首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of thyroid hormone in the control of cardiac and renal cell development was examined in neonatal rats made hyperthyroid by administration of triiodothyronine (T3, 0.1 mg/kg s.c. on postnatal days 1-5) or hypothyroid by administration of propylthiouracil (PTU, 20 mg/kg s.c. given to dams on gestational day 17 through postnatal day 5 and to pups on postnatal days 1-5). Indices of total cell number (total DNA per tissue), cell packing density (DNA per g tissue), and relative cell size (protein/DNA ratio) were evaluated from birth through young adulthood. PTU administration led to primary shortfalls in cell number that were of similar magnitude in both tissues, but persisted somewhat longer in the kidney than in the heart. Deficits in cell packing density and cell size in the hypothyroid animals were secondary to the effect on cell number, displaying smaller magnitudes of effect and a lag in appearance and disappearance of the deficits compared to that for total DNA; indeed, the phase in which tissues were restoring their cell numbers was accompanied by increased cell packing density, reflecting a more rapid restitution of cell numbers than tissue weight or cell size. In contrast to the relatively similar effects of PTU on developing cardiac and renal cells, the effects of T3 were selective for the heart. Although T3 caused general growth impairment, it evoked marked cardiac overgrowth that was accompanied by a striking increase in cell number and a small increase in cell size. The cardiac hyperplasia is unique to the developing animal, as post-replicative heart cells in adult animals show only hypertrophy in response to thyroid hormone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Until recently, the synthetic glucocorticoid dexamethasone was commonly used to lessen the morbidity of chronic lung disease in premature infants. This practice diminished as dexamethasone use was linked to an increased incidence of cerebral palsy and short-term neurodevelopmental delay. Of more concern is the fact that we know little regarding dexamethasone effects on long-term neurodevelopment. To study the effects of neonatal dexamethasone exposure on long-term neurodevelopment, we have developed a rat model where newborn pups are exposed to tapering doses of dexamethasone at time points corresponding to the neurodevelopmental age when human infants are traditionally exposed to this drug in the neonatal intensive care unit. Using a within-litter design, pups were assigned to one of three groups on postnatal day 2 (P2): handled controls, saline-injected controls, and animals receiving intramuscular dexamethasone between P3 and P6. Somatic growth was decreased in dexamethasone-treated animals. Dexamethasone-treated animals demonstrated slight delays in indexes of neurodevelopment and physical maturation at P7 and P14, but not P20. In adolescence (P45), there was no difference between groups in an open field test. However, as adult dexamethasone-treated animals were less active in the open field and spent more time in closed arms of the elevated plus maze. The serum corticosterone response to crowding stress in dexamethasone-treated animals was no different from controls, but they demonstrate a delay in return of corticosterone levels to baseline. These differences in behavior and hormonal stress responsiveness suggest that neonatal dexamethasone exposure may permanently alter function of the neuroendocrine stress axis.  相似文献   

3.
Epidemiological evidence suggests that hypertension and coronary heart disease are programmed by exposure to a poor diet during intrauterine life. It has been proposed that the prenatal environment may exert an adverse effect on the development of the kidney and hence later control of blood pressure. These assertions are supported by animal experiments. In the rat, fetal exposure to a maternal low protein diet is associated with disproportionate patterns of fetal growth and later elevation of blood pressure. Pregnant female rats were fed control (18% casein) or low protein diets throughout pregnancy, or during specific periods. Nephron number was determined at day 20 gestation, full term and 4 weeks of age. Exposure to low protein throughout gestation, or in mid-late gestation increased total nephron number at day 20. By term nephron number was reduced, relative to controls, in rats that were undernourished between days 8-14 or 15-22 gestation. At 4 weeks postnatally rats exposed to low protein throughout fetal life had a reduced (13%) nephron complement and blood pressures 13 mmHg above control animals. Lower renal size and elevated blood pressure persisted to 19 weeks of age, at which time glomerular filtration rate was normal. The data are consistent with the hypothesis that maternal undernutrition may programme the renal nephron number and hence impact upon adult blood pressure and the development of renal disease.  相似文献   

