首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Wnt signals have been shown to be involved in multiple steps of vertebrate neural patterning, yet the relative contributions of individual Wnts to the process of brain regionalization is poorly understood. Wnt1 has been shown in the mouse to be required for the formation of the midbrain and the anterior hindbrain, but this function of wnt1 has not been explored in other model systems. Further, wnt1 is part of a Wnt cluster conserved in all vertebrates comprising wnt1 and wnt10b, yet the function of wnt10b during embryogenesis has not been explored. Here, we report that in zebrafish wnt10b is expressed in a pattern overlapping extensively with that of wnt1. We have generated a deficiency allele for these closely linked loci and performed morpholino antisense oligo knockdown to show that wnt1 and wnt10b provide partially redundant functions in the formation of the midbrain-hindbrain boundary (MHB). When both loci are deleted, the expression of pax2.1, en2, and her5 is lost in the ventral portion of the MHB beginning at the 8-somite stage. However, wnt1 and wnt10b are not required for the maintenance of fgf8, en3, wnt8b, or wnt3a expression. Embryos homozygous for the wnt1-wnt10b deficiency display a mild MHB phenotype, but are sensitized to reductions in either Pax2.1 or Fgf8; that is, in combination with mutant alleles of either of these loci, the morphological MHB is lost. Thus, wnt1 and wnt10b are required to maintain threshold levels of Pax2.1 and Fgf8 at the MHB.  相似文献   

3.
Ahn D  Ho RK 《Developmental biology》2008,322(1):220-233
During development of the limbs, Hox genes belonging to the paralogous groups 9-13 are expressed in three distinct phases, which play key roles in the segmental patterning of limb skeletons. In teleost fishes, which have a very different organization in their fin skeletons, it is not clear whether a similar patterning mechanism is at work. To determine whether Hox genes are also expressed in several distinct phases during teleost paired fin development, we re-analyzed the expression patterns of hox9-13 genes during development of pectoral fins in zebrafish. We found that, similar to tetrapod Hox genes, expression of hoxa/d genes in zebrafish pectoral fins occurs in three distinct phases, in which the most distal/third phase is correlated with the development of the most distal structure of the fin, the fin blade. Like in tetrapods, hox gene expression in zebrafish pectoral fins during the distal/third phase is dependent upon sonic hedgehog signaling (hoxa and hoxd genes) and the presence of a long-range enhancer (hoxa genes), which indicates that the regulatory mechanisms underlying tri-phasic expression of Hox genes have remained relatively unchanged during evolution. Our results suggest that, although simpler in organization, teleost fins do have a distal structure that might be considered comparable to the autopod region of limbs.  相似文献   

4.
Retinoic acid (RA) plays a critical role in neural patterning and organogenesis in the vertebrate embryo. Here we characterize a mutant of the zebrafish named giraffe (gir) in which the gene for the RA-degrading enzyme Cyp26a1 is mutated. The gir mutant displayed patterning defects in multiple organs including the common cardinal vein, pectoral fin, tail, hindbrain, and spinal cord. Analyses of molecular markers suggested that the lateral plate mesoderm is posteriorized in the gir mutant, which is likely to cause the defects of the common cardinal vein and pectoral fin. The cyp26a1 expression in the rostral spinal cord was strongly upregulated in the gir mutant, suggesting a strong feedback control of its expression by RA signaling. We also found that the rostral spinal cord territory was expanded at the expense of the hindbrain territory in the gir mutant. Such a phenotype is the opposite of that of the mutant for Raldh2, an enzyme that synthesizes RA. We propose a model in which Cyp26a1 attenuates RA signaling in the prospective rostral spinal cord to limit the expression of hox genes and to determine the hindbrain-spinal cord boundary.  相似文献   

5.
6.
7.
8.
The establishment of anteroposterior (AP) polarity in the early mouse epiblast is crucial for the initiation of gastrulation and the subsequent formation of the embryonic (head to tail) axis. The localization of anterior and posterior determining genes to the appropriate region of the embryo is a dynamic process that underlies this early polarity. Several studies indicate that morphological and molecular markers which define the early AP axis are first aligned along the short axis of the elliptical egg cylinder. Subsequently, just prior to the time of primitive streak formation, a conformational change in the embryo realigns these markers with the long axis. We demonstrate that embryos lacking the signaling factor Wnt3 exhibit defects in this axial realignment. In addition, chimeric analyses and conditional removal of Wnt3 activity reveal that Wnt3 expression in the epiblast is required for induction of the primitive streak and mesoderm whereas activity in the posterior visceral endoderm is dispensable.  相似文献   

