独作用 ,表明TRH和GABA之间可能存在着某种GnRH释放的相互消竭作用。  相似文献   

10.
Glucocorticoid effects on the diurnal rhythm of circulating leptin levels   总被引:3,自引:0,他引:3  
It is known that circulating leptin shows diurnal variation with a nocturnal rise; however, the mechanisms generating this rhythm have not been fully elucidated. Glucocorticoids are a potent stimulator of leptin secretion, and there is a reciprocal relationship between circulating leptin and glucocorticoid levels. We hypothesized that glucocorticoids could modulate the diurnal rhythm of circulating leptin. We therefore explored the diurnal variation of leptin under situations in which subjects showed no or some shift of glucocorticoid diurnal rhythm, such as prednisolone-administered humans, and adrenalectomized and corticosterone-replaced (ADX+B) rats. The peak level of plasma cortisol immunoreactivity was shifted from early morning to noon by prednisolone administration. The nocturnal increment of plasma leptin in prednisolone-administered patients (71.2 +/- 14.2% from 08:00 h value) was significantly greater than that in normal volunteers (12.2 +/- 7.5% from 08:00 h value), but the timing of nadir and the peak of plasma leptin was not shifted. In normal rats, the plasma concentration of leptin showed the diurnal rhythm with the bottom at 16:00 h and the top between midnight and early morning. The amplitude of leptin diurnal rhythm was significantly reduced in ADX+B rats (08:00 h: 3.0 +/- 0.2, 16:00 h: 2.7 +/- 0.2, 00:00 h; 3.7 +/- 0.2 ng/ml) compared with sham operated rats (08:00 h: 3.0 +/- 0.2, 16:00 h 2.2 +/- 0.2, 00:00 h: 4.7 +/- 0.4 ng/ml); but ADX+B rats still retained similar timing of nadir and the peak of plasma leptin as observed in sham rats. These results indicate that glucocorticoids enhance the amplitude of leptin diurnal rhythm, and are consistent with previous findings showing that glucocorticoids increase leptin secretion. Glucocorticoids appear to play modulatory, but not essential roles in generating leptin diurnal rhythm.  相似文献   

11.
Carbachol and norepinephrine were used as agonists to compare and contrast cholinergic and adrenergic stimulation of inositide breakdown in rat brain slices. Carbachol acts through a muscarinic (possibly M1) receptor and norepinephrine acts through an alpha 1 adrenoceptor. Studies in cerebral cortical slices indicated that both agonists stimulated the production of inositol-1-phosphate and glycerophosphoinositol. Although the initial rates for the stimulation of inositol phosphate release were similar for the two ligands, the response to norepinephrine continued for 60 min and was larger compared with carbachol which plateaued at 30 min. The presence of carbachol did not affect the ED50 for norepinephrine. Concentrations of carbachol near the ED50 in combination with norepinephrine resulted in an additive response whereas maximal concentrations of carbachol and norepinephrine resulted in a less than additive response in the cortex. This negative interaction was also seen in the hippocampus and hypothalamus but not in the striatum, brainstem, spinal cord, olfactory bulb, or cerebellum. Norepinephrine had a larger response than carbachol in the hippocampus, striatum, and spinal cord, but the reverse was true in the olfactory bulb. Manganese (1 mM) stimulated the incorporation of [3H]inositol into phosphatidylinositol (PtdIns) four- to fivefold but not into polyphosphoinositides. The stimulation by manganese of PtdIns labelling increased the nonstimulated release of inositol phosphates but did not affect the stimulated release of inositol phosphates by carbachol or norepinephrine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
We studied the possible involvement of diacylglycerol lipase in the regulatory mechanisms governing the release of prolactin by primary cultures of anterior pituitary cells. This was accomplished by studying the effect of a selective inhibitor of diacylglycerol lipase activity, RHC 80267, on basal prolactin release and that stimulated by TRH and elevated potassium concentrations. RHC 80267 produced a concentration-dependent reduction in basal prolactin release and abolished its increase produced by TRH and potassium. These results are consistent with the hypothesis that the production of arachidonate from lipids via the diacylglycerol lipase pathway is an important event in the governance of prolactin release.  相似文献   

13.
Abstract: Rat brain slices were incubated with a high concentration of K+, thyrotrophin-releasing hormone (TRH), or one of two biologically stable TRH analogues (CG 3509 or RX 77368). Basal release of endogenous dopamine, measured by electrochemical detection, was increased by K+ (30 m M ) from slices of hypothalamus, septum, nucleus accumbens, and striatum. CG 3509 (105–10−3 M ) increased the release of dopamine from slices of nucleus accumbens, septum, and hypothalamus in a dose-dependent fashion, whereas RX 77368 (10−4 M ) increased the release of dopamine from the septum only. Neither analogue increased the release of striatal dopamine. The results provide further evidence for specific regional interactions between TRH and dopamine in rat brain.  相似文献   

