首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary Using straw columns colonized by the lignocellulytic fungus Pleurotus cornucopiae, translocation of 109Cd and 203Hg in the substrate-mycelium complex and via the substrate-mycelium complex into the fruiting bodies was studied. The translocation patterns generated were metal specific and were influenced by the temperature and the physiological conditions of the mycelium (growing mycelium, established mycelium, reproductive stage).Under all conditions, generally more mercury than cadmium was translocated. In growing mycelia, for instance, an average of about seven times more mercury than cadmium was translocated. Translocation was greatly enhanced, when fruiting bodies were present. Up to 7% and 20% (average: 3.5% and 12%) of the applied cadmium and mercury, respectively, were found in the fruiting bodies. In old columns bearing fruiting bodies (colonized for more than 50 days by the fungus) considerably more heavy metal (up to 45% of the applied radioactivity) was released from the point of application than in younger columns.With one exception, no substantial differences in the translocation patterns of the label in relation to the direction of mycelial growth could be detected.  相似文献   

2.
Experiments were conducted in fields which had a history of nil to four rice (Oryza sativa L.) crops during the previous four summers. Incorporating stubble after each harvest reduced soil nitrate-N content between crops, but increased soil N mineralization potential. During the fourth successive crop, plots where stubble had been incorporated after the previous three harvests had an average 21% more soil NH4N and 22% more N uptake than plots where stubble had been burnt.Soil fertility fell rapidly with increasing numbers of crops, and the unfertilized fifth crop accumulated approximately half the N (60 kg N ha-1) found in the unfertilized first crop (116 kg). Fertilizer N alleviated the effects of annual cropping; the application of 210 kg N ha-1 to the fifth crop (uptake of 156 kg N ha-1) resulted in similar N uptake to the first crop fertilized with 50 kg N ha-1 (154 kg N ha-1).Applying N at sowing had no significant effect on soil NH4-N concentration after permanent flood (PF), while N application at PF resulted in increased NH4-N concentration and N uptake until panicle initiation (PI). N applied at PI increased soil NH4-N concentration at least until the microspore stage.Management factors such as stubble incorporation and increasing N application rate, maintained N supply and enabled successive rice crops to accumulate similar quantities of N at maturity.  相似文献   

3.
四种重金属在金针菇栽培过程中的迁移规律   总被引:1,自引:0,他引:1  
为了掌握铅、镉、砷、汞4种有害重金属元素在金针菇栽培过程中的富集和迁移,为金针菇产品质量控制提供依据。采用在培养料中添加一定量的铅、镉、汞、砷栽培金针菇,测定其在各栽培阶段培养料、金针菇子实体中的含量。结果表明,在试验的浓度范围内,金针菇子实体中4种重金属的含量随着培养料中添加量的增加而增加,说明金针菇子实体中4种重金属主要是来源于培养料,但金针菇子实体对不同重金属的吸收富集能力不同,对汞的吸收富集能力最强,富集系数最高达到7.590,富集能力大小依次为汞>镉>砷>铅。  相似文献   

4.
The Biology and Agronomy of Switchgrass for Biofuels   总被引:1,自引:0,他引:1  
Switchgrass (Panicum virgatum L.)—a perennial, warm-season (C4) species—evolved across North America into multiple, divergent populations. The resulting natural variation within the species presents considerable morphological diversity and a wide range of adaptation. The species was adopted as a crop—initially as a forage—only in the last 50 yr. Its potential uses have recently been expanded to include biofuels. Management of switchgrass for biofuels is informed by an understanding of the plant's biology. Successful establishment requires attention to seed dormancy and weed control as well as proper depth and date of planting. The plant's growth rate is closely tied to temperature, but timing of reproductive development is linked to photoperiod. Accordingly, the period of vegetative growth can be extended by planting lower-latitude cultivars at higher latitudes. This strategy may provide a yield advantage, but cold tolerance can become limiting. Switchgrass is thrifty in its use of applied N; it appears able to obtain N from sources that other crops cannot tap. The N removed in harvested biomass is often greater than the amount of N applied. In areas with sufficient rainfall, sustainable yields of ~15 Mg ha?1 yr?1 may be achievable by applying ~50 kg N ha?1 yr?1. Harvesting biomass once per season—after plants have senesced and translocated N into perennial tissues—appears to allow plants to maintain an internal N reserve. Two harvests yr?1 may increase yields in some cultivars, but a single annual harvest maximizes yields in many cases. If two harvests are taken, more N must be applied to compensate for the N removed in the midseason harvest. Taking more than two harvests yr?1 often adversely affects long-term productivity and persistence. Switchgrass has potential as a renewable fuel source, but such use will likely require large infrastructural changes; and, even at maximum output, such systems could not provide the energy currently being derived from fossil fuels.  相似文献   

