首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Cells of three asynchronously growing human tumor cell lines, PC3 (human prostate carcinoma), T98G and A7 (human glioblastomas), which have been shown previously to demonstrate low-dose hyper-radiosensitivity to low acute single doses, were irradiated with (60)Co gamma rays at low dose rates (2 cGy-1 Gy h(-1)). Instead of a dose-rate sparing response, these cell lines demonstrated an inverse dose-rate effect on cell survival at dose rates below 1 Gy h(-1), whereby a decrease in dose rate resulted in an increase in cell killing per unit dose. A hyper-radiosensitivity-negative cell line, U373MG, did not demonstrate an inverse dose-rate effect. Analysis of the cell cycle indicated that this inverse dose-rate effect was not due to accumulation of cells in G(2)/M phase or to other cell cycle perturbations. T98G cells in reversible G(1)-phase arrest also showed an inverse dose-rate effect at dose rates below 30 cGy h(-1) but a sparing effect as the dose rate was reduced from 60 to 30 cGy h(-1). We conclude that this inverse dose-rate effect in continuous exposures reflects the hyper-radiosensitivity seen in the same cell lines in response to very small acute single doses.  相似文献   

2.
The influence of dose rate on expression time, cell survival and mutant frequency at the hypoxanthine-guanine phosphoribosyltransferase (HPRT) locus was evaluated in human G(0) peripheral blood lymphocytes exposed in vitro to gamma rays at low (0.0014 Gy/min) and high (0.85 Gy/min) dose rates. A cloning assay performed on different days of postirradiation incubation indicated an 8-day maximum expression period for the induction of HPRT mutants at both high and low dose rates. Cell survival increased markedly with decreasing dose rate, yielding D(0) values of 3.04 Gy and 1.3 Gy at low and high dose rates, respectively. The D(0) of 3.04 Gy obtained at low dose rate could be attributed to the repair of sublethal DNA damage taking place during prolonged exposure to low-LET radiation. Regression analysis of the mutant frequency yielded slopes of 12.35 x 10(-6) and 3.66 x 10(-6) mutants per gray at high and low dose rate, respectively. A dose and dose-rate effectiveness factor of 3.4 indicated a marked dose-rate effect on the induced HPRT mutant frequency. The results indicate that information obtained from in vitro measurements of dose-rate effects in human G(0) lymphocytes may be a useful parameter for risk estimation in radiation protection.  相似文献   

3.
Chinese hamster V79-S cells capable of growing in suspension culture were exposed to 60Co gamma rays at a high dose rate (84 Gy/h), low dose rates (200, 50, and 39 mGy/h), and a spectrum of very low dose rates (between 29 and 4.5 mGy/h). Following time for appropriate expression the cultures were assayed for the induction of 6-thioguanine-resistant mutants. For a given dose, a decrease in mutation induction occurred as the dose rate was reduced from high dose rates to low dose rates. However, further reduction in dose rate resulted in a reverse dose-rate effect, and an increase in the frequency of mutants was observed. The contribution of background mutation frequency to this reverse dose-rate effect was studied, both by examining fluctuations of mutation frequency in nonirradiated culture and by its impact upon the dose-rate-independent nature of the reversed effect, and it was found to be negligible. The physiological state of the suspension culture under periods of protracted exposure to very low dose rates was also investigated. The effect of doubling time, plating efficiency, cell cycle distribution, and sensitivity on survival and mutation were examined. In no case was a change apparent during the very low-dose-rate exposures. The results are discussed in terms of the possible expression of cryptic radiation damage after prolonged culture times and/or the involvement of an error-free repair system which requires a certain amount of radiation damage to become active.  相似文献   

4.
Effects of deuterium oxide (D2O) and 3-aminobenzamide, an inhibitor of poly(ADP-ribose) synthetase, on cell proliferation and survival were studied in cultured mammalian L5178Y cells under growing conditions and after acute and low-dose-rate irradiation at about 0.1 to 0.4 Gy/hr of gamma rays. Growth of irradiated and unirradiated cells was inhibited by 45% D2O but not by 3-aminobenzamide at 10 mM, except for treatments longer than 30 hr. The presence of these agents either alone or in combination during irradiation at low dose rates suppressed almost totally the decrease in cell killing due to the decrease in dose rate. The D2O did not inhibit the radiation-induced increase in poly(ADP-ribose) synthesis as measured by the incorporation of [14C]NAD into the acid insoluble fraction, contrary to 3-aminobenzamide. Among other inhibitors tested, theobromine and theophylline were found to be effective in eliminating the dose-rate effects of gamma rays. Possible mechanisms underlying the inhibition are discussed.  相似文献   