14.
Intraventricular injection of 5-hydroxytryptamine (5-HT) into female rats at 11:00 h on the day of proestrus inhibited the preovulatory surge of luteinizing hormone (LH) and ovulation. A similar response was observed after the activation of the serotonergic system by stimulation of the median raphe nucleus. A diurnal rhythm of these responses was observed. In rats acclimated to a 14-h:10-h light:dark cycle the potency of 5-HT to inhibit the LH surge and ovulation was 2.06 and 2.3 times greater, respectively, when injected at 11:00 h than at 13:00 h. Also stimulation of the median raphe nucleus at 11:00 h was significantly more effective in inhibiting these parameters than stimulation at 13:00 h. Similarly, the ability of gamma-amino-butyric acid (GABA) to inhibit the preovulatory LH surge and ovulation was greater in rats injected in the morning than in the afternoon. The results of this study indicate that during proestrus the sensitivity of 5-HT and GABA to induce inhibition of preovulatory LH release and ovulation shows daily variations with maximal effect before the critical period.  相似文献   

15.
Glutamic acid decarboxylase activity in the main and accessory olfactory bulbs throughout the sexual cycle of the rat was studied. The effect of male pheromonal secretion on enzyme activity during proestrus and estrus day was also tested. The enzyme activity showed circadian rhythm during the estrous cycle. This rhythm was disrupted during diestrus-2 afternoon in the main bulb and came back during proestrus afternoon. A different pattern of enzyme activity was present in the accessory bulb, since the circadian rhythm was altered during proestrus morning, returning during estrus afternoon. Male odor exposition did not change enzyme profile activity during proestrus day and during estrus morning in the main bulb. In contrast, in the accessory bulb the olfactory stimuli induced opposite changes to that found in rats from the vivarium during proestrus. Comparison of enzyme activity in olfactory stimuli-deprived rats with that of pheromone-stimulated rats during proestrus showed that male odor exposure specifically affects accessory bulb enzyme activity. It is concluded that the changes of the olfactory bulb GABAergic system during proestrus and estrus day, or that evoked by odor stimuli, demonstrate the discriminative response of this system between the accessory olfactory bulb and the main olfactory bulb.  相似文献   

16.
The aim of this study was to examine the effect of the interaction of circamensal and diurnal rhythms in temperature upon the production of maximal voluntary muscle force. Ten eumenorrheic females (mean age: 24 +/- 3 yr mean body mass: 58.4 +/- 6.9 kg) participated in the experiment at both 06:00 and 18:00h at the mid-point of both the follicular and luteal phases of the menstrual cycle. Subjects performed tasks of maximal isometric lifting strength (MILS) at knee height, and endurance time (t) for lifting 45% of MILS, upon an isometric lift dynamometer. Body temperature was elevated at 18:00h and in the luteal phase by 0.52 +/- 0.4 and 0.26 +/- 0.35 degrees C, respectively. The amplitude of the diurnal variation in temperature was blunted by 0.3 degrees C within the luteal phase. Maximal isometric performance was elevated by 8% at 18:00h in the luteal phase of the cycle (p < 0.05 interaction for MILS) but unaffected by time of day in the follicular phase. Endurance time was unaffected by time or phase (p > 0.05). It should be noted that the classic diurnal rhythm in maximal voluntary isometric muscle force may not be evident in all phases of the female menstrual cycle.  相似文献   

17.
In spite of the clear evidences for the blockade of dopaminergic D2 receptors as the mechanism of action for haloperidol-induced catalepsy, the contribution of pharmacokinetic and pharmacodynamic aspects on the diurnal modulation of haloperidol-induced catalepsy is controversial. We studied the diurnal variations of striatal dopamine receptors and its relation with catalepsy diurnal variations. The [ 3 H]-spiperone binding to dopamine receptors had a clear rhythm with a peak at 00:00 to 03:00 h, and a trough at 12:00 to 18:00 h. Haloperidol-produced catalepsy measured with the four-cork test, also showed a clear rhythm, with a peak at 00:00 h and trough at 9:00 h. The dose-response curves at peak and trough of catalepsy had the same ED 50 (0.12 mg), with time-related changes in the maximal effect. Similar diurnal variations between catalepsy and dopamine receptor binding, indicate a relevant role of temporal pharmacodynamics of haloperidol on the modulation of its behavioral effects.  相似文献   