5.
Mercury contamination in agro-ecosystems is one of the most important environmental issues. Farmland soil mercury accumulation and transference to crops in Changshu City, eastern China, were investigated to identify mercury migration capacity from soil to crops. The mean content of mercury for soil samples slightly increased year after year. The mercury accumulation capacity of rice grown (bioaccumulation factor (BAF) 0.028) in submerged soils under reductive conditions was stronger than that of wheat (BAF 0.0073) in dried soils under oxidative conditions. There were clear relationships between soil mercury with organic matter (OM), cation exchange capacity (CEC), and CaCO3 of soil samples, while apparent negative relationships between Hg in rice grain with OM, CEC, and CaCO3 of soil existed. No clear association for Hg between crops and soil was found, indicating that mercury in crop grains is mostly affected by other factors besides soil mercury. Also, soil properties and farming patterns affected mercury transference from soil to crop grains and mercury enrichment capacity in crop grains. The results suggested that appropriate selection of crop species and water management are two major possible ways to reduce total mercury accumulation in crop grains grown in mercury-contaminated regions.  相似文献   

6.
Boller  B. C.  Nösberger  J. 《Plant and Soil》1988,112(2):167-175
The temporal N-uptake patterns of white clover (Trifolium repens L.) mixed with perennial ryegrass (Lolium perenne L.) and of red clover (Trifolium pratense L.) mixed with Italian ryegrass (Lolium multiflorum Lam.) were determined in successive harvests of herbage within the growth cycles of a ley established near Zürich (Switzerland). Rooting patterns were examined by injecting15N-fertilizer at soil depths ranging from 10 to 40 cm. The results were analyzed to determine the effect of variations in time and depth of N-uptake on the15N-based measurement of N from symbiosis (Nsym) and N from transfer (Ntrans).Grasses in mixture appeared to have deeper rooting systems than grass monocultures, which led to an overestimation of N transfer from white clover to perennial ryegrass if15N was spread on the soil surface.White clover generally lagged behind grass in soil N- uptake. Soil N-uptake of red clover slowed down before that of the grass because % Nsym almost reached 100% during the second half of each growth cycle. However, the effect of these dissimilarities on the seasonal average of %Nsym did not exceed 2%.It is concluded that at the observed high levels of N2 fixation, failure to account for the N-uptake patterns of the test and reference crops only slightly affected the estimates of % Nsym and % Ntrans, and did not invalidate the observed differences between species.  相似文献   