5.
Repairable and nonrepairable components of gamma-ray damage leading to cell reproductive death were determined by measuring the range over which dose rate influenced the response of non-cycling C3H 10T 1/2 mouse cells. Cell proliferation and cell cycle redistribution were eliminated as factors influencing the dose-rate effect in the system by irradiating confluent monolayers of contact inhibited cells. The radiosensitivity of the cells did not change, and no selective loss of damaged cells occurred over the extended treatment times. A pronounced dose-rate effect was observed over the range between 55.6 and 0.29 Gy/hr, but a limit to the repair-dependent dose-rate effect was reached at 0.29 Gy/hr since no further reduction in effect per unit dose was observed when the dose rate was reduced to 0.17 or 0.06 Gy/hr. The survival curves, which were simple exponential functions of dose at dose rates of 0.29 Gy/hr and below, have a common Do of 7.32 Gy and represent an accurate measurement of the nonrepairable component of damage. Log-phase cultures showed remarkably different responses over the range of dose rates, due in large part to cell cycle redistribution and in some cases, cell proliferation during exposures. The results of these studies were compared with time-dose relationships used in clinical brachy-therapy and agree remarkably well with corrections in total dose suggested by R. Paterson [Br. J. Radiol. 25, 505-516 (1952)] and A.E.S. Green [cited in F. Ellis, Curr. Top. Radiat. Res. Q. 4, 357-397 (1968)] when the standard treatment time is changed. Comparison of our data with in vivo isoeffect curves of total dose vs dose per fraction for "early" and "late" tissue responses indicate that cell cycle redistribution should not be ignored as a factor influencing time-dose relationships in radiotherapy.  相似文献   

6.
Induction of cell killing and mutation to 6-thioguanine resistance was studied in growing mouse leukemia cells in culture following gamma rays at dose rates of 30 Gy/h, 20 cGy/h, and 6.3 mGy/h, i.e., acute, low dose rate, and very low dose rate irradiation. A marked increase was observed in the cell survival with decreasing dose rate; no reduction in the surviving fraction was detected after irradiation at 6.3 mGy/h until a total dose of 4 Gy. Similarly, the induced mutation frequency decreased after low dose rate irradiation compared to acute irradiation. However, the frequency after irradiation at 6.3 mGy/h was unexpectedly high and remained at a level which was intermediate between acute and low dose rate irradiation. No appreciable changes were observed in the responses to acute gamma rays (in terms of cell killing and mutation induction) in the cells which had experienced very low dose rate irradiation.  相似文献   

7.
Induction of mutation to 6-thioguanine resistance was studied in L5178Y mouse leukemia cells after exposure to low-dose-rate gamma rays or tritiated water at dose rates of approximately 0.025 to 0.4 Gy/hr for 20 hr in the presence or absence of 45% (v/v) deuterium oxide. The effect of acute gamma-ray exposure was also examined. A higher frequency of induced mutations was observed after tritium beta rays than after gamma rays, both at equivalent doses and cell survival. Deuterium oxide enhanced the mutation induced by gamma rays and tritium beta rays but did not affect the survival-mutation correlation of the two radiations.  相似文献   

8.
Induction of cell killing and mutation to 6-thioguanine resistance was examined in a radiation-sensitive mutant strain LX830 of mouse leukemia cells following gamma irradiation at dose rates of 30 Gy/h (acute), 20 cGy/h (low dose rate), and 6.2 mGy/h (very low dose rate). LX830 cells were hypersensitive to killing by acute gamma rays. A slight but significant increase was observed in cell survival with decreasing dose rate down to 6.2 mGy/h, where the survival leveled off above certain total doses. The cells were also hypersensitive to mutation induction compared to the wild type. The mutation frequency increased linearly with increasing dose for all dose rates. No significant difference was observed in the frequency of induced mutations versus total dose at the three different dose rates so that the mutation frequency in LX830 cells at 6.2 mGy/h was not significantly different from that for moderate or acute irradiation.  相似文献   

