首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
ABSTRACT. Microsporidia of the genus Encephalitozoon undergo merogony and sporogony in a parasitophorous vacuole within the host cell. Cultured green monkey kidney cells infected with Encephalitozoon hellem were loaded with the fluorescent dyes fura-2 or BCECF in order to measure intracellular concentrations of calcium and hydrogen ions respectively. Both the parasitophorous vacuole calcium concentration and pH values resembled those of the host cell cytoplasm in infected cells. Calcein entered the parasitophorous vacuole but not other host cell vacuoles or parasite stages within the parasitophorous vacuole. The lack of a pH or calcium concentration gradient across the parasitophorous vacuole membrane and the permeability of this membrane to a large anion such as calcein suggest that the vacuole membrane surrounding E. hellem resembles that surrounding some other intracellular parasites such as Toxoplasma gondii. A potential role is discussed for the parasitophorous vacuole calcium concentration in germination in situ.  相似文献   

2.
Fluorescence microscopy, using dyes which specifically label mitochondria, endoplasmic reticulum and the Golgi complex, and transmission electron microscopy, were used to analyze the changes which occur in the organization of these structures during interaction of Toxoplasma gondii with host cells. In uninfected cells the mitochondria are long filamentous structures which radiate from the nuclear region toward the cell periphery. After parasite penetration they become shorter and tend to concentrate around the parasite-containing vacuole (parasitophorous vacuole) located in the cytoplasm of the host cell. The mitochondria of extracellular parasites, but not of those located within the parasitophorous vacuole, were also stained by rhodamine 123. Labeling with DiOC6, which binds to elements of the endoplasmic reticulum, in association with transmission electron microscopy, revealed a concentration of this structure around the parasitophorous vacuole. The membrane lining this vacuole was also stained, suggesting that components of the endoplasmic reticulum are also incorporated into this membrane. The Golgi complex, as revealed by staining with NBD-ceramide and electron microscopy, maintains its perinuclear position throughout the evolution of the intracellular parasitism.  相似文献   

3.
A number of cysteine and serine protease inhibitors blocked the intracellular growth and replication of Toxoplasma gondii tachyzoites. Most of these inhibitors caused only minor alterations to parasite morphology irrespective of the effects on the host cells. However, three, cathepsin inhibitor III, TPCK and subtilisin inhibitor III, caused extensive swelling of the secretory pathway of the parasite (i.e. the ER, nuclear envelope, and Golgi complex), caused the breakdown of the parasite surface membrane, and disrupted rhoptry formation. The disruption of the secretory pathway is consistent with the post-translational processing of secretory proteins in Toxoplasma, and with the role of proteases in the maturation/activation of secreted proteins in general. Interestingly, while all parasites in an individual vacuole (the clonal progeny of a single invading parasite) were similarly affected, parasites in different vacuoles in the same host cell showed different responses to these inhibitors. Such observations imply that there are major differences in the biochemistry/physiology between tachyzoites within different vacuoles and argue that adverse effects on the host cell are not always responsible for changes in the parasite. Treatment of established parasites also leads to an accumulation of abnormal materials in the parasitophorous vacuole implying that materials deposited into the vacuole normally undergo proteolytic modification or degradation. Despite the often extensive morphological changes, nothing resembling lysosomal bodies was seen in any treated parasites, consistent with previous observations showing that mother cell organelles are not recycled by any form of autophagic-lysosomal degradation, although the question of how the parasite recycles these organelles remains unanswered.  相似文献   

4.
Rapid discharge of secretory organelles called rhoptries is tightly coupled with host cell entry by the protozoan parasite Toxoplasma gondii. Rhoptry contents were deposited in clusters of vesicles within the host cell cytosol and within the parasitophorous vacuole. To examine the fate of these rhoptry-derived secretory vesicles, we utilized cytochalasin D to prevent invasion, leading to accumulation of protein-rich vesicles in the host cell cytosol. These vesicles lack an internal parasite and are hence termed evacuoles. Like the mature parasite-containing vacuole, evacuoles became intimately associated with host cell mitochondria and endoplasmic reticulum, while remaining completely resistant to fusion with host cell endosomes and lysosomes. In contrast, evacuoles were recruited to pre-existing, parasite-containing vacuoles and were capable of fusing and delivering their contents to these compartments. Our findings indicate that a two-step process involving direct rhoptry secretion into the host cell cytoplasm followed by incorporation into the vacuole generates the parasitophorous vacuole occupied by TOXOPLASMA: The characteristic properties of the mature vacuole are likely to be determined by this early delivery of rhoptry components.  相似文献   

