首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 235 毫秒
1.
2.
The effects of foliar spraying with spermidine (Spd) on antioxidant system in tomato (Lycopersicon esculentum Mill.) seedlings were investigated under high temperature stress. The high temperature stress significantly inhibited plant growth and reduced chlorophyll (Chl) content. Application of exogenous 1 mM Spd alleviated the inhibition of growth induced by the high temperature stress. Malondialdehyde (MDA), hydrogen peroxide (H2O2) content and superoxide anion (O2) generation rate were significantly increased by the high temperature stress, but Spd significantly reduced the accumulation of reactive oxygen species (ROS) and MDA content under the stress. The high temperature stress significantly decreased glutathione (GSH) content and activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR), but increased contents of dehydroascorbic acid (DHA), ascorbic acid (AsA), and oxidized glutathione (GSSG) in tomato leaves. However, Spd significantly increased the activities of antioxidant enzymes, levels of antioxidants and endogenous polyamines in tomato leaves under the high temperature stress. In addition, to varying degrees, Spd regulated expression of MnSOD, POD, APX2, APX6, GR, MDHAR, DHAR1, and DHAR2 genes in tomato leaves exposed to the high temperature stress. These results suggest that Spd could change endogenous polyamine levels and alleviate the damage by oxidative stress enhancing the non-enzymatic and enzymatic antioxidant system and the related gene expression.  相似文献   

3.
通过盆栽实验, 对干旱胁迫下黄土高原地区冰草(Agropyron cristatum)叶片的抗坏血酸和谷胱甘肽合成及循环代谢相关酶及物质含量进行了研究。结果表明: 冰草可以通过增强叶片的抗坏血酸和谷胱甘肽合成及循环代谢酶: 抗坏血酸过氧化物酶、谷胱甘肽还原酶、脱氢抗坏血酸还原酶、单脱氢抗坏血酸还原酶、L-半乳糖酸-1, 4-内酯脱氢酶和γ-谷氨酰半胱氨酸合成酶活性, 维持植物体内抗坏血酸和谷胱甘肽水平及氧化还原状态, 从而抵御干旱造成的氧化胁迫。但叶片抗坏血酸和谷胱甘肽合成及循环代谢对不同水平干旱胁迫的响应, 随胁迫时间的延长而不同。在胁迫24天以前, 严重干旱下叶片的抗坏血酸和谷胱甘肽合成及循环代谢增强较显著; 在胁迫24天后, 由于该胁迫下植物所遭受的氧化胁迫较为严重, 叶片中上述6种酶的活性均呈降低趋势。而在中度干旱下叶片抗坏血酸和谷胱甘肽合成及循环代谢相关的6种酶在整个胁迫过程中均保持较高的活性。这说明, 冰草能够长时间有效地抵御中度干旱所造成的氧化胁迫, 但只能在一定时间范围内有效地抵御严重干旱所造成的氧化胁迫, 胁迫时间延长则会降低其抵御严重干旱的能力。  相似文献   

4.
The presence of enzymes of the ascorbate–glutathione cycle was studied in mitochondria purified from green and red pepper (Capsicum annuum L.) fruits. All four enzymes, ascorbate peroxidase (APX; EC 1.11.1.11), monodehydroascorbate reductase (MDHAR; EC 1.6.5.4), dehydroascorbate reductase (DHAR; EC 1.8.5.1) and glutathione reductase (GR; EC 1.6.4.2) were present in the isolated mitochondria of both fruit ripening stages. The activity of the reductive ascorbate–glutathione cycle enzymes (MDHAR, GR and DHAR) was higher in mitochondria isolated from green than from red fruits, while APX and the antioxidative enzyme superoxide dismutase (SOD; EC 1.15.1.1) were higher in the red fruits. The levels of ascorbate and L-galactono-γ-lactone dehydrogenase (GLDH; EC 1.3.2.3) activity were found to be similar in the mitochondria of both fruits. The higher APX and Mn-SOD specific activities in mitochondria from red fruits might play a role in avoiding the accumulation of any activated oxygen species generated in these mitochondria, and suggests an active role for these enzymes during ripening.  相似文献   