4.
Fetal glucocorticoid exposure retards postnatal growth and evokes abnormalities of nervous system structure and function. To examine the underlying mechanisms, we administered 0.2 or 0.8 mg/kg of dexamethasone to pregnant rats on gestational days 17, 18, and 19 and assessed brain region cell development with indices of DNA content (total cell numbers), DNA concentration (cell packing density), and protein/DNA ratio (relative cell size). Dexamethasone evoked deficits of pup body and brain region weights, but the brain regions displayed growth-sparing associated initially with preservation of cell numbers (normal or elevated DNA content and concentration), at the expense of relative cell size (decreased protein/DNA). Subsequently, brain cell acquisition lagged behind that of controls, with deficits in DNA and elevations of protein/DNA. In midbrain + brainstem and in cerebellum, cell markers returned to normal by weaning. However, the forebrain showed persistent elevations of DNA and reduced protein/DNA, indicative of replacement of neurons with glia. Because the treatment period coincided with the timing of neuronal cell replication in the forebrain, but not in the other regions, these results suggest that the critical period for lasting deficits of dexamethasone coincides with the peak of neuronal mitosis.  相似文献   

5.
Fetal (18 days postcoitum) and neonatal (3-day) pancreatic explants were grown in organ culture with or without supplementation with corticosterone (0.1 micrograms/ml). After 0, 4, and 8 days of culture, the specific hormone-positive, islet cell volumes were determined by the use of immunocytochemical and morphometric methods. The insulin, glucagon, and somatostatin contents of the explants were estimated by radioimmunoassays. In the fetal explants, all of the islet cell populations increased in volume and the content of each of the hormones increased over an 8-day period of culture. Supplementation with corticosterone resulted in a restriction of the increases of the alpha and delta cell volumes and in the somatostatin content of the explants. In the neonatal explants, the volumes of the alpha and delta cells and the glucagon and somatostatin contents decreased over a 4-day culture period. The presence of corticosterone in the culture medium preserved these cells and their hormone content. Co-culture of 18-day fetal and 3-day neonatal pancreata in control medium for 8 days resulted in a significant decrease in the content of all three of the islet hormones in the fetal explants. These results suggest that a substance harmful to the islet cells is released from the degenerating acinar cells. Thus, the effects of the steroid on the islets may be mediated through its effects on the acinar tissue.  相似文献   

6.
The ontogeny of DNA polymerase activity in the neonatal rat heart was studied. The DNA polymerase activities in rat heart extracts were identified as DNA polymerase alpha and DNA polymerase delta activities by their purification and characterization, by the use of a specific inhibitor (BuAdATP), and by a specific monoclonal antibody against DNA polymerase alpha. Using these inhibitors, it was shown that the two activities declined in parallel during the maturation and terminal differentiation of the heart.  相似文献   

7.
8.
9.
To examine whether prenatal exposure to glucocorticoids could adversely affect subsequent cellular development of the lung, we administered 0.2 mg/kg of dexamethasone to pregnant rats on gestational days 17, 18, and 19. Lungs of the offspring were then examined for patterns of cell acquisition (DNA) and growth (protein). DNA concentration (a marker of cell packing density) and DNA content (a measure of total cell numbers) were reduced during gestation, and the shortfalls in concentration persisted past weaning. Disruption of development was also apparent in the protein/DNA ratio, which was consistently elevated, a finding consistent with cellular hypertrophy. In addition, lung ODC became coupled to beta-adrenergic receptors prematurely in the dexamethasone group, suggesting that neural control of tissue differentiation is altered. These data indicate that prenatal glucocorticoids may compromise lung development through effects on cell replication and differentiation, which derive, in part, from alterations in the reception of trophic neural signals.  相似文献   