5.
Upon host cell invasion the apicomplexan parasite Toxoplasma gondii resides in a specialized compartment termed the parasitophorous vacuole that is derived from the host cell membrane but modified by the parasite. Despite the segregation of the parasitophorous vacuole from the host endocytic network, the intravacuolar parasite has been shown to acquire cholesterol from the host cell. In order to characterize further the role of sterol metabolism in T. gondii biology, we focused our studies on the activity of acyl-CoA:cholesterol acyltransferase (ACAT), a key enzyme for maintaining the intracellular homeostasis of cholesterol through the formation of cholesterol esters. In this study, we demonstrate that ACAT and cholesterol esters play a crucial role in the optimal replication of T. gondii. Moreover, we identified ACAT activity in T. gondii that can be modulated by pharmacological ACAT inhibitors with a consequent detrimental effect on parasite replication.  相似文献   

6.
Toxoplasma gondii invades and proliferates in human umbilical vein endothelial cells where it resides in a parasitophorous vacuole. In order to analyze which components of the endothelial cell plasma membrane are internalized and become part of the parasitophorous vacuole membrane, the culture of endothelial cells was labeled with cationized ferritin or UEA I lectin or anti Class I human leukocyte antigen (HLA) before or after infection with T. gondii. The results showed no cationized ferritin and UEA I lectin in any parasitophorous vacuole membrane, however, the Class I HLA molecule labeling was observed in some endocytic vacuoles containing parasite until 1 h of interaction with T. gondii. After 24 h parasite-host cell interaction, the labeling was absent on the vacuolar membrane, but presents only in small vesicles near parasitophorous vacuole. These results suggest the anionic site and fucose residues are excluded at the time of parasitophorous vacuole formation while Class I HLA molecules are present only on a minority of Toxoplasma-containing vacuoles.  相似文献   

7.
Toxoplasma gondii actively penetrates its vertebrate host cell to establish a nonfusigenic compartment called the parasitophorous vacuole (PV) that has previously been characterized primarily in phagocytic cells. To determine the fate of this unique compartment in nonphagocytic cells, we examined the trafficking of host cell proteins and lipids in Toxoplasma-infected fibroblasts using quantitative immunofluorescence and immunoelectron microscopy. Toxoplasma-containing vacuoles remained segregated from all levels of the endocytic pathway, as shown by the absence of delivery of transferrin receptors, mannose phosphate receptors, and the lysosomal-associated protein LAMP1 to the vacuole. The PV was also inaccessible to lipids (DiIC16, and GM1) that were internalized from the plasma membrane via the endocytic system. In contrast, vacuoles containing dead parasites or zymosan sequentially acquired both endosomal and lysosomal protein markers and host lipids, reflecting the competency of fibroblasts to process phagocytic vacuoles. The mature PV often lies adjacent to the host cell Golgi, suggesting that it may intersect with vesicles from the exocytic pathway. Despite this proximity, the PV was inaccessible to nitrobenzadiazole-labeled sphingolipids exported from the Golgi and did not contain the host protein markers AP1 or beta-COP. Our results demonstrate that Toxoplasma resides in a compartment that excludes delivery of protein and lipid components from the host cell endocytic and exocytic pathways.  相似文献   