9.
Embryos of medaka, Oryzias latipes, were exposed to tritiated water and 137Cs gamma rays continuously from the one-cell stage until hatching (10 days at 26 degrees C). Germ cells in the gonads of newly hatched fry were counted in histological sections and compared with controls. The accumulated dose for 50% survival of germ cells was 195 rad for tritium beta rays and 350 rad for 137Cs gamma rays. Female progeny were produced using Yamamoto's method. The 50% survival doses for female germ cells treated in a manner similar to that described above were 140 rad for beta rays and 305 rad for gamma rays. When embryos of medaka were irradiated with gamma rays below an accumulated dose of 475 rad or treated with tritiated water at a concentration of 0.2 mCi/ml or lower, the dose response of the germ cells showed an exponential relationship. It appeared that there was no threshold or significant dose-rate effect for either beta or gamma rays on germ cell survival, and that tritium beta rays were more effective than 137Cs gamma rays in germ cell killing.  相似文献   

10.
Survival based on colony formation was measured for starved plateau-phase Chinese hamster ovary (CHO) cells exposed to 250 kVp X rays at dose rates of 0.0031, 0.025, 0.18, 0.31, and 1.00 Gy/min. A large dose-rate effect was demonstrated. Delayed plating experiments and dose response experiments following a conditioning dose, both using a dose rate of 1.00 Gy/min and plating delays of up to 48 hr, were also used to investigate the alternative repair hypotheses. There is clearly a greater change in survival in dose-rate experiments than in the other experiments. Thus we believe that a process which depends on the square of the concentration of initial damage, and which alters the effect of initial damage on cell survival is being observed. We have applied the damage accumulation model to separate the single-event damage from this concentration-dependent form and estimate the repair rate for the latter type to be 70 min for our CHO cells. Use of this analysis on other published dose-rate studies also yields results consistent with this interpretation of the repair mechanisms.  相似文献   

11.
The lethal and mutagenic effects of ionizing radiation delivered at high (53 Gy/h) and low (0.02 Gy/h) dose rates were measured in two closely related strains of mouse lymphoma L5178Y cells differing in radiation sensitivity (LY-R and LY-S). Strain LY-R was more resistant to the lethal effects of radiation than strain LY-S when exposed at either the high or low dose rate. The survival of strain LY-R was markedly enhanced by the reduction in dose rate. The dose-rate dependence of the survival of strain LY-S was less clear, because of the biphasic nature of its survival curve following low dose-rate radiation. However, if the initial slope of the low dose-rate survival curve is compared to the slope of the high dose-rate survival curve for strain LY-S, only a slight increase in survival at the low dose rate is apparent. Although more sensitive to the lethal effects of radiation, strain LY-S was less mutable at the hypoxanthine/guanine phosphoribosyl transferase locus by both low dose-rate and high dose-rate radiation than strain LY-R. Little dose-rate dependence was exhibited by either strain with regard to the mutagenic effects of radiation. Thus, for strain LY-R, which showed marked dose-rate dependence for survival but not for mutation, the ratio of mutational to lethal lesions was much greater following exposure to low dose-rate than to high dose-rate radiation.  相似文献   

12.
Over the last 15 years, endogenous spleen-colony formation in our mice, following lethal irradiation, has increased to an unacceptable level. It has been found necessary, therefore, to introduce a new method of preparing recipient mice for spleen-colony studies. Irradiation with low dose-rate 60Cobalt gamma rays has been compared with high dose-rate linear accelerator electrons, and their effects on endogenous spleen colony formation compared with earlier X and gamma ray dose-response data. It was found that a large dose (13.5 Gy) of gamma rays results in fewer endogenous colonies than 8.5 Gy of electrons, yet because of its low dose rate (14.1 X 10(-3) Gy/min) it has a marked sparing of the intestinal tissue as measured by the intestinal microcolony technique. This in turn permits better survival and, therefore, a 'healthier' animal for spleen-colony work. Exogenous colony formation is also lower in the low dose-rate, gamma-irradiated recipients and this is shown to be due to a reduced spleen-seeding efficiency. It is concluded that very low dose-rate radiation is preferable for haemopoietic ablation, that a mouse colony requires constant monitoring for changes of endogenous spleen-colony formation and that the spleen-seeding efficiency of CFU-s depends on the irradiation technique used--there is no absolute value for a given strain of mouse.  相似文献   