10.
Although some studies have pointed out to embryo/fetal toxicity, knowledge about the potential toxicity of the fungicide epoxiconazole is still limited. Once the results of these previous studies have raised some concern, this study studied the effects of epoxiconazole maternal exposure on the physical endpoints in the development of rat pups. To accomplish that, the effects of epoxiconazole (50.0, 100.0, and 150.0 mg/kg) were examined when rats were exposed at two different developmental stages: during the first 6 days of pregnancy or in the organogenesis period (6-15 days). After parturition, pups were tested for growth and maturational milestones. Maternal exposure to the fungicide, independently of phase, resulted in significantly early mean time to vaginal opening and delayed time to testes descent in pups. Weight gain rate in pups and their mothers was not affected for the tested exposure period. The findings of this study emphasize that epoxiconazole maternal exposure may lead to alterations in developmental patterns in nursing pups, consistent with the known influence of epoxiconazole on steroid hormone synthesis.  相似文献   

11.
Apurinic/apyrimidinic endonuclease 1, a key enzyme in repairing abasic sites in DNA, is an embryonic lethal in mice. We are examining its role in embryogenesis in zebra fish. Zebra fish contain two genomic copies (zfAPEX1a and zfAPEX1b) with identical coding sequences. zfAPEX1b lacks introns. Recombinant protein (ZAP1) is highly homologous with and has the same enzymatic properties as its human orthologue. ZAP1 is highly expressed throughout development. Embryos microinjected with morpholino oligonucleotide (MO) targeting the translation start site die at approximately the midblastula transition (MBT) without apoptosis. They are rescued with mRNA for human wild-type APEX1 but not for APEX1 encoding endonuclease-defective protein. Rescued embryos develop dysmorphic hearts, pericardial edema, few erythrocytes, small eyes, and abnormal notochords. Although the hearts in rescued embryos form defective loops ranging from no loop to one that is abnormally shaped, cardiac myosin (cmlc2) is present and contraction occurs. Embryos microinjected with MO targeting zfAPEX1a intron-exon junctions also pass the MBT with similar abnormalities. We conclude that AP endonuclease 1 is involved in both repairing DNA and regulating specific early stages of embryonic development.  相似文献   

12.
Studies were conducted to explore the effects of differences in retinoid nutritional status and of sex on the tissue distribution and levels of cellular retinol-binding protein (CRBP) and of cellular retinoic acid-binding protein (CRABP) in the rat. Sensitive and specific radioimmunoassays were developed and employed to measure the levels of both CRBP and CRABP. Four groups of six male rats each were fed experimental diets that differed greatly in the amount and kind of retinoids provided, but were otherwise identical. These groups were comprised of rats that were normal controls, retinoid-deficient, retinoic acid-fed, and excess retinol-fed. A fifth group of six female rats was fed the control diet. Immunogens identical with rat testis CRBP and CRABP, as assessed by radioimmunoassay displacement curves, were found in every rat tissue examined (21 tissues in males, 18 in females). The highest levels of CRBP were found in the proximal portion of the epididymis, the liver, and kidney. The highest levels of CRABP were found in the seminal vesicles, vas deferens, and skin. A significant (p less than 0.01) inverse relationship was found between CRBP and CRABP levels in the different tissues of the male reproductive tract. In both males and females, CRBP levels were highest in the gonads and proximal portion of the reproductive tract and decreased distally, whereas the opposite was true for CRABP. Retinoid-deficient rats showed reduced tissue levels of CRBP; thus, tissue CRBP levels are influenced by diet and retinoid availability. No differences in tissue CRBP levels were found in the rats fed the control, the retinoic acid, or the excess retinol diets. Female control rats had higher CRBP levels than male controls in 4 of 15 tissues compared (liver, lung, thymus, and fat). In contrast, tissue CRABP levels showed no diet- or sex-dependent differences. Only in one tissue, the skin, were differences observed (lower CRABP in retinoid-deficient and in female rats). Thus, CRABP metabolism and levels appear to be minimally influenced by the amount or kind of retinoid ligand available or by sex.  相似文献   