8.
To explore the mechanisms by which Cryptosporidium parvum infects epithelial cells, we performed a detailed morphological study by serial electron microscopy to assess attachment to and internalization of biliary epithelial cells by C. parvum in an in vitro model of human biliary cryptosporidiosis. When C. parvum sporozoites initially attach to the host cell membrane, the rhoptry of the sporozoite extends to the attachment site; both micronemes and dense granules are recruited to the apical complex region of the attached parasite. During internalization, numerous vacuoles covered by the parasite's plasma membrane are formed and cluster together to establish a preparasitophorous vacuole. This preparasitophorous vacuole comes in contact with host cell membrane to form a host cell-parasite membrane interface, beneath which an electron-dense band begins to appear within the host cell cytoplasm. Simultaneously, host cells display membrane protrusion along the edge of the host cell-parasite membrane interface, resulting in the formation of a mature parasitophorous vacuole that completely covers the parasite. During internalization, vacuole-like structures appear in the apical complex region of the attached sporozoite, which bud out into host cells. A tunnel directly connecting the parasite to the host cell cytoplasm forms during internalization and remains when the parasite is totally internalized. Immunoelectron microscopy showed that sporozoite-associated proteins were localized along the dense band and at the parasitophorous vacuole membrane. These morphological observations provide evidence that secretion of parasite apical organelles and protrusion of host cell membrane play an important role in the attachment and internalization of host epithelial cells by C. parvum.  相似文献   

9.
The Plasmodium liver forms are bridgehead stages between the mosquito sporozoite stages and mammalian blood stages that instigate the malaria disease. In hepatocytes, Plasmodium achieves one of the fastest growth rates among eukaryotic cells. However, nothing is known about host hepatic cell interactions, e.g. nutrient scavenging and/or subversion of cellular functions necessary for Plasmodium development and replication. Plasmodium usually invades hepatocytes by establishing a parasitophorous vacuole wherein it undergoes multiple nuclear division cycles. We show that Plasmodium preferentially develops in the host juxtanuclear region. By comparison with the parasitophorous vacuole of other apicomplexan parasites which associate with diverse host organelles, the Plasmodium parasitophorous vacuole only forms an association with the host endoplasmic reticulum. Intrahepatic Plasmodium actively modifies the permeability of its vacuole to allow the transfer of a large variety of molecules from the host cytosol to the vacuolar space through open channels. In contrast with malaria blood stages, the pores within the parasitophorous vacuole membrane of the liver stage display a smaller size as they restrict the passage of solutes to less than 855Da. These pores are stably maintained during parasite karyokinesis until complete cellularisation. Host-derived cholesterol accumulated at the parasitophorous vacuole membrane may modulate the channel activity. These observations define the parasitophorous vacuole of the Plasmodium liver stage as a dynamic and highly permeable compartment that can ensure the sustained supply of host molecules to support parasite growth in the nutrient-rich environment of liver cells.  相似文献   

10.
Together with micronemes and rhoptries, dense granules are specialised secretory organelles of Apicomplexa parasites. Among Apicomplexa, Plasmodium represents a model of parasites propagated by way of an insect vector, whereas Toxoplasma is a model of food borne protozoa forming cysts. Through comparison of both models, this review summarises data accumulated over recent years on alternative strategies chosen by these parasites to develop within a parasitophorous vacuole and explores the role of dense granules in this process. One of the characteristics of the Plasmodium erythrocyte stages is to export numerous parasite proteins into both the host cell cytoplasm and/or plasma membrane via the vacuole used as a step trafficking compartment. Whether this feature can be correlated to few storage granules and a restricted number of dense granule proteins, is not yet clear. By contrast, the Toxoplasma developing vacuole is decorated by abundantly expressed dense granule proteins and is characterised by a network of membranous nanotubes. Although the exact function of most of these proteins remains currently unknown, recent data suggest that some of these dense granule proteins could be involved in building the intravacuolar membranous network. Conserved expression of the Toxoplasma dense granule proteins throughout most of the parasite stages suggests that they could also be key elements of the cyst formation.  相似文献   