13.
The aim of this work was to compare the effect of gamma radiation with sub-low dose-rate 1.8 mGy/min (SLDR), low dose-rate 3.9 mGy/min (LDR) and high dose-rate 0.6 Gy/min (HDR) on human leukemic cell lines with differing p53 status (HL-60, p53 deficient and MOLT-4, p53 wild) and to elucidate the importance of G2/M phase cell cycle arrest during irradiation. Radiosensitivity of HL-60 and MOLT-4 cells was determined by test of clonogenity. Decrease of dose-rate had no effect on radiosensitivity of MOLT-4 cells (D(0) for HDR 0.87 Gy, for LDR 0.78 Gy and for SLDR 0.70 Gy). In contrast, a significant increase of radioresistance after LDR irradiation was observed for p53 negative HL-60 cells (D(0) for HDR 2.20 Gy and for LDR 3.74 Gy). After an additional decrease of dose-rate (SLDR) D(0) value (2.92 Gy) was not significantly different from HDR irradiation. Considering the fact that during HDR the cells are irradiated in all phases of the cell cycle and during LDR mainly in the G2 phase, we have been unable to prove that the G2 phase is the most radiosensitive phase of the cell cycle of HL-60 cells. On the contrary, irradiation of cells in this phase induced damage reparation and increased radioresistance. When the dose-rate was lowered, approximately to 1.8 mGy/min, an opposite effect was detected, i.e. D(0) value decreased to 2.9 Gy. We have proved that during SLDR at first (dose up to 2.5 Gy) the cells accumulated in G2 phase, but then they entered mitosis or, if the cell damage was not sufficiently repaired, the cells entered apoptosis. The entry into mitosis has a radiosensibilizing effect.  相似文献   

14.
The Comet assay (microgel electrophoresis) was used to study DNA damage in Raji cells, a B-lymphoblastoid cell line, after treatment with different doses of neutrons (0.5 to 16 Gy) or gamma rays (1.4 to 44.8 Gy). A better growth recovery was observed in cells after gamma-ray treatments compared with neutron treatments. The relative biological effectiveness (RBE) of neutron in cell killing was determined to be 2.5. Initially, the number of damaged cells per unit dose was approximately the same after neutron and gamma-ray irradiation. One hour after treatment, however, the number of normal cells per unit dose was much lower for neutrons than for gamma rays, suggesting a more efficient initial repair for gamma rays. Twenty-four hours after treatment, the numbers of damaged cells per unit dose of neutrons or gamma rays were again at comparable level. Cell cycle kinetic studies showed a strong G2/M arrest at equivalent unit dose (neutrons up to 8 Gy; gamma rays up to 5.6 Gy), suggesting a period in cell cycle for DNA repair. However, only cells treated with low doses (up to 2 Gy) seemed to be capable of returning into normal cell cycle within 4 days. For the highest dose of neutrons, decline in the number of normal cells seen at already 3 days after treatment was deeper compared with equivalent unit doses of gamma rays. Our present results support different mechanisms of action by these two irradiations and suggest the generation of locally multiply damaged sites (LMDS) for high linear energy transfer (LET) radiation which are known to be repaired at lower efficiency.  相似文献   

15.
Most cell lines that lack functional p53 protein are arrested in the G2 phase of the cell cycle due to DNA damage. It was previously found that the human promyelocyte leukemia cells HL-60 (TP53 negative) that had been exposed to ionizing radiation at doses up to 10 Gy were arrested in the G2 phase for a period of 24 h. The radioresistance of HL-60 cells that were exposed to low dose-rate gamma irradiation of 3.9 mGy/min, which resulted in a pronounced accumulation of the cells in the G2 phase during the exposure period, increased compared with the radioresistance of cells that were exposed to a high dose-rate gamma irradiation of 0.6 Gy/min. The D0 value (i.e. the radiation dose leading to 37% cell survival) for low dose-rate radiation was 3.7 Gy and for high dose-rate radiation 2.2 Gy. In this study, prevention of G2 phase arrest by caffeine (2 mM) and irradiation of cells with low dose-rate irradiation in all phases of the cell cycle proved to cause radiosensitization (D0=2.2 Gy). The irradiation in the presence of caffeine resulted in a second wave of apoptosis on days 5–7post-irradiation. Caffeine-induced apoptosis occurring later than day 7 post-irradiation is postulated to be a result of unscheduled DNA replication and cell cycle progress.  相似文献   