5.
In wild species of almond (Prunus spp.), the activities of ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and glutathione reductase (GR), as well as the levels of ascorbate/glutathione pools and H2O2 were subjected to water deficit and shade conditions. After 60 days of water shortage, the species were subjected to a rewatering treatment. During water recovery, leaves exposed to sunlight and leaves under shade conditions of about 20–35% of environmental irradiance were sampled. After 70 days without irrigation, mean predawn leaf water potential of all the species fell from −0.32 to −2.30 MPa and marked decreases in CO2 uptake and transpiration occurred. The activities of APX, MDHAR, DHAR, and GR increased in relation to the severity of drought stress in all the wild species studied. Generally, APX, MDHAR, DHAR, and GR were down-regulated during the rewatering phase and their activities decreased faster in shaded leaves than in sun-exposed leaves. The levels in total ascorbate, glutathione, and H2O2 were directly related to the increase in drought stress and subsequently decreased during rewatering. The antioxidant response of wild almond species to drought stress limits cellular damage caused by reactive oxygen species during periods of water deficit and may be of key importance for the selection of drought-resistant rootstocks for cultivated almond.  相似文献   

6.
We investigated the relationship between H2O2 metabolism and the senescence process using soluble fractions, mitochondria, and peroxisomes from senescent pea (Pisum sativum L.) leaves. After 11 d of senescence the activities of Mn-superoxide dismutase, dehydroascorbate reductase (DHAR), and glutathione reductase (GR) present in the matrix, and ascorbate peroxidase (APX) and monodehydroascorbate reductase (MDHAR) activities localized in the mitochondrial membrane, were all substantially decreased in mitochondria. The mitochondrial ascorbate and dehydroascorbate pools were reduced, whereas the oxidized glutathione levels were maintained. In senescent leaves the H2O2 content in isolated mitochondria and the NADH- and succinate-dependent production of superoxide (O2·−) radicals by submitochondrial particles increased significantly. However, in peroxisomes from senescent leaves both membrane-bound APX and MDHAR activities were reduced. In the matrix the DHAR activity was enhanced and the GR activity remained unchanged. As a result of senescence, the reduced and the oxidized glutathione pools were considerably increased in peroxisomes. A large increase in the glutathione pool and DHAR activity were also found in soluble fractions of senescent pea leaves, together with a decrease in GR, APX, and MDHAR activities. The differential response to senescence of the mitochondrial and peroxisomal ascorbate-glutathione cycle suggests that mitochondria could be affected by oxidative damage earlier than peroxisomes, which may participate in the cellular oxidative mechanism of leaf senescence longer than mitochondria.  相似文献   

7.
To elucidate the effect of selenium (Se) on the ascorbate?Cglutathione (ASC?CGSH) cycle under drought stress, the activities of antioxidant enzymes and the levels of molecules involved in ASC?CGSH metabolism were studied in Trifolium repens seedlings subjected to polyethylene glycol (PEG)-induced water deficit alone or combined with 5???M Na2SeO4. Compared to the control, H2O2, thiobarbituric acid reactive substances (TBARS), ascorbate (ASC), dehydroascorbate (DHA), and glutathione disulfide (GSSG) contents increased, whereas a constant content of glutathione (GSH) and decreases in ASC/DHA and GSH/GSSG ratios were observed in the presence of PEG. The activities of ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), and glutathione reductase (GR) were upregulated, except for monodehydroascorbate reductase (MDHAR) activity during PEG-induced water deficit. Se application decreased the contents of H2O2, TBARS, DHA, and GSSG, increased the levels of GSH and ASC, and inhibited the decreases of ASC/DHA and GSH/GSSG ratios. Although it did not affect APX activity significantly, Se addition improved the activities of MDHAR, DHAR, and GR. Furthermore, GR activity showed the highest increase followed by that of DHAR and MDHAR in decreasing order. These data indicated that fluctuations in ASC?CGSH metabolism resulting from Se may have a positive effect on drought stress mitigation, and the regulation in the ASC?CGSH cycle can be attributed mainly to GR and DHAR in PEG?+?Se-treated T. repens seedlings.  相似文献   

8.
9.
In order to elucidate the response of the ascorbate-glutathione (ASC-GSH) cycle to drought stress, the activities of antioxidant enzymes and the levels of molecules involved in the ASC-GSH metabolism were studied in Trifolium repens L. seedlings subjected to PEG-induced water deficit. Compared to the control, the contents of H2O2, thiobarbituric acid reactive substances (TBARS), ascorbate (ASC), dehydroascorbate (DHA), and glutathione disulfide (GSSG) increased in PEG-treated seedlings, whereas the glutathione (GSH) content kept constant during the drought period. Further more, the ASC/DHA and GSH/GSSG ratios decreased in the presence of PEG. Except for that of monodehydroascorbate reductase (MDHAR), the activities of ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), and glutathione reductase (GR) were up-regulated during water deficit, and the increases in APX and DHAR activities were much higher than those in GR activity. These data indicate that fluctuations in the ASC-GSH metabolism resulted from PEG treatment may have a positive effect on drought stress mitigation in T. repens.  相似文献   