9.
10.
Defects of the ventral body wall are prevalent birth anomalies marked by deficiencies in body wall closure, hypoplasia of the abdominal musculature and multiple malformations across a gamut of organs. However, the mechanisms underlying ventral body wall defects remain elusive. Here, we investigated the role of Wnt signaling in ventral body wall development by inactivating Wls or β-catenin in murine abdominal ectoderm. The loss of Wls in the ventral epithelium, which blocks the secretion of Wnt proteins, resulted in dysgenesis of ventral musculature and genito-urinary tract during embryonic development. Molecular analyses revealed that the dermis and myogenic differentiation in the underlying mesenchymal progenitor cells was perturbed by the loss of ectodermal Wls. The activity of the Wnt-Pitx2 axis was impaired in the ventral mesenchyme of the mutant body wall, which partially accounted for the defects in ventral musculature formation. In contrast, epithelial depletion of β-catenin or Wnt5a did not resemble the body wall defects in the ectodermal Wls mutant. These findings indicate that ectodermal Wnt signaling instructs the underlying mesodermal specification and abdominal musculature formation during ventral body wall development, adding evidence to the theory that ectoderm-mesenchyme signaling is a potential unifying mechanism for the origin of ventral body wall defects.  相似文献   

11.
The cricket Gryllus bimaculatus is a typical hemimetabolous intermediate germ insect, in which the processes of segmentation and appendage formation differ from those in Drosophila, a holometabolous long germ insect. In order to compare their developmental mechanisms, we have focused on Gryllus orthologs of the Drosophila developmental regulatory genes and studied their functions. Here, we report a functional analysis of the Gryllus ortholog of extradenticle (Gbexd) using embryonic and parental RNA interference (RNAi) techniques. We found the following: (1) RNAi suppression of Gb′exd results in the deletion or fusion of body segments. Especially the head was often very severely affected. This gap-like phenotype may be related to reduced expression of the gap genes hunchback and Krüppel in early RNAi germbands. (2) In the appendages, several segments (podomeres) were fused. (3) Head appendages including the antenna were transformed to a leg-like structure consisting of at least one proximal podomere as well as several tarsomeres. The defects in appendages are reminiscent of the phenotype caused by large exd clones in Drosophila antennal discs. These findings led us to the conclusion that (1) Gb′exd is required for segment patterning in the gnathal to abdominal region, acting in a gap gene-like manner in the anterior region. (2) Gb′exd plays important roles in formation of the appendages and the determination of their identities, acting as a regulatory switch that chooses between the fates of head appendages versus the appendage ground state. Although functions of Gb′exd in appendage patterning appear fundamentally conserved between Gryllus and Drosophila, its role in body segmentation may differ from that of Drosophila exd.  相似文献   

12.
13.
14.
Medaka (Oryzias latipes) is a small freshwater teleost that provides an excellent developmental genetic model complementary to zebrafish. Our recent mutagenesis screening using medaka identified headfish (hdf) which is characterized by the absence of trunk and tail structures with nearly normal head including the midbrain-hindbrain boundary (MHB). Positional-candidate cloning revealed that the hdf mutation causes a functionally null form of Fgfr1. The fgfr1hdf is thus the first fgf receptor mutant in fish. Although FGF signaling has been implicated in mesoderm induction, mesoderm is induced normally in the fgfr1hdf mutant, but subsequently, mutant embryos fail to maintain the mesoderm, leading to defects in mesoderm derivatives, especially in trunk and tail. Furthermore, we found that morpholino knockdown of medaka fgf8 resulted in a phenotype identical to the fgfr1hdf mutant, suggesting that like its mouse counterpart, Fgf8 is a major ligand for Fgfr1 in medaka early embryogenesis. Intriguingly, Fgf8 and Fgfr1 in zebrafish are also suggested to form a major ligand-receptor pair, but their function is much diverged, as the zebrafish fgfr1 morphant and zebrafish fgf8 mutant acerebellar (ace) only fail to develop the MHB, but develop nearly unaffected trunk and tail. These results provide evidence that teleost fish have evolved divergent functions of Fgf8-Fgfr1 while maintaining the ligand-receptor relationships. Comparative analysis using different fish is thus invaluable for shedding light on evolutionary diversification of gene function.  相似文献   