13.
Fetal exposure to high doses of glucocorticoids slows cellular development and impairs organ performance, in association with growth retardation. Nevertheless, low doses of glucocorticoids may enhance cell differentiation and accelerate specific functions. The current study examined this apparent paradox in the developing rat kidney, using doses of dexamethasone that span the threshold for growth impairment: 0.05 or 0.2 mg/kg given on gestational days 17, 18 and 19. At the lower dose, which did not significantly retard body growth, the postnatal development of tubular reabsorptive capabilities for sodium, potassium, osmotic particles, water and urea was accelerated. These effects were less notable at the higher dose, which caused initial body growth impairment. The selectivity toward promotion of tubular function was evidenced by the absence of effect of either dose of dexamethasone on development of glomerular filtration rate. Because of the wide spectrum of dexamethasone's effects on tubular function, we also assessed fetal kidney adenylate cyclase as a means of detecting altered cell differentiation in the prenatal period during which dexamethasone was given. Either glucocorticoid dose increased the total adenylate cyclase catalytic activity (assessed with forskolin). Thus, the net effect of fetal dexamethasone exposure on development of renal excretory capabilities probably represents the summation of promoted cell differentiation and slowed development consequent to growth retardation. At low dose levels, the former effect predominates, leading to enhanced functional development, whereas higher doses that interfere with general growth and development can offset the direct promotional effect.  相似文献   

14.
Cellular retinoic acid-binding protein (CRABP) was detected in cytosolic extracts of dermis and epidermis of neonatal rat skin using high-performance size-exclusion liquid chromatography and was more abundant in dermal tissue. CRABP was purified 1000-fold from an acid-precipitated, 50,000 x g supernatant of neonatal rat skin by ion-exchange chromatography on DEAE-Sephacel, followed by chromatofocussing and hydrophobic-interaction chromatography. The protein had an apparent Mr of 14,800. In chromatofocussing experiments the apoprotein and holoprotein gave different elution profiles, indicating a charge difference between the two forms. The ability of various retinoids to compete with all-trans-retinoic acid for binding to CRABP was assayed: 4-oxoretinoic acid and two synthetic retinoids were effective competitors, but 13-cis-retinoic acid, 3,4-didehydroretinoic acid and the acid derivative of etretinate competed poorly. The binding protein had a Kd for all-trans-retinoic acid of 8 nM using a dextran-charcoal assay, but a higher value was obtained using high-performance size-exclusion liquid chromatography. The holoprotein dissociated rapidly at room temperature and had a half-life of 4.7 min. At 0 degrees C, the holoprotein had a half-life of 200 min.  相似文献   

15.
R Klepac 《Endokrinologie》1982,80(3):311-317
Pregnant rats were treated with dexamethasone in drinking water (10 micrograms/ml) from the 15th to the 22nd day of pregnancy. Dexamethasone significantly reduced the weight of rat fetuses and concentration of DNA, RNA and proteins in fetal adrenal glands, liver, placenta, brain, kidneys, heart, lung, testes and pituitary from the 17th to the 22nd day of pregnancy. These data show that dexamethasone given to pregnant rat may lead to potentially deleterious effects on fetal rat development.  相似文献   

16.
The role of the prion protein (PrP) in transmissible spongiform encephalopathies has been the focus of intense investigation. However, less is known about the physiological function of normal cellular PrP (PrP(C)). In adult human teeth, PrP(C) has been identified in odontoblasts, cementoblasts and epithelial remnants of Malassez. In this study, we have localized PrP(C) in developing human and mouse teeth, and investigated the function of PrP using a PrP-knockout (Prnp(0/0) ) mouse model. PrP(C) was detected in developing human and mouse ameloblasts and odontoblasts. In vitro, undifferentiated dental mesenchymal cells from embryonic day 18 (E18) Prnp(0/0) mouse molars proliferated much more rapidly compared to age-matched, wild-type (wt) mouse molar dental mesenchymal cells. Histochemistry and immunohistochemical analyses showed a subtle but measurable phenotype, with the absence of PrP resulting in earlier initiation of both dentin and enamel formation. Consistent with this finding, laser microdissected odontoblasts from newborn Prnp(0/0) mouse incisors had a reduced proliferation rate, as measured by the expression of proliferating cell nuclear antigen (PCNA), and increased type 1 collagen mRNA expression. Dentin microhardness of the fully erupted molars was reduced and incisal enamel mineralization was delayed in Prnp(0/0) compared to age-matched wt mouse teeth. Taken together, these results suggest that PrP(C) affects multiple processes involved in tooth formation, through regulating the differentiation of ameloblasts and odontoblasts.  相似文献   

