首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang YQ  Melzer R  Theissen G 《Annals of botany》2011,107(9):1445-1452

Background and Aims

Homeotic transitions are usually dismissed by population geneticists as credible modes of evolution due to their assumed negative impact on fitness. However, several lines of evidence suggest that such changes in organ identity have played an important role during the origin and subsequent evolution of the angiosperm flower. Better understanding of the performance of wild populations of floral homeotic varieties should help to clarify the evolutionary potential of homeotic mutants. Wild populations of plants with changes in floral symmetry, or with reproductive organs replacing perianth organs or sepals replacing petals have already been documented. However, although double-flowered varieties are quite popular as ornamental and garden plants, they are rarely found in the wild and, if they are, usually occur only as rare mutant individuals, probably because of their low fitness relative to the wild-type. We therefore investigated a double-flowered variety of lesser periwinkle, Vinca minor flore pleno (fl. pl.), that is reported to have existed in the wild for at least 160 years. To assess the merits of this plant as a new model system for investigations on the evolutionary potential of double-flowered varieties we explored the morphological details and distribution of the mutant phenotype.

Methods

The floral morphology of the double-flowered variety and of a nearby population of wild-type plants was investigated by means of visual inspection and light microscopy of flowers, the latter involving dissected or sectioned floral organs.

Key Results

The double-flowered variety was found in several patches covering dozens of square metres in a forest within the city limits of Jena (Germany). It appears to produce fewer flowers than the wild-type, and its flowers are purple rather than blue. Most sepals in the first floral whorl resemble those in the wild-type, although occasionally one sepal is broadened and twisted. The structure of second-whorl petals is very similar to that of the wild-type, but their number per flower is more variable. The double-flowered character is due to partial or complete transformation of stamens in the third whorl into petaloid organs. Occasionally, ‘flowers within flowers’ also develop on elongated pedicels in the double-flowered variety.

Conclusions

The flowers of V. minor fl. pl. show meristic as well as homeotic changes, and occasionally other developmental abnormalities such as mis-shaped sepals or loss of floral determinacy. V. minor fl. pl. thus adds to a growing list of natural floral homeotic varieties that have established persistent populations in the wild. Our case study documents that even mutant varieties that have reproductive organs partially transformed into perianth organs can persist in the wild for centuries. This finding makes it at least conceivable that even double-flowered varieties have the potential to establish new evolutionary lineages, and hence may contribute to macroevolutionary transitions and cladogenesis.  相似文献   

2.

Background

The genus Aquilegia is an emerging model system in plant evolutionary biology predominantly because of its wide variation in floral traits and associated floral ecology. The anatomy of the Aquilegia flower is also very distinct. There are two whorls of petaloid organs, the outer whorl of sepals and the second whorl of petals that form nectar spurs, as well as a recently evolved fifth whorl of staminodia inserted between stamens and carpels.

Methodology/Principal Findings

We designed an oligonucleotide microarray based on EST sequences from a mixed tissue, normalized cDNA library of an A. formosa x A. pubescens F2 population representing 17,246 unigenes. We then used this array to analyze floral gene expression in late pre-anthesis stage floral organs from a natural A. formosa population. In particular, we tested for gene expression patterns specific to each floral whorl and to combinations of whorls that correspond to traditional and modified ABC model groupings. Similar analyses were performed on gene expression data of Arabidopsis thaliana whorls previously obtained using the Ath1 gene chips (data available through The Arabidopsis Information Resource).

Conclusions/Significance

Our comparative gene expression analyses suggest that 1) petaloid sepals and petals of A. formosa share gene expression patterns more than either have organ-specific patterns, 2) petals of A. formosa and A. thaliana may be independently derived, 3) staminodia express B and C genes similar to stamens but the staminodium genetic program has also converged on aspects of the carpel program and 4) staminodia have unique up-regulation of regulatory genes and genes that have been implicated with defense against microbial infection and herbivory. Our study also highlights the value of comparative gene expression profiling and the Aquilegia microarray in particular for the study of floral evolution and ecology.  相似文献   

3.
4.
5.
Hu J  Zhang J  Shan H  Chen Z 《Annals of botany》2012,110(1):57-69

Background and Aims

The perianths of the Lardizabalaceae are diverse. The second-whorl floral organs of Sinofranchetia chinensis (Lardizabalaceae) are nectar leaves. The aim of this study was to explore the nature of this type of floral organ, and to determine its relationship to nectar leaves in other Ranunculales species, and to other floral organs in Sinofranchetia chinensis.