15.
The differentiation of endothelial cells is tightly connected with the formation of blood vessels during vertebrate development. The signaling pathways mediated by vascular endothelial growth factor (vegf) are required for these processes. Here we show that a proto-oncogene, meis1, plays important roles in the vascular development in zebrafish. Knockdown of meis1 by anti-sense meis1 morpholino (meis1 MO) led to the impairment of intersegmental vessel (ISV) formation. In meis1 morphants, the expression of an artery marker was reduced in dorsal aorta (DA), and the expression of vein markers was expanded in DA and posterior cardinal vein (PCV), suggesting the defects on artery development. Furthermore, the expression of vegf receptor, flk1, was significantly decreased in these embryos. Interestingly, flk1 MO-injected embryos exhibited similar defects as meis1 morphants. Thus, these results implicate that meis1 is a novel regulator involved in endothelial cell development, presumably affecting the vegf signaling pathway.  相似文献   

16.
Neph3 (filtrin) is a membrane protein expressed in the glomerular epithelial cells (podocytes), but its role in the glomerulus is still largely unknown. To characterize the function of Neph3 in the glomerulus, we employed the zebrafish as a model system. Here we show that the expression of neph3 in pronephros starts before the onset of nephrin and podocin expression, peaks when the nephron primordium differentiates into glomerulus and tubulus, and is then downregulated upon glomerular maturation. By histology, we found that neph3 is specifically expressed in pronephric podocytes at 36 hpf. Furthermore, disruption of neph3 expression by antisense morpholino oligonucleotides results in distorted body curvature and transient pericardial edema, the latter likely reflecting perturbation of glomerular osmoregulatory function. Histological analysis of neph3 morphants reveals altered glomerular morphology and dilated pronephric tubules. The phenotype of neph3 morphants, curved body and pericardial edema, is rescued by wild-type zebrafish neph3 mRNA. In addition to glomerulus, neph3 is highly expressed in the developing brain and specific regions of mature midbrain and hindbrain. In line with this, neph3 morphants show aberrant brain morphology. Collectively, the expression of neph3 in glomerulus and brain together with the morphant phenotype imply that neph3 is a pleiotropic gene active during distinct stages of tissue differentiation and associates directly in the regulation of both glomerular and neural development.  相似文献   

17.
Axial patterning is a recurrent theme during embryonic development. To elucidate its fundamental principles, the hair follicle is an attractive model due to its easy accessibility and dispensability. Hair follicle asymmetry is evident from its angling and the localization of associated structures. However, axial patterning is not restricted to the follicle itself but also generates rotational hair shaft asymmetry which, for zigzag hairs, generates 3-4 bends that alternately point into opposite directions. Here we show by analyzing mutant and transgenic mice that WNT and ectodysplasin signaling are involved in the control of the molecular and morphological asymmetry of the follicle and the associated hair shaft, respectively. Asymmetry is affected by polarized WNT and ectodysplasin signaling in mature hair follicles. When endogenous signaling is impaired, molecular asymmetry is lost and mice no longer form zigzag hairs. Both signaling pathways affect the polarized expression of Shh which likely functions as a directional reference for hair shaft production in all follicles. We propose that this regulatory pathway also establishes follicular asymmetry during morphogenesis. Moreover, the identified molecular hierarchy offers a model for the periodic patterning of zigzag hairs mechanistically similar to mesodermal segmentation.  相似文献   

18.
19.
In the Drosophila segmentation hierarchy, periodic expression of pair-rule genes translates gradients of regional information from maternal and gap genes into the segmental expression of segment polarity genes. In Tribolium, homologs of almost all the eight canonical Drosophila pair-rule genes are expressed in pair-rule domains, but only five have pair-rule functions. even-skipped, runt and odd-skipped act as primary pair-rule genes, while the functions of paired (prd) and sloppy-paired (slp) are secondary. Since secondary pair-rule genes directly regulate segment polarity genes in Drosophila, we analyzed Tc-prd and Tc-slp to determine the extent to which this paradigm is conserved in Tribolium. We found that the role of prd is conserved between Drosophila and Tribolium; it is required in both insects to activate engrailed in odd-numbered parasegments and wingless (wg) in even-numbered parasegments. Similarly, slp is required to activate wg in alternate parasegments and to maintain the remaining wg stripes in both insects. However, the parasegmental register for Tc-slp is opposite that of Drosophila slp1. Thus, while prd is functionally conserved, the fact that the register of slp function has evolved differently in the lineages leading to Drosophila and Tribolium reveals an unprecedented flexibility in pair-rule patterning.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号