18.
In spite of the clear evidences for the blockade of dopaminergic D2 receptors as the mechanism of action for haloperidol-induced catalepsy, the contribution of pharmacokinetic and pharmacodynamic aspects on the diurnal modulation of haloperidol-induced catalepsy is controversial. We studied the diurnal variations of striatal dopamine receptors and its relation with catalepsy diurnal variations. The [3 H]-spiperone binding to dopamine receptors had a clear rhythm with a peak at 00:00 to 03:00 h, and a trough at 12:00 to 18:00 h. Haloperidol-produced catalepsy measured with the four-cork test, also showed a clear rhythm, with a peak at 00:00 h and trough at 9:00 h. The dose-response curves at peak and trough of catalepsy had the same ED 50 (0.12 mg), with time-related changes in the maximal effect. Similar diurnal variations between catalepsy and dopamine receptor binding, indicate a relevant role of temporal pharmacodynamics of haloperidol on the modulation of its behavioral effects.  相似文献   

19.
Rabbit pups ingest food, in this case milk, once a day with circadian periodicity and are a natural model of food anticipatory activity. During nursing, several sensory systems receive information about properties of the food, one of them being the olfactory system, which has received little attention in relation to synchronization by food. In addition, the olfactory bulb has a circadian pacemaker that exhibits rhythms independently of the suprachiasmatic nucleus, but the biological functions of these rhythms are largely unknown. In the present contribution, we hypothesized that circadian suckling of milk synchronizes rhythms in the olfactory bulb. To this aim we explored by immunohistochemistry, rhythms of FOS and PER1 proteins, as indicators of activation and reporter of oscillations, respectively, through a complete 24-h cycle in periglomerular, mitral and granular cell layers of both the main and the accessory olfactory bulb. Subjects were 7-day-old rabbit pups scheduled to nurse during the night (02∶00 h) or day (10∶00 h), and also fasted subjects, to explore the possible persistence of oscillations. In the three layers of the main olfactory bulb, FOS was high at time of nursing, then further increased 1.5 h afterward, and then decreased to increase again in advance of the next nursing bout. This pattern persisted, without the postprandial increase, in fasted subjects with a shift in subjects nursed at 02∶00. PER1 was increased 2–8 h after nursing and this increase persisted in most cell layers, with a shift, in fasted subjects. In the accessory olfactory bulb we only observed a consistent pattern of FOS expression in the mitral cell layer of nursed subjects, similar to that of the main olfactory bulb. We conclude that the main olfactory bulb is synchronized during milk ingestion, but during fasting its oscillations perhaps are modulated by the suprachiasmatic nucleus, as proposed for rodents.  相似文献   

20.
This study was designed to characterize, in anterior, mediobasal, and posterior hypothalamic and median eminence, the 24h changes of gamma aminobutyric acid (GABA) and taurine (TAU) contents in adult male rats and to analyze whether chronic hyperprolactinemia may affect these patterns. Rats were turned hyperprolactinemic by a pituitary graft. Plasma prolactin (PRL) levels increased after pituitary grafting at all time points examined. A disruption of the circadian rhythm was observed in pituitary-grafted rats, whereas GABA and TAU content followed daily rhythms in all areas studied in controls. In the mediobasal hypothalamus, two peaks for each amino acid were found at midnight and midday. In the anterior hypothalamus, GABA and TAU showed only one peak of concentration at midnight. In the posterior hypothalamus, the values of both GABA and TAU were higher during the light as compared to the dark phase of the photoperiod. In the median eminence GABA content peaked at 20:00h, the time when TAU exhibited the lowest values. Hyperprolactinemia abolished the 24h changes of GABA in the mediobasal hypothalamus and reduced its content as compared to controls. Hyperprolactinemia advanced the diurnal peak of TAU to 12:00h in the mediobasal hypothalamus and did not modify the 24:00h peak. In the anterior hypothalamus, hyperprolactinemia increased GABA and TAU contents during the light phase while it decreased them during the dark phase of the photoperiod. In the posterior hypothalamus hyperprolactinemia did not modify GABA or TAU patterns as compared to controls. In the median eminence hyperprolactinemia increased the 20:00h peak of GABA and shift advanced the decrease in TAU content at 20:00h and its maximum at 24:00h as compared to controls. These data show that GABA and TAU content exhibit specific daily patterns in each hypothalamic region studied. PRL differentially affects the daily pattern of these amino acids in each hypothalamic region analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号