7.
Summary The fate of 100 kg N ha–1 applied as15N-urea and its modified forms was followed in 4 successive field-grown wetland rice crops in a vertisol. The first wet season crop recovered about 27 to 36.6% of the applied N depending upon the N source. In subsequent seasons the average uptake was very small and it gradually decreased from 1.4 to 0.5 kg N ha–1 although about 18 to 20, 12 to 17 and 14 to 18 kg ha–1 residual fertilizer N was available in the root zone after harvest of first, second and third crops, respectively. The average uptake of the residual fertilizer N was only 7.6% in the second crop and it decreased to 4.5% in the third and to 3.2% in the fourth crop although all these crops were adequately fertilized with unlabelled urea. The basal application of neem coated urea was more effective in controlling the leaching loss of labelled NH4+NO3–N than split application of uncoated urea. In the first 3 seasons in which15N was detectable, the loss of fertilizer N through leaching as NH4+NO3–N amounted to 0.5 kg ha–1 from neem-coated urea, 1.5 kg from split urea and 4.1 kg from coal tar-coated urea. At the end of 4 crops, most of the labelled fertilizer N (about 69% on average) was located in the upper 0–20 cm soil layer showing very little movement beyond this depth. In the profile sampled upto 60 cm depth, totally about 13.8 kg labelled fertilizer N ha–1 from neem-coated urea, 12.7 kg from coal-tar coated urea, and 11.8 kg from split urea were recovered. The average recovery of labelled urea-N in crops and soil during the entire experimental period ranged between 42 and 51%. After correcting for leaching losses, the remaining 47 to 56% appeared to have been lost through ammonia volatilization and denitrification.  相似文献   

8.
以不同灵芝品种、不同栽培基质、不同栽培方式、不同生长时期获得的菌草灵芝和木屑灵芝为原料,对栽培基质及灵芝子实体中铅、砷、汞、镉4种重金属的含量参照国际标准进行检测,结果表明虽然菌草栽培基质中重金属含量高于木屑栽培基质,但菌草灵芝对重金属富集率远低于木屑灵芝,成熟期的菌草灵芝与木屑灵芝中的重金属含量均低于农业行业标准和国家标准。因此菌草可以替代木屑用作灵芝栽培的营养来源。  相似文献   

9.
M. A. Lazzari 《Plant and Soil》1982,67(1-3):187-191
We examined the distribution of residual15N and its uptake by a foxtail millet crop grown in field lysimeters following at previous garlic crops fertilized with either15N-urea or15N-ammonium sulphate. Garlic apprently removed more N from the lysimeters treated with urea-N than from those treated with (NH4)2SO4. Fertilizer-N in the lysmeters was similar (ca. 32% of original) following millet harvest. About 16 per cent of both fertilizers in the lysimeters was removed by the millet.  相似文献   

10.
Unused inorganic nitrogen (Ninorg) left in agricultural soils will typically leach to deeper soil layers. If it moves below the root zone it will be lost from the system, but the depth of the root zone depends on the crop species grown. In this experiment we studied the effect of 3-year crop sequences, with different combinations of deep-rooted and shallow-rooted crops, on soil Ninorg dynamics to 2.5 m soil depth and the possibility of crop utilization of N leached to deep soil layers. We grew ten different crop sequences for 3 years. The crops and catch crops grown were selected to allow different sequences of deep-rooted and shallow-rooted crops. Very different rooting depths were obtained, from only 0.5 m (leek), to ∼1.0 m (ryegrass and barley), 1.5 m (red beet), 2.0 m (fodder radish and white cabbage) and more than 2.5 m by the chicory catch crop. The results showed a significant retention of Ninorg within the 2.5 m soil profile from one year to the next, but the retained N had leached to deeper parts of the profile during the winter season. Only little Ninorg was retained over two winter seasons. The retention in the deeper soil layers allowed Ninorg to be taken up by succeeding deep-rooted main crops or catch crops. The effects of crop rooting depth on Ninorg in the subsoil layers from 1.0 to 2.5 m were striking. White cabbage reduced Ninorg below 1.0 m with up to 113 kg N ha-1 during its growth. Grown after catch crops, leek and red beet left on average 60 kg N ha−1 less below 1.0 m than leek and red beet grown without a preceding catch crop. We conclude that it is possible to design crop rotations with improved nitrogen use efficiency by using the differences in crop rooting patterns; deep-rooted crops or catch crops can be used to recover Ninorg leached after previous crops, and catch crops can be grown before shallow-rooted crops to lift the deep Ninorg up to layers where these crops have their roots.  相似文献   