Methods

Approaches of evolutionary developmental biology were used, including 3′ RACE (rapid amplification of cDNA ends) for isolating floral MADS-box genes, phylogenetic analysis for reconstructing gene evolutionary history, in situ hybridization and tissue-specific RT-PCR for identifying gene expression patterns and SEM (scanning electron microscopy) for observing the epidermal cell morphology of floral organs.

Key Results

Fourteen new floral MADS-box genes were isolated from Sinofranchetia chinensis and from two other species of Lardizabalaceae, Holboellia grandiflora and Decaisnea insignis. The phylogenetic analysis of AP3-like genes in Ranunculales showed that three AP3 paralogues from Sinofranchetia chinensis belong to the AP3-I, -II and -III lineages. In situ hybridization results showed that SIchAP3-3 is significantly expressed only in nectar leaves at the late stages of floral development, and SIchAG, a C-class MADS-box gene, is expressed not only in stamens and carpels, but also in nectar leaves. SEM observation revealed that the adaxial surface of nectar leaves is covered with conical epidermal cells, a hallmark of petaloidy.

Conclusions

The gene expression data imply that the nectar leaves in S. chinensis might share a similar genetic regulatory code with other nectar leaves in Ranunculales species. Based on gene expression and morphological evidence, it is considered that the nectar leaves in S. chinensis could be referred to as petals. Furthermore, the study supports the hypothesis that the nectar leaves in some Ranunculales species might be derived from stamens.  相似文献   

6.

Background and Aims

Synorganisation of floral organs, an important means in angiosperm flower evolution, is mostly realized by congenital or post-genital organ fusion. Intimate synorganisation of many floral organs without fusion, as present in Geranium robertianum, is poorly known and needs to be studied. Obdiplostemony, the seemingly reversed position of two stamen whorls, widely distributed in core eudicots, has been the subject of much attention, but there is confusion in the literature. Obdiplostemony occurs in Geranium and whether and how it is involved in this synorganisation is explored here.

Methods

Floral development and architecture were studied with light microscopy based on microtome section series and with scanning electron microscopy.

Key Results

Intimate synorganisation of floral organs is effected by the formation of five separate nectar canals for the proboscis of pollinators. Each nectar canal is formed by six adjacent organs from four organ whorls. In addition, the sepals are hooked together by the formation of longitudinal ribs and grooves, and provide a firm scaffold for the canals. Obdiplostemony provides a guide rail within each canal formed by the flanks of the antepetalous stamen filaments.

Conclusions

Intimate synorganisation in flowers can be realized without any fusion, and obdiplostemony may play a role in this synorganisation.  相似文献   

7.
A mathematical model simulating spatial pattern formation (positioning) of floral organs is proposed. Computer experiment with this model demonstrated the following sequence of spatial pattern formation in a typical cruciferous flower: medial sepals, carpels, lateral sepals, long stamens, petals, and short stamens. The positioning was acropetal for the perianth organs and basipetal for the stamens and carpels. Organ type specification and positioning proceed non-simultaneously in different floral parts and organ type specification goes ahead of organ spatial pattern formation. Computer simulation of flower development in several mutants demonstrated that the AG and AP2 genes determine both organ type specification and formation of the zones for future organ development. The function of the AG gene is to determine the basipetal patterning zones for the development of the reproductive organs, while the AP2 gene maintains proliferative activity of the meristem establishing the acropetal patterning zone for the development of the perianth organs.  相似文献   

8.

Background and Aims

Flower morphology and inflorescence architecture affect pollinator foraging behaviour and thereby influence the process of pollination and the reproductive success of plants. This study explored possible ecological functions of the lever-like stamens and the floral design in Salvia cyclostegia.