10.
The activities of the ascorbate-glutathione cycle enzymes ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) and SOD were studied in cell organelles of the cultivated tomato Lycopersicon esculentum (M82) and its wild salt-tolerant related species Lycopersicon pennellii (Lpa). All four enzymes of the ascorbate-glutathione cycle were present in chloroplasts/plastids, mitochondria and peroxisomes of leaf and root cells of both tomato species. In all leaf and root organelles of both species, the activity of MDHAR was similar to, or higher than, that of APX, while the activity of DHAR was one order of magnitude lower than that of MDHAR. Based on these results, it is suggested that in the organelles of both tomato species, ascorbate is regenerated mainly by MDHAR. In both tomato species, GR activity, and to a lesser extent DHAR activity, was found to reside in the soluble fraction of all leaf and root cell organelles, while APX and MDHAR activities were distributed between the membrane and soluble fractions. A higher SOD to APX activity ratio in all Lpa organelles was the major difference between the two tomato species. It is possible that this higher ratio contributes to the inherently better protection of Lpa from salt stress, as was previously reported.  相似文献   

11.
12.
Arabidopsis thaliana . Three-week-old plants were exposed to a high temperature (30 C), an enhanced light intensity (200 μE/m2/sec), water deficiency (water deprivation for 2 days), a chilling temperature (5 C), or ultraviolet-B (UV-B) radiation (0.25 or 0.094 W/m2) for 1 week (except for water deficiency). The high temperature and enhanced light treatments increased only dehydroascorbate reductase (DHAR) activity. Water deficiency enhanced the activities of DHAR and guaiacol peroxidase (PER). Chilling temperature increased the activities of ascorbate peroxidase (APX) and glutathione reductase (GR), whereas it decreased catalase (CAT) activity. UV-B at an intensity of 0.25 W/m2 elevated the activities of APX, monodehydroascorbate reductase (MDHAR), GR, PER and superoxide dismutase (SOD). It was suggested that the amounts of phenylpropanoid compounds increased during treatments of plants with enhanced light intensity, chilling temperature, and UV-B. These results suggest that some differences exist among the oxidative stress conditions caused by the different treatments, although all of these treatments seem to be related to active oxygen production. We propose that in A. thaliana, environmental stresses may be classified into those which induce DHAR activity and those which induce APX activity. Received 11 January 1999/ Accepted in revised form 22 April 1999  相似文献   

13.
The possible involvement of the antioxidative system in the tolerance to salt stress was studied in the cultivated tomato Lycopersicon esculentum Mill. cv. M82 (M82) and its wild salt‐tolerant relative L. pennellii (Corn) D'Arcy accession Atico (Lpa). All analyses, except that of monodehydroascorbate reductase (MDHAR), were performed of the youngest fully‐expanded leaf of control and salt (100 m M NaCl) stressed plants, 4, 7, 10, 14, 18 and 22 days after completing the stress treatment. In Lpa, constitutive level of lipid peroxidation and activities of catalase (CAT) and glutathione reductase (GR) were lower while the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR) were inherently higher than in M82. Relative to M82, lipid peroxidation was much lower and the activities of SOD, CAT and APX were higher in Lpa at 100 m M NaCl. The activity of DHAR decreased more in Lpa than in M82 under salt stress, and the activity of MDHAR, which was lower in Lpa than in M82 under control conditions, increased much more and to a higher level in salt‐treated Lpa plants. GR activity decreased similarly in the two species under salt stress. The results of these analyses suggest that the wild salt‐tolerant Lpa plants are better protected against active oxygen species (AOS), inherently and under salt stress, than the relatively sensitive plants of the cultivated species.  相似文献   

14.
The effects of low pH on antioxidant metabolism and nitrogen (N) assimilation in ginger seedlings under salt stress were investigated. A two-way randomized block design was used: the main treatment consisted of two pH levels, normal and low pH (6.0 and 4.0, respectively), and the other treatment consisted of two salinity levels, 0 and 100 mmol l−1 Na+ (NaCl and Na2SO4). The results showed that low pH decreased the malondialdehyde (MDA) and hydrogen peroxide contents of ginger seedling leaves under salt stress. Moreover, low pH and salt stress significantly decreased the contents of non-enzymatic antioxidants, including ascorbate (AsA) and glutathione (GSH), and increased the activities of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR). In addition, salt stress inhibited the N assimilation process in ginger seedling leaves, but low pH improved N assimilation under salt stress. Our finding was that low pH alleviated oxidative damage and promoted N assimilation under salt stress.  相似文献   