16.
The induction of thymic lymphomas by whole-body X irradiation with four doses of 1.8 Gy (total dose: 7.2 Gy) in C57BL/6 mice was suppressed from a high frequency (90%) to 63% by preirradiation with 0.075 Gy X rays given 6 h before each 1.8-Gy irradiation. This level was further suppressed to 43% by continuous whole-body irradiation with 137Cs gamma rays at a low dose rate of 1.2 mGy/h for 450 days, starting 35 days before the challenging irradiation. Continuous irradiation at 1.2 mGy/h resulting in a total dose of 7.2 Gy over 258 days yielded no thymic lymphomas, indicating that this low-dose-rate radiation does not induce these tumors. Further continuous irradiation up to 450 days (total dose: 12.6 Gy) produced no tumors. Continuously irradiated mice showed no loss of hair and a greater body weight than unirradiated controls. Immune activities of the mice, as measured by the numbers of CD4+ T cells, CD40+ B cells, and antibody-producing cells in the spleen after immunization with sheep red blood cells, were significantly increased by continuous 1.2-mGy/h irradiation alone. These results indicate the presence of an adaptive response in tumor induction, the involvement of radiation-induced immune activation in tumor suppression, and a large dose and dose-rate effectiveness factor (DDREF) for tumor induction with extremely low-dose-rate radiation.  相似文献   

17.
18.
Mammary tumour development was followed in two experiments involving a total of 2229 female Sprague-Dawley rats exposed to various doses of X or gamma rays at different dose rates. The data for another 462 rats exposed to tritiated water in one of these experiments were also analyzed. The incidence of adenocarcinomas and fibroadenomas at a given time after exposure increased linearly in proportion to total radiation dose for most groups. However, no significant increase in adenocarcinomas was observed with chronic gamma exposures up to 1.1 Gy, and the increase in fibroadenomas observed with chronic gamma exposures at a dose rate of 0.0076 Gy h-1 up to an accumulated dose of 3.3 Gy was small compared to that observed after acute exposures. The incidence of all mammary tumors increased almost linearly with the log of dose rate in the range 0.0076 to 26.3 Gy h-1 for 3 Gy total dose of gamma rays. The effects of X rays appeared to be less influenced by dose rate than were the effects of gamma rays.  相似文献   

19.
The induction of reciprocal translocation in rhesus monkey spermatogonial stem cells was studied following exposure to low doses of acute X rays (0.25 Gy, 300 mGy/min) or to low-dose-rate X rays (1 Gy, 2 mGy/min) and gamma rays (1 Gy, 0.2 mGy/min). The results obtained at 0.25 Gy of X rays fitted exactly the linear extrapolation down from the 0.5 and 1.0 Gy points obtained earlier. Extension of X-ray exposure reduced the yield of translocations similar to that in the mouse by about 50%. The reduction to 40% of translocation rate after chronic gamma exposure was clearly less than the value of about 80% reported for the mouse over the same range of dose rates. Differential cell killing with ensuing differential elimination of aberration-carrying cells is the most likely explanation for the differences between mouse and monkey.  相似文献   

20.
Experiments were designed to examine the effects of radiation quality on specific gene expression within the first 3 h following radiation exposure in Syrian hamster embryo (SHE) cells. Preliminary work demonstrated the induction of c-fos and alpha-interferon genes following exposure to low-linear-energy-transfer (low-LET) radiations (X rays or gamma rays). More detailed experiments revealed induction of c-fos mRNA within the first 3 h following exposure to either X rays (75 cGy) or gamma rays (90 cGy). We could not detect induction of c-fos following exposure of SHE cells to fission-spectrum neutrons (high-LET) from the JANUS reactor administered at either high (12 cGy/min) or low (0.5 cGy/min) dose rates. Expression of alpha-interferon mRNA was similarly induced by low-LET radiations but only modestly by JANUS neutrons. The induction by gamma rays was dose-dependent, while induction by neutrons was specific for low doses and low dose rates. These experiments demonstrate the differential gene inductive response of cells following exposure to high- and low-LET radiations. These experiments suggest that these different qualities of ionizing radiation may have different mechanisms for inducing many of the cellular consequences of radiation exposure, such as cell survival and cell transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号