Methods

Flower construction was experimentally manipulated by removing either the lower lever arms or the upper fertile thecae of the two stamens from a flower. The two types of manipulated individuals were intermixed with the control ones and randomly distributed in the population.

Key Results

Removing the sterile lower lever arms significantly reduced handling time per flower of the main pollinator, Bombus personatus. Interestingly, this manipulation did not increase the number of flowers probed per plant visit, but instead reduced it, i.e. shortened the visit sequence of the bumble-bees. Both loss of staminal lever function by removing lower lever arms and exclusion of self pollen by removing upper fertile thecae significantly reduced seed set per flower and seed set per plant. Both the manipulations interacted significantly with inflorescence size for the effect on female reproductive output.

Conclusions

Though the intact flowers demand a long handling time for pollinators, the reversible staminal lever is of advantage by promoting dispersal of pollen and thus the male function. The particular floral design in S. cyclostegia contributes to the floral constancy of B. personatus bumble-bees, with the lower lever arms acting as an optical cue for foraging cognition.  相似文献   

9.

Background and Aims

The family of MADS box genes is involved in a number of processes besides controlling floral development. In addition to supplying homeotic functions defined by the ABC model, they influence flowering time and transformation of vegetative meristem into inflorescence meristem, and have functions in roots and leaves. Three Gerbera hybrida At-SOC1-like genes (Gh-SOC1–Gh-SOC3) were identified among gerbera expressed sequence tags.

Methods

Evolutionary relationships between SOC1-like genes from gerbera and other plants were studied by phylogenetic analysis. The function of the gerbera gene Gh-SOC1 in gerbera floral development was studied using expression analysis, protein–protein interaction assays and reverse genetics. Transgenic gerbera lines over-expressing or downregulated for Gh-SOC1 were obtained using Agrobacterium transformation and investigated for their floral phenotype.

Key Results

Phylogenetic analysis revealed that the closest paralogues of At-SOC1 are Gh-SOC2 and Gh-SOC3. Gh-SOC1 is a more distantly related paralogue, grouping together with a number of other At-SOC1 paralogues from arabidopsis and other plant species. Gh-SOC1 is inflorescence abundant and no expression was seen in vegetative parts of the plant. Ectopic expression of Gh-SOC1 did not promote flowering, but disturbed the development of floral organs. The epidermal cells of ray flower petals appeared shorter and their shape was altered. The colour of ray flower petals differed from that of the wild-type petals by being darker red on the adaxial side and greenish on the abaxial surface. Several protein–protein interactions with other gerbera MADS domain proteins were identified.

Conclusions

The At-SOC1 paralogue in gerbera shows a floral abundant expression pattern. A late petal expression might indicate a role in the final stages of flower development. Over-expression of Gh-SOC1 led to partial loss of floral identity, but did not affect flowering time. Lines where Gh-SOC1 was downregulated did not show a phenotype. Several gerbera MADS domain proteins interacted with Gh-SOC1.  相似文献   

10.

Background and Aims

Icacinaceae sensu stricto consist of a group of early branching lineages of lamiids whose relationships are not yet resolved and whose detailed floral morphology is poorly known. The most bizarre flowers occur in Emmotum: the gynoecium has three locules on one side and none on the other. It has been interpreted as consisting of three fertile and two sterile carpels or of one fertile carpel with two longitudinal septa and two sterile carpels. This study focused primarily on the outer and inner morphology of the gynoecium to resolve its disputed structure, and ovule structure was also studied. In addition, the perianth and androecium were investigated.

Methods

Flowers and floral buds of two Emmotum species, E. harleyi and E. nitens, were collected and fixed in the field, and then studied by scanning electron microscopy. Microtome section series were used to reconstruct their morphology.

Key Results

The gynoecium in Emmotum was confirmed as pentamerous, consisting of three fertile and two sterile carpels. Each of the three locules behaves as the single locule in other Icacinaceae, with the placenta of the two ovules being identical, which shows that three fertile carpels are present. In addition, it was found that the ovules are bitegmic, which is almost unique in lamiids, and that the stamens have monosporangiate thecae, which also occurs in the closely related family Oncothecaceae, but is not known from any other Icacinaceae sensu lato so far.