15.
Effects of exogenous salicylic acid (SA) on plant growth, contents of Na, K, Ca and Mg, activities of superoxide dismutase (SOD), guaiacol peroxidase (GPX), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR) and catalase (CAT), and contents of ascorbate and glutathione were investigated in tomato (Lycopersicon esculentum L.) plants treated with 100 mM NaCl. NaCl treatment significantly increased H2O2 content and lipid peroxidation indicated by accumulation of thiobarbituric acid reactive substances (TBARS). A foliar spray of 1 mM SA significantly decreased lipid peroxidation caused by NaCl and improved the plant growth. This alleviation of NaCl toxicity by SA was related to decreases in Na contents, increases in K and Mg contents in shoots and roots, and increases in the activities of SOD, CAT, GPX and DHAR and the contents of ascorbate and glutathione.  相似文献   

16.
In order to observe the possible regulatory role of selenium (Se) in relation to the changes in ascorbate (AsA) glutathione (GSH) levels and to the activities of antioxidant and glyoxalase pathway enzymes, rapeseed (Brassica napus) seedlings were grown in Petri dishes. A set of 10-day-old seedlings was pretreated with 25 μM Se (Sodium selenate) for 48 h. Two levels of drought stress (10% and 20% PEG) were imposed separately as well as on Se-pretreated seedlings, which were grown for another 48 h. Drought stress, at any level, caused a significant increase in GSH and glutathione disulfide (GSSG) content; however, the AsA content increased only under mild stress. The activity of ascorbate peroxidase (APX) was not affected by drought stress. The monodehydroascorbate reductase (MDHAR) and glutathione reductase (GR) activity increased only under mild stress (10% PEG). The activity of dehydroascorbate reductase (DHAR), glutathione S-transferase (GST), glutathione peroxidase (GPX), and glyoxalase I (Gly I) activity significantly increased under any level of drought stress, while catalase (CAT) and glyoxalase II (Gly II) activity decreased. A sharp increase in hydrogen peroxide (H2O2) and lipid peroxidation (MDA content) was induced by drought stress. On the other hand, Se-pretreated seedlings exposed to drought stress showed a rise in AsA and GSH content, maintained a high GSH/GSSG ratio, and evidenced increased activities of APX, DHAR, MDHAR, GR, GST, GPX, CAT, Gly I, and Gly II as compared with the drought-stressed plants without Se. These seedlings showed a concomitant decrease in GSSG content, H2O2, and the level of lipid peroxidation. The results indicate that the exogenous application of Se increased the tolerance of the plants to drought-induced oxidative damage by enhancing their antioxidant defense and methylglyoxal detoxification systems.  相似文献   

17.
The present study investigates the possible regulatory role of exogenous nitric oxide (NO) in antioxidant defense and methylglyoxal (MG) detoxification systems of wheat seedlings exposed to salt stress (150 and 300 mM NaCl, 4 days). Seedlings were pre-treated for 24 h with 1 mM sodium nitroprusside, a NO donor, and then subjected to salt stress. The ascorbate (AsA) content decreased significantly with increased salt stress. The amount of reduced glutathione (GSH) and glutathione disulfide (GSSG) and the GSH/GSSG ratio increased with an increase in the level of salt stress. The glutathione S-transferase (GST) activity increased significantly with severe salt stress (300 mM). The ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT) and glutathione peroxidase (GPX) activities did not show significant changes in response to salt stress. The glutathione reductase (GR), glyoxalase I (Gly I), and glyoxalase II (Gly II) activities decreased upon the imposition of salt stress, especially at 300 mM NaCl, with a concomitant increase in the H2O2 and lipid peroxidation levels. Exogenous NO pre-treatment of the seedlings had little influence on the non-enzymatic and enzymatic components compared to the seedlings of the untreated control. Further investigation revealed that NO pre-treatment had a synergistic effect; that is, the pre-treatment increased the AsA and GSH content and the GSH/GSSG ratio, as well as the activities of MDHAR, DHAR, GR, GST, GPX, Gly I, and Gly II in most of the seedlings subjected to salt stress. These results suggest that the exogenous application of NO rendered the plants more tolerant to salinity-induced oxidative damage by enhancing their antioxidant defense and MG detoxification systems.  相似文献   