17.
18.
During cardiac muscle development, most cardiomyocytes permanently withdraw from the cell cycle. Previously, by suppressive subtractive hybridization, we identified calcyclin-binding protein/Siah-interacting protein (CacyBP/SIP) as one of the candidates being upregulated in the hyperplastic to hypertrophic switch, suggesting an important role of CacyBP/SIP in cardiac development. To show the importance of CacyBP/SIP during myoblast differentiation, we report here that CacyBP/SIP is developmentally regulated in postnatal rat hearts. The overexpression of CacyBP/SIP promotes the differentiation and DNA synthesis of H9C2 cells and primary rat cardiomyocytes, as well as downregulates the expression of beta-catenin. Besides, CacyBP/SIP promotes the formation of myotubes and multinucleation upon differentiation. To investigate the cardioprotective role of CacyBP/SIP in cardiomyocytes, a hypoxia/reoxygenation model was employed. We found that CacyBP/SIP was upregulated during myocardial infarction (MI) and hypoxia/reoxygenation. As a conclusion, CacyBP/SIP may play a role in cardiomyogenic differentiation and possibly protection of cardiomyocytes during hypoxia/reoxygenation injury.  相似文献   

19.
Total collagen content in heart decreased significantly till day 8 of dexamethasone (Dex: 2.5 mg/kg week; s.c. for 2 weeks) treatment and increased on withdrawal of Dex. Acid soluble collagen content in heart decreased till day 12 of Dex treatment, reached normal level on day 16 of Dex treatment and exhibited an increase thereafter. Pepsin solubilized fraction in heart also behaved similarly as the acid soluble fraction, but reached normal level on Dex withdrawal. The total collagen content and the acid soluble collagen in kidney decreased significantly throughout treatment as well as on Dex withdrawal whereas, the pepsin solubilized collagen fraction in kidney exhibited a significant increase from day 8 of Dex treatment and the level was maintained throughout the experiment. Incorporation of 14C-proline in both, heart and kidney was found to be reduced. Electrophoretic pattern of pepsin collagen solubilized fraction of heart and kidney revealed alterations in subunit composition and its types on Dex administration and withdrawal. Thus, administration of Dex induced alterations in the metabolism of collagen and on Dex withdrawal, the system slowly tended to attain normalcy.  相似文献   

20.
Sulfite is a potentially toxic molecule that might enter the body via ingestion, inhalation, or injection. For cellular detoxification, mammalians rely on sulfite oxidase to convert sulfite to sulfate. The purpose of this research was to determine the effect of sulfite on zinc, iron, and copper levels in rat liver and kidney tissues. Forty normal and sulfite oxidase-deficient male albino rats were divided into four groups that included untreated controls (group C), a sulfite-supplemented group that received 70 mg sodium metabisulfite per kilogram per day (group S), a sulfite oxidase-deficient group (group D), and a sulfite oxidase-deficient group that was also given 70 mg sodium metabisulfite per kilogram per day (group DS). The iron and zinc levels in the liver and kidney in groups S and DS were not affected by sulfite treatment compared to their respective controls (groups C and D). Sulfite exposure led to an increase of kidney copper content in the S group when compared to untreated controls. The kidney copper levels were significantly increased in the unexposed deficient rats, but it was not different than that of the deficient rats that were given oral sulfite treatment. These results suggest that kidney copper levels might be affected by exogenous or endogenous sulfite. An erratum to this article is available at .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号