Conclusions

The flowers of Emmotum have unique characters at different evolutionary levels: the pseudotrimerous gynoecium at angiosperm level, the bitegmic ovules at lamiid level and the monosporangiate thecae at family or family group level. However, in general, the floral morphology of Emmotum fits well in Icacinaceae. More comparative research on flower structure is necessary in Icacinaceae and other early branching lineages of lamiids to better understand the initial evolution of this large lineage of asterids.  相似文献   

11.

Background and Aims

Ericales are a major group of extant asterid angiosperms that are well represented in the Late Cretaceous fossil record, mainly by flowers, fruits and seeds. Exceptionally well preserved fossil flowers, here described as Glandulocalyx upatoiensis gen. & sp. nov., from the Santonian of Georgia, USA, yield new detailed evidence of floral structure in one of these early members of Ericales and provide a secure basis for comparison with extant taxa.

Methods

The floral structure of several fossil specimens was studied by scanning electron microscopy (SEM), light microscopy of microtome thin sections and synchrotron-radiation X-ray tomographic microscopy (SRXTM). For direct comparisons with flowers of extant Ericales, selected floral features of Actinidiaceae and Clethraceae were studied with SEM.

Key Results

Flowers of G. upatoiensis have five sepals with quincuncial aestivation, five free petals with quincuncial aestivation, 20–28 stamens arranged in a single series, extrorse anther orientation in the bud, ventral anther attachment and a tricarpellate, syncarpous ovary with three free styles and numerous small ovules on axile, protruding-diffuse and pendant placentae. The calyx is characterized by a conspicuous indumentum of large, densely arranged, multicellular and possibly glandular trichomes.

Conclusions

Comparison with extant taxa provides clear evidence for a relationship with core Ericales comprised of the extant families Actinidiaceae, Roridulaceae, Sarraceniaceae, Clethraceae, Cyrillaceae and Ericaceae. Within this group, the most marked similarities are with extant Actinidiaceae and, to a lesser degree, with Clethraceae. More detailed analyses of the relationships of Glandulocalyx and other Ericales from the Late Cretaceous will require an improved understanding of the morphological features that diagnose particular extant groups defined on the basis of molecular data.  相似文献   

12.

Background and Aims

Bisexual flowers of Carica papaya range from highly regular flowers to morphs with various fusions of stamens to the ovary. Arabidopsis thaliana sup1 mutants have carpels replaced by chimeric carpel–stamen structures. Comparative analysis of stamen to carpel conversions in the two different plant systems was used to understand the stage and origin of carpeloidy when derived from stamen tissues, and consequently to understand how carpeloidy contributes to innovations in flower evolution.

Methods

Floral development of bisexual flowers of Carica was studied by scanning electron microscopy and was compared with teratological sup mutants of A. thaliana.

Key Results

In Carica development of bisexual flowers was similar to wild (unisexual) forms up to locule initiation. Feminization ranges from fusion of stamen tissue to the gynoecium to complete carpeloidy of antepetalous stamens. In A. thaliana, partial stamen feminization occurs exclusively at the flower apex, with normal stamens forming at the periphery. Such transformations take place relatively late in development, indicating strong developmental plasticity of most stamen tissues. These results are compared with evo-devo theories on flower bisexuality, as derived from unisexual ancestors. The Arabidopsis data highlight possible early evolutionary events in the acquisition of bisexuality by a patchy transformation of stamen parts into female parts linked to a flower axis-position effect. The Carica results highlight tissue-fusion mechanisms in angiosperms leading to carpeloidy once bisexual flowers have evolved.

Conclusions

We show two different developmental routes leading to stamen to carpel conversions by late re-specification. The process may be a fundamental aspect of flower development that is hidden in most instances by developmental homeostasis.  相似文献   

13.

Background and Aims

In the sedge subfamily Mapanioideae there are considerable discrepancies between the standard trimerous monocot floral architecture expected and the complex floral and inflorescence morphologies seen. Decades of debate about whether the basic reproductive units are single flowers or pseudanthia have not resolved the question. This paper evaluates current knowledge about Mapaniid reproductive structures and presents an ontogenetic study of the Mapaniid genus Lepironia with the first floral protein expression maps for the family, localizing the products of the APETALA1/FRUITFULL-like (AP1/FUL) MADS-box genes with the aim of shedding light on this conundrum.