11.
Summary A loam soil containing an organic fraction labelled with15N was used for pot experiments with spring barley, rye-grass and clover. The organically bound labelled N was mineralized at a rate corresponding to a half-life of about 9 years. Fertilization with 106 and 424 kgN/ha of unlabelled N in the form of KNO3 significantly increased uptake of labelled N from the soil in barley and the first harvest of rye-grass crops. The fertilized plants removed all the labelled NH4 and NO3 present in the soil, whereas the unfertilized plants removed only about 80%. The second, third and fourth harvests of the unfertilized rye-grass took up more labelled N than the fertilized rye-grass. The total uptake in the four harvests was similar whether the plants were fertilized or not. Application of KCl to barley plants in amounts equivalent to that of KNO3 resulted in a small but insignificant increase in uptake of labelled N. The uptake of labelled N in the first harvest of clover which was not fertilized but inoculated with Rhizobium was similar to that of the fully fertilized rye-grass indicating that the biological fixation of N had the same effect as addition of N-fertilizer. N uptake in the following harvests was lower and the total uptake by four harvests of clover was similar to that of rye-grass. There was no indication that fertilization with KNO3 accelerated the mineralization of the organically bound labelled N. The observed apparent ‘priming effect’ of the fertilizer on the uptake of labelled N was compensated by subsequent crops and harvests, and it seems to arise from a more thorough search of the soil volume by a better developed root system of the fertilized plants.  相似文献   

12.
Although the use of 15N fertilizers to measure nitrogen (N2) fixed in crops has increased substantially in recent years, some methodological uncertainties still remain unresolved. The results obtained from a greenhouse study of soybean [Glycine max. (L.) Merrill] inoculated by six different methods have been examined for potential errors arising from incorporating 15N labelled fertilizer into soil to estimate N2 fixed in pods or shoots or the whole plant at three growth stages (50% flowering, pod-initiation and physiological maturity) using as reference crops, an uninoculated soybean cultivar and a non-nodulating soybean isoline. At the first harvest when N2 fixed was very low, the estimates of N2 fixed by the two reference crops did not match. At this stage the uninoculated soybean estimated about four times as much N2 fixed in the symbiotic soybean as that measured using the non-nodulating soybean. For the second and third harvests, there were substantial increases in N2 fixed, and both the non-nodulating and uninoculated soybean were equally suitable as reference crops for assessing N2 fixed in the symbiotic soybean. These results indicate how critical and difficult the choice of the reference crop could be at early harvests, or when N2 fixed is low. Even though there were significant differences in 15N enrichments in different organs (generally nodules < pods < roots < shoots), the estimates of N2 fixed in soybean plants obtained by excluding roots and nodules did not differ much from those based on the whole plant. Of the above-ground organs, % N2 fixed in pods (containing seeds) was closest to that of the whole plant (similar at P<0.05 at physiological maturity). However, the total N2 fixed in pods or shoots was substantially lower than that fixed by the whole plant (P<0.05), although that for the pods and enclosed seeds once again was closer to N2 fixed in the whole plant than that in the shoots.  相似文献   

13.
Piptoporus betulinus is a wood-rotting basidiomycete used in medicine and biotechnology. However, to date, no indoor method for cultivation of this mushroom fruiting bodies has been developed. Here we present the first report of successful production of P. betulinus mature fruiting bodies in artificial conditions. Four P. betulinus strains were isolated from natural habitats and their mycelia were inoculated into birch sawdust substrate supplemented with organic additives. All the strains effectively colonized the medium but only one of them produced fruiting bodies. Moisture and organic supplementation of the substrate significantly determined the fruiting process. The biological efficiency of the P. betulinus PB01 strain cultivated on optimal substrate (moisture and organic substance content of 55 and 65 and 25 or 35 %, respectively) ranged from 12 to 16 %. The mature fruiting bodies reached weight in the range from 50 to 120 g. Anticancer properties of water and ethanol extracts isolated from both cultured and nature-derived fruiting bodies of P. betulinus were examined in human colon adenocarcinoma, human lung carcinoma and human breast cancer cell lines. The studies revealed antiproliferative and antimigrative properties of all the investigated extracts. Nevertheless the most pronounced effects demonstrated the ethanol extracts, obtained from fruiting bodies of cultured P. betulinus. Summarizing, our studies proved that P. betulinus can be induced to fruit in indoor artificial culture and the cultured fruiting bodies can be used as a source of potential anticancer agents. In this respect, they are at least as valuable as those sourced from nature.  相似文献   