11.
The participation of cell surface anionic sites on the interaction between tachyzoites of Toxoplasma gondii and macrophages and the process of phagosome-lysosome fusion were analyzed using cationized ferritin as a marker of cell surface anionic sites and albumin-colloidal gold as a marker for secondary lysosomes. Incubation of either the macrophages or the parasites with cationized ferritin before the interaction increased the ingestion of parasites by macrophages. Anionic sites of the macrophage's surface, labeled with cationized ferritin before the interaction, were internalized together with untreated parasites. However, after interaction with glutaraldehyde-fixed or specific antibody-coated parasites, the cationized ferritin particles were observed in endocytic vacuoles which did not contain parasites. Macrophages previously labeled with albumin-gold at 37 degrees C, were incubated in the presence of cationized ferritin at 4 degrees C and then incubated with untreated or specific antibody-coated parasites. After interaction with opsonized parasites, the colloidal gold particles were observed in the parasitophorous vacuoles while the cationized ferritin particles were observed in cytoplasmic vesicles. However, when the interaction was carried out with untreated parasites, the parasitophorous vacuoles exhibited ferritin particles while the colloidal gold particles were observed in cytoplasmic vesicles. These observations, in association with studies previously reported, suggest that the state of the parasite surface determines the mechanism of parasite entry into the macrophage, the composition of the membrane lining the parasitophorous vacuole and the ability of lysosomes to fuse with the vacuoles.  相似文献   

12.
The intracellular parasite Toxoplasma gondii develops inside a parasitophorous vacuole (PV) that derives from the host cell plasma membrane during invasion. Previous electron micrograph images have shown that the membrane of this vacuole undergoes an extraordinary remodeling with an extensive network of thin tubules and vesicles, the intravacuolar network (IVN), which fills the lumen of the PV. While dense granule proteins, secreted during and after invasion, are the main factors for the organization and tubulation of the network, little is known about the source of lipids used for this remodeling. By selectively labeling host cell or parasite membranes, we uncovered evidence that strongly supports the host cell as the primary, if not exclusive, source of lipids for parasite IVN remodeling. Fluorescence recovery after photobleaching (FRAP) microscopy experiments revealed that lipids are surprisingly dynamic within the parasitophorous vacuole and are continuously exchanged or replenished by the host cell. The results presented here suggest a new model for development of the parasitophorous vacuole whereby the host provides a continuous stream of lipids to support the growth and maturation of the PVM and IVN.  相似文献   

13.
Nyalwidhe J  Lingelbach K 《Proteomics》2006,6(5):1563-1573
After invasion of erythrocytes, the human malaria parasite Plasmodium falciparum resides within a parasitophorous vacuole (PV) which forms an interface between the host cell cytosol and the parasite surface. This vacuole protects the parasite from potentially harmful substances, but allows access of essential nutrients to the parasite. Furthermore, the vacuole acts as a transit compartment for parasite proteins en route to the host cell cytoplasm. Recently we developed a strategy to biotin label soluble proteins of the PV. Here, we have paired this strategy with a high-throughput MALDI-TOF-MS analysis to identify 27 vacuolar proteins. These proteins fall into the following main classes: chaperones, proteases, and metabolic enzymes, consistent with the expected functions of the vacuole. These proteins are likely to be involved in several processes including nutrient acquisition from the host cytosol, protein sorting within the vacuole, and release of parasites at the end of the intraerythrocytic cycle.  相似文献   

14.
15.
Toxoplasma gondii infects a variety of different cell types in a range of different hosts. Host cell invasion by T. gondii occurs by active penetration of the host cell, a process previously described as independent of host actin polymerization. Also, the parasitophorous vacuole has been shown to resist fusion with endocytic and exocytic pathways of the host cell. ADP-ribosylation factor-6 (ARF6) belongs to the ARF family of small GTP-binding proteins. ARF6 regulates membrane trafficking and actin cytoskeleton rearrangements at the plasma membrane. Here, we have observed that ARF6 is recruited to the parasitophorous vacuole of tachyzoites of T. gondii RH strain and it also plays an important role in the parasite cell invasion with activation of PI3-kinase and recruitment of PIP2 and PIP3 to the parasitophorous vacuole of invading parasites. Moreover, it was verified that maintenance of host cell actin cytoskeleton integrity is important to parasite invasion.  相似文献   