Methods

A range of reproductive developmental stages, from spikelet primordia through to infructescence material, were processed for anatomical and immunohistochemical analyses.

Key Results

The basic reproductive unit is subtended by a bract and possesses two prophyll-like structures, the first organs to be initiated on the primordium, which grow rapidly, enclosing two whorls of initiating leaf-like structures with intervening stamens and a central gynoecium, formed from an annular primordium. The subtending bract and prophyll-like structures possess very different morphologies from that of the internal leaf-like structures and do not show AP1/FUL-like protein localization, which is otherwise strongly localized in the internal leaf-like structures, stamens and gynoecia.

Conclusions

Results support the synanthial hypothesis as the evolutionary origin of the reproductive unit. Thus, the basic reproductive unit in Lepironia is an extremely condensed pseudanthium, of staminate flowers surrounding a central terminal pistillate female flower. Early in development the reproductive unit becomes enclosed by a split-prophyll, with the whole structure subtended by a bract.  相似文献   

14.
S A Kempin  M A Mandel    M F Yanofsky 《Plant physiology》1993,103(4):1041-1046
Mutations in the AGAMOUS (AG) gene of Arabidopsis thaliana result in the conversion of reproductive organs, stamens and carpels, into perianth organs, sepals and petals. We have isolated and characterized the putative AG gene from Nicotiana tabacum, NAG1, whose deduced protein product shares 73% identical amino acid residues with the Arabidopsis AG gene product. RNA tissue in situ hybridizations show that NAG1 RNA accumulates early in tobacco flower development in the region of the floral meristem that will later give rise to stamens and carpels. Ectopic expression of NAG1 in transgenic tobacco plants results in a conversion of sepals and petals into carpels and stamens, respectively, indicating that NAG1 is sufficient to convert perianth into reproductive floral organs.  相似文献   

15.
16.
17.
Herbaceous peony (Paeonia lactiflora Pall.) is an important ornamental plant that has different flower types. However, the molecular mechanism underlying its floral organ development has not been fully investigated. This study isolated six floral organ development-related genes in P. lactiflora, namely, APETALA1 (PlAP1), APETALA2 (PlAP2), APETALA3-1 (PlAP3-1), APETALA3-2 (PlAP3-2), PISTILLATA (PlPI) and SEPALLATA3 (PlSEP3). The expression patterns of these genes were also investigated in the three cultivars ‘Hangshao’, ‘Xiangyangqihua’ and ‘Dafugui’. Furthermore, gene expression during floral development was also analyzed in different organs. The results showed that PlAP1 was mainly expressed in the sepals, and PlAP2 was mainly expressed in the carpels and sepals. PlAP3-2 and PlPI had the highest expression levels in the stamens, followed by the petals. The expression levels of PlAP3-1 (from highest to lowest) were in the following order: petals, stamens, carpels and sepals. PlSEP3 was mainly expressed in sepals and carpels. With the depth of stamen petaloidy, the expression levels of PlAP1, PlAP2 and PlSEP3 increased, whereas those of PlAP3-1, PlAP3-2 and PlPI decreased, which showed that PlAP1 mainly determined sepals and petals of P. lactiflora. The PlAP2 not only determined the sepals and petals, and it participated in carpel formation. PlAP3-1, PlAP3-2 and PlPI mainly determined stamens and petals. PlSEP3 determined the identities of sepals and petals. This study would help determine the molecular mechanism underlying floral organ development in P. lactiflora.  相似文献   

18.

Background and Aims

This study is an investigation into the floral development and anatomy of two genera of the small family Salvadoraceae, which belongs to the Brassicales in a clade with Batis and Koeberlinia. Salvadoraceae remains little known, despite its wide distribution in arid areas of the globe. Floral morphological data are scarce, and information on floral anatomy is limited to a single study, although morphological and anatomical characters are now used increasingly as a counterpart of molecular data. There remain a number of controversial morphological questions, such as the fusion of the petals, the number of carpels and the nature of the nectaries.