14.
Identification of mechanisms that decrease cadmium accumulation in plants is a prerequisite for minimizing dietary uptake of cadmium from contaminated crops. Here, we show that cadmium inhibits nitrate transporter 1.1 (NRT1.1)-mediated nitrate (NO3) uptake in Arabidopsis (Arabidopsis thaliana) and impairs NO3 homeostasis in roots. In NO3-containing medium, loss of NRT1.1 function in nrt1.1 mutants leads to decreased levels of cadmium and several other metals in both roots and shoots and results in better biomass production in the presence of cadmium, whereas in NO3-free medium, no difference is seen between nrt1.1 mutants and wild-type plants. These results suggest that inhibition of NRT1.1 activity reduces cadmium uptake, thus enhancing cadmium tolerance in an NO3 uptake-dependent manner. Furthermore, using a treatment rotation system allowing synchronous uptake of NO3 and nutrient cations and asynchronous uptake of cadmium, the nrt1.1 mutants had similar cadmium levels to wild-type plants but lower levels of nutrient metals, whereas the opposite effect was seen using treatment rotation allowing synchronous uptake of NO3 and cadmium and asynchronous uptake of nutrient cations. We conclude that, although inhibition of NRT1.1-mediated NO3 uptake by cadmium might have negative effects on nitrogen nutrition in plants, it has a positive effect on cadmium detoxification by reducing cadmium entry into roots. NRT1.1 may regulate the uptake of cadmium and other cations by a common mechanism.Cadmium is highly toxic to humans (Nicholson et al., 1983), and its primary route of entry into the body is through crops grown in cadmium-contaminated soil (Clemens et al., 2013). A recent survey indicated that vegetables and rice (Oryza sativa) account for approximately 40% and 38%, respectively, of total cadmium exposure in residents of Shanghai, China’s largest city (He et al., 2013). However, cadmium contamination of agricultural soils as a result of rapid industrial development and release of agrochemicals into the environment is an increasingly serious problem. Many strategies have been proposed for remediating cadmium-contaminated soil to prevent cadmium uptake by crops. These strategies include the dig-and-dump method or encapsulation of the contaminated soil, chemical immobilization or extraction of cadmium, and phytoremediation by cadmium-hyperaccumulating plants (Pulford and Watson, 2003). However, the dig-and-dump and chemical methods are expensive, whereas phytoremediation requires several growing seasons to be effective, making it impractical in regions where farmland is limited and food supply insufficient.The shortfalls of these strategies have prompted researchers to develop alternative techniques that are cost-effective and interfere less with crop production. Use of nitrogen fertilizers is one of the most important agronomic practices and it has been suggested that their appropriate use might provide a relatively inexpensive, time-saving, and effective strategy for reducing cadmium entry into, and accumulation in, crops because NO3 facilitates cadmium uptake in hydroponically grown plants (Sarwar et al., 2010; Luo et al., 2012). However, in a preliminary study, we found that, in plants grown in soil, the effect of the nitrogen form on cadmium accumulation was strongly associated with the pH-buffering capacity of the soil. In soil with a lower pH-buffering capacity, application of ammonium (NH4+) resulted in higher cadmium levels in plants than application of NO3, probably as a result of soil acidification by NH4+, and the opposite effect was seen when plants were grown in soil with higher pH-buffering capacity (S.K. Fan, S.T. Du, and C.W. Jin, unpublished data). This suggests that management of the use of nitrogen fertilizers to prevent cadmium entry into crops might be difficult because of the wide variation in soil pH-buffering capacity.Because NO3 facilitates cadmium uptake in hydroponically grown plants as described above, modification of NO3 uptake pathways in plants might also affect cadmium uptake, in which case modifying these pathways to reduce cadmium entry into crops could circumvent the risks and the difficulties involved in nitrogen fertilizer management. Exposure to cadmium has been shown to reduce NO3 uptake by roots (Hernández et al., 1997; Gouia et al., 2000; Rizzardo et al., 2012), but this has been assumed to be deleterious to plant growth (Finkemeier et al., 2003; Rizzardo et al., 2012). The process by which NO3 is taken up across the root plasma membrane is complex, and several nitrate transporters (NRTs) involved in NO3 uptake from the growth medium have been characterized. In Arabidopsis (Arabidopsis thaliana), NRT1.1 is a dual-affinity transporter involved in both high- and low-affinity uptake, NRT1.2 is involved only in low-affinity NO3 uptake, whereas NRT2.1, NRT2.2, and NRT2.4 are only involved in high-affinity NO3 uptake (Wang et al., 2012; Léran et al., 2014). However, the transporter responsible for the cadmium-induced decrease in NO3 uptake remains unknown. Given the presumed association between NO3 uptake and cadmium uptake, it is important to identify the molecular mechanism involved in this process, and it is particularly important to determine whether the modulation of relevant NO3 transporters affects cadmium entry into plants.In this study, we investigated the relationship between NO3 uptake and cadmium uptake in Arabidopsis roots. To our knowledge, our results reveal a new mechanism for resisting cadmium toxicity: Cadmium reduces NO3 uptake by inhibiting NRT1.1 activity, which in turn reduces cadmium entry into root cells. As a result, cadmium levels in plants are lower and plant growth is improved. Our findings may provide a strategy for minimizing cadmium accumulation in crops grown in contaminated soil using biotechnological pathways to decrease NO3 uptake.  相似文献   