16.
Toxoplasma gondii relies on its actin cytoskeleton to glide and enter its host cell. However, T. gondii tachyzoites are known to display a strikingly low amount of actin filaments, which suggests that sequestration of actin monomers could play a key role in parasite actin dynamics. We isolated a 27-kDa tachyzoite protein on the basis of its ability to bind muscle G-actin and demonstrated that it interacts with parasite G-actin. Cloning and sequence analysis of the gene coding for this protein, which we named Toxofilin, showed that it is a novel actin-binding protein. In in vitro assays, Toxofilin not only bound to G-actin and inhibited actin polymerization as an actin-sequestering protein but also slowed down F-actin disassembly through a filament end capping activity. In addition, when green fluorescent protein-tagged Toxofilin was overexpressed in mammalian nonmuscle cells, the dynamics of actin stress fibers was drastically impaired, whereas green fluorescent protein-Toxofilin copurified with G-actin. Finally, in motile parasites, during gliding or host cell entry, Toxofilin was localized in the entire cytoplasm, including the rear end of the parasite, whereas in intracellular tachyzoites, especially before they exit from the parasitophorous vacuole of their host cell, Toxofilin was found to be restricted to the apical end.  相似文献   

17.
The asexual development of Eimeria contorta from sporozoites to first-generation merozoites in tissue culture was investigated with the electron microscope. Sporozoites with a three-layered pellicle, 26 subpellicular microtubules, a conoid, 4-7 rhoptries, and an abundance of micronemes actively entered host cells and showed direct contact to the host cell's cytoplasm. Shortly after penetration, small vacuoles surrounding the parasite merged into a parasitophorous vacuole. Inside this vacuole, sporozoites assumed a definite U-shape before transformation into schizonts took place. This process was characterised by the occurrence of subpellicular microtubules exclusively in the anterior half of the sporozoite, by a degeneration of the 2 inner pellicular membranes, by an outpocketing of the parasite's surface, and by the arrangement of microtubules in clusters. About 25 merozoites were formed at the surface of mature schizonts, to which they remained attached at their posterior pole. A polar ring was present at that area. Anterior and posterior refractile bodies were conspicuous in merozoites and showed close association with mitochondria. The significance of a fibrillar substructure in rhoptries and micronemes is discussed, and special attention is drawn to the pathway of nutrient transport from host cell mitochondria and dictyosomes through intravacuolar folds, parasitophorous vacuole and crescent body into the parasite's food vacuoles.  相似文献   

18.
Mouse omentum was studied after intraperitoneal challenge with tachyzoites of Toxoplasma gondii. Parasites inhabit omental histiocytes, fibroblasts, mesothelial cells, and free peritoneal macrophages. Recently infected cells showed enhanced metabolic and functional activity. Villous projections of the parasitophorous vacuole wall appeared, usually opposite the anterior pole of the parasite. In mesothelial cells, projections formed terminal swellings not observed in other infected cells. Activation of host cells was followed by reduction of the density of the cytoplasmic matrix, autophagosome formation, and intracellular edema, indicating the damage. The wall of the parasitophorous vacuole loses the supporting host cell endoplasmic reticulum that was attached to the vacuole just after entrance of the parasite into the cell. Then lysis of the parasitophorous vacuole and complete cell destruction occurs. The growth of parasites in undamaged cells does not coincide with the inflammatory response. Inflammation of the peritoneum develops only after the start of mass destruction of infected cells. Thus tachyzoites of Toxoplasma exert significant pathogenic effects by their ability to activate the host cell, causing lysis of the parasitophorous vacuole and subsequent destruction of the entire cell.  相似文献   

19.
The intracellular forms of the apicomplexan parasites Plasmodium, Toxoplasma and Eimeria reside within a parasitophorous vacuole. The nutrients required by these intracellular parasites to support their high rate of growth and replication originate from the host cell which, in turn, takes up such compounds from the extracellular milieu. Solutes moving from the external medium to the interior of the parasite, are confronted by a series of three membranes --the host cell membrane, the parasitophorous vacuole membrane and the parasite plasma membrane. Each constitutes a potential permeability barrier which must be either crossed or bypassed. It is the mechanisms by which this occurs that are the subject of this review.  相似文献   

20.
Gruenberg J  van der Goot FG 《Cell》2006,125(2):226-228
In this issue of Cell, Coppens and coworkers (Coppens et al., 2006) describe how Toxoplasma gondii, an obligate intracellular parasite, feeds on the host. Coppens et al. provide evidence that the parasite takes host cell endosomes and lysosomes hostage by sequestering them where the parasite resides, within invaginations of the parasitophorous vacuole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号