Methods

Floral anatomy and ontogeny were studied in two species of Salvadora and one species of Dobera. Only for S. persica could a full floral developmental sequence be done.

Key Results

The floral development demonstrates that the ovary of Salvadoraceae is basically bicarpellate and pseudomonomerous with a single locule and parietal placenta. The ovary of Dobera resembles Azima tetracantha in the presence of a false apical septum. Evidence for a staminodial nature of the nectaries is not decisive. In Salvadora petals and stamens are lifted by a short hypanthium.

Conclusions

Salvadoraceae share several morphological and developmental synapomorphies with Batis (Bataceae) and possibly Koeberlinia (Koeberliniaceae), supporting their close relationship as indicated by molecular phylogeny.Key words: Batis, Brassicales, Dobera, Emblingia, floral development, floral anatomy, Koeberlinia, phylogeny, Salvadora, Salvadoraceae, SEM  相似文献   

19.

Background and Aims

Studies of the effects of pollination on floral scent and bee visitation remain rare, particularly in agricultural crops. To fill this gap, the hypothesis that bee visitation to flowers decreases after pollination through reduced floral volatile emissions in highbush blueberries, Vaccinium corymbosum, was tested. Other sources of variation in floral emissions and the role of floral volatiles in bee attraction were also examined.

Methods

Pollinator visitation to blueberry flowers was manipulated by bagging all flowers within a bush (pollinator excluded) or leaving them unbagged (open pollinated), and then the effect on floral volatile emissions and future bee visitation were measured. Floral volatiles were also measured from different blueberry cultivars, times of the day and flower parts, and a study was conducted to test the attraction of bees to floral volatiles.

Key Results

Open-pollinated blueberry flowers had 32 % lower volatile emissions than pollinator-excluded flowers. In particular, cinnamyl alcohol, a major component of the floral blend that is emitted exclusively from petals, was emitted in lower quantities from open-pollinated flowers. Although, no differences in cinnamyl alcohol emissions were detected among three blueberry cultivars or at different times of day, some components of the blueberry floral blend were emitted in higher amounts from certain cultivars and at mid-day. Field observations showed that more bees visited bushes with pollinator-excluded flowers. Also, more honey bees were caught in traps baited with a synthetic blueberry floral blend than in unbaited traps.

Conclusions

Greater volatile emissions may help guide bees to unpollinated flowers, and thus increase plant fitness and bee energetic return when foraging in blueberries. Furthermore, the variation in volatile emissions from blueberry flowers depending on pollination status, plant cultivar and time of day suggests an adaptive role of floral signals in increasing pollination of flowers.  相似文献   

20.

Background and Aims

Heterostyly is a floral polymorphism characterized by the reciprocal position of stamens and stigmas in different flower morphs in a population. This reciprocal herkogamy is usually associated with an incompatibility system that prevents selfing and intra-morph fertilization, termed a heteromorphic incompatibility system. In different evolutionary models explaining heterostyly, it has been alternately argued that heteromorphic incompatibility either preceded or followed the evolution of reciprocal herkogamy. In some models, reciprocal herkogamy and incompatibility have been hypothesized to be linked together during the evolution of the heterostylous system.

Methods

We examine the incompatibility systems in species with different stylar polymorphisms from the genera Lithodora and Glandora (Boraginaceae). We then test whether evolution towards reciprocal herkogamy is associated with the acquisition of incompatibility. To this end, a phylogeny of these genera and related species is reconstructed and the morphological and reproductive changes that occurred during the course of evolution are assessed.

Key Results

Both self-compatibility and self-incompatibility are found within the studied genera, along with different degrees of intra-morph compatibility. We report for the first time extensive variability among members of the genus Glandora and related species in terms of the presence or absence of intraspecies polymorphism and heteromorphic incompatibility. Overall, our results do not support a tight link between floral polymorphism and incompatibility systems.

Conclusions

The independent evolution of stylar polymorphism and incompatibility appears to have occurred in this group of plants. This refutes the canonical view that there is strong linkage between these reproductive traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号