15.
To increase our understanding of the fate of applied nitrogen inPhaseolus vulgaris crops grown under tropical conditions,15N-labelled urea was applied to bean crops and followed for three consecutive cropping periods. Each crop received 100 kg urea-N ha?1 and 41 kg KCl?K ha?1. At the end of each period we estimated each crop's recovery of the added nitrogen, the residual effects of nitrogen from the previous cropping period, the distribution of nitrogen in the soil profile, and leaching losses of nitrogen. In addition, to evaluate potential effects of added phosphorus on nitrogen cycling in this crop, beans were treated at planting with either 35 kg rock-phosphate-P, 35 kg superphosphate-P, or 0 kg P ha?1. Results showed that 31.2% of the nitrogen in the first crop was derived from the applied urea, which represents a nitrogen utilization efficiency of 38.5%. 6.2% of the nitrogen in the second crop was derived from fertilizer applied to the first crop, and 1.4% of the nitrogen in the third crop. Nitrogen utilization efficiencies for these two crops, with respect to the nitrogen applied to the first crop, were 4.6 and 1.2%, respectively. In total, the three crops recovered 44.3% of the nitrogen applied to the first crop. The remainder of the nitrogen was either still in the soil profile or had been lost by leaching, volatilization or denitrification.15N enrichment of mineral-N(NO3+NH4) suggests that at the end of the second crop, the pulse of fertilizer applied to the first crop had probably passed the 120 cm depth.15N enrichment of organic-N suggests that root activity of beans and weeds transported nitrogen to 90–120 cm (or deeper). We could account for 109 kg fertilizer-N ha?1 in harvested biomass, crop residue, and soil at the end of the first cropping period. This indicates an experimental error of about 10% if no nitrogen was lost by volatilization, denitrification, or leaching below 120 cm. At the end of the second and third crops, 76 and 80 kg N ha?1, respectively, could be accounted for, suggesting that 20 to 25% of the applied-N was lost from the system over a 2-crop period. The two types of added phosphorus did not significantly differ in their effects on bean yields.  相似文献   

16.
Summary Branch sampling of branch diameter and fruit crop on 22 species of Barbadian trees and shrubs provided sufficient data to build regressions between plant size and fruit crop weight. Orchard plants bear much more fruit than wild, feral or garden plants of similar size, but this difference disappears in multiple regression of fruit crop weight (F in g, fresh mass) on branch or stem diameter (D in cm) and individual fruit weight (W in g): F=22D1.2 W0.57. This explains 89% of the variation in F and successfully predicts crop weight for wild tropical and temperate trees and shrubs, but underestimated the crops on commercial, temperate, fruit trees by an order of magnitude. Comparisons of crop weight for feral, wild, and garden plants (Ff) using a simple regression Ff=47D1.9 show that crop weight is a minor load relative to branch weight for larger branches. Although fruit crops represent a declining proportion of total plant weight as plants become larger, the crops become larger relative to leaf and twig weight and in this sense, reproductive investment increases in larger plants. Finally, our equations, combined with the self-thinning rule, suggest that stands of large species of fruit plants produce more fruit per unit of land area than stands of small ones.  相似文献   

17.
【背景】工厂化栽培中,杏鲍菇是不定点出菇,通常采用人工疏蕾的方法来实现对子实体数目的控制,但目前关于人工疏蕾保留子实体的数目无具体的研究。【目的】通过人工疏蕾的方式,研究保留不同子实体数目对杏鲍菇产量及品质的影响。【方法】对各处理组进行基质利用情况测定,对采收后各组子实体进行产量、形态指标及质构特性的测定。【结果】保留3—4个子实体的基质利用率较高,在生产实际中对成本的浪费较少;保留不同子实体数目对子实体形态指标、单菇重量及单包产量都有显著影响,保留1个子实体时,单菇重量最大但单包产量最低,保留4个子实体时,单包产量较高且子实体形态一致;从质构特性来看,保留子实体数目为4个时,杏鲍菇子实体品质最好、口感最佳。【结论】在杏鲍菇工厂化生产的人工疏蕾环节,保留子实体数目为3—4个时可以减少对成本的浪费,获得产量较高、品质较好的产品。  相似文献   

18.
19.
The complex formation of zinc, cadmium, and mercury with D-penicillamine has been studied by pH titrations, using computer evaluation of the most likely complexes, which were found to be of the general formulas ML, MH2L2, MHL2-, ML22?, and ML34?. The formation constants of the complexes were determined at 25 0°C in 0.1 M KNO3. The magnitude of the respective constants cannot, by itself, account for the lack of effect of penicillamine treatment for mercury and cadmium poisoning.  相似文献   

20.
The 8,000 biogas plants currently in operation in Germany are mainly fed with biomass from annual crops. However, feedstock from perennial crops such as miscanthus is expected to be more environmentally benign. If miscanthus is to be used in greater amounts as a substrate for anaerobic digestion, storage will become a relevant topic, as a continuous supply of biomass throughout the year is necessary. The objective of this study was to identify the miscanthus harvest time that best balances the simultaneous achievement of high silage quality, high digestibility and high methane hectare yields. For this purpose, biomass from four miscanthus genotypes with varying senescence characteristics was harvested on three different dates in autumn 2017. Part of the biomass was ensiled, and the methane yield of both ensiled and non‐ensiled biomass was analysed in a biogas batch test to assess the effect of ensiling on the methane hectare yield and digestion velocity. The ensiled biomass was found to have an up to 7% higher substrate‐specific methane yield and also showed a higher digestion velocity than the non‐ensiled biomass. The silage quality was best when miscanthus was harvested in mid‐October, due to highest lactic acid content (average: 3.0% of DM) and lowest pH (average: 4.39) compared to the harvests in mid‐September and beginning of October. Mass losses during ensiling (as high as 7.6% of fresh matter for the M. sinensis genotype Sin55) were compensated for by a higher substrate‐specific methane yield (up to 353 Nml CH4 (g oDM)?1) in ensiled miscanthus. This resulted in non‐significantly different methane hectare yields for non‐ensiled (average: 4.635 Nm3 CH4/ha) and ensiled miscanthus biomass (4.803 Nm3 CH4/ha). A comparison of the four genotypes suggests that Miscanthus x giganteus is the most suitable genotype for ensiling as it had the best silage quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号