18.
Changes in antioxidant metabolism because of the effect of salinity stress (0, 80, 160 or 240 m M NaCl) on protective enzyme activities under ambient (350 μmol mol−1) and elevated (700 μmol mol−1) CO2 concentrations were investigated in two barley cultivars ( Hordeum vulgare L., cvs Alpha and Iranis). Electrolyte leakage, peroxidation, antioxidant enzyme activities [superoxide dismutase (SOD), EC 1.15.1.1; ascorbate peroxidase (APX), EC 1.11.1.11; catalase (CAT), EC 1.11.1.6; dehydroascorbate reductase (DHAR), EC 1.8.5.1; monodehydroascorbate reductase (MDHAR), EC 1.6.5.4; glutathione reductase (GR), EC 1.6.4.2] and their isoenzymatic profiles were determined. Under salinity and ambient CO2, upregulation of antioxidant enzymes such as SOD, APX, CAT, DHAR and GR occurred. However, this upregulation was not enough to counteract all ROS formation as both ion leakage and lipid peroxidation came into play. The higher constitutive SOD and CAT activities together with a higher contribution of Cu,Zn-SOD 1 detected in Iranis might possibly contribute and make this cultivar more salt-tolerant than Alpha. Elevated CO2 alone had no effect on the constitutive levels of antioxidant enzymes in Iranis, whereas in Alpha it induced an increase in SOD, CAT and MDHAR together with a decrease of DHAR and GR. Under combined conditions of elevated CO2 and salinity the oxidative damage recorded was lower, above all in Alpha, together with a lower upregulation of the antioxidant system. So it can be concluded that elevated CO2 mitigates the oxidative stress caused by salinity, involving lower ROS generation and a better maintenance of redox homeostasis as a consequence of higher assimilation rates and lower photorespiration, being the response dependent on the cultivar analysed.  相似文献   

19.
The response of the antioxidative systems of leaf cell mitochondria and peroxisomes of the cultivated tomato Lycopersicon esculentum (Lem) and its wild salt-tolerant related species Lycopersicon pennellii (Lpa) to NaCl 100 mM stress was investigated. Salt-dependent oxidative stress was evident in Lem mitochondria as indicated by their raised levels of lipid peroxidation and H2O2 content whereas their reduced ascorbate and reduced glutathione contents decreased. Concomitantly, SOD activity decreased whereas APX and GPX activities remained at control level. In contrast, the mitochondria of salt-treated Lpa did not exhibit salt-induced oxidative stress. In their case salinity induced an increase in the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione-dependent peroxidase (GPX). Lpa peroxisomes exhibited increased SOD, APX, MDHAR and catalase activity and their lipid peroxidation and H2O2 levels were not affected by the salt treatment. The activities of all these enzymes remained at control level in peroxisomes of salt-treated Lem plants. The salt-induced increase in the antioxidant enzyme activities in the Lpa plants conferred cross-tolerance towards enhanced mitochondrial and peroxisomal reactive oxygen species production imposed by salicylhydroxamic acid (SHAM) and 3-amino-1,2,4-triazole (3-AT), respectively.  相似文献   

20.
The protective effect of selenium (Se) on antioxidant defense and methylglyoxal (MG) detoxification systems was investigated in leaves of rapeseed (Brassica napus cv. BINA sharisha 3) seedlings under cadmium (Cd)-induced oxidative stress. Two sets of 11-day-old seedlings were pretreated with both 50 and 100???M Se (Na2SeO4, sodium selenate) for 24?h. Two concentrations of CdCl2 (0.5 and 1.0?mM) were imposed separately or on the Se-pretreated seedlings, which were grown for another 48?h. Cadmium stress at any levels resulted in the substantial increase in malondialdehyde and H2O2 levels. The ascorbate (AsA) content of the seedlings decreased significantly upon exposure to Cd stress. The amount of reduced glutathione (GSH) increased only at 0.5?mM CdCl2, while glutathione disulfide (GSSG) increased at any level of Cd, with concomitant decrease in GSH/GSSG ratio. The activities of ascorbate peroxidase (APX) and glutathione S-transferase (GST) increased significantly with increased concentration of Cd (both at 0.5 and 1.0?mM CdCl2), while the activities of glutathione reductase (GR) and glutathione peroxidase (GPX) increased only at moderate stress (0.5?mM CdCl2) and then decreased at 1.0?mM severe stress (1.0?mM CdCl2). Monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT), glyoxalase I (Gly I), and glyoxalase II (Gly II) activities decreased upon exposure to any levels of Cd. Selenium pretreatment had little effect on the nonenzymatic and enzymatic components of seedlings grown under normal conditions; i.e., they slightly increased the GSH content and the activities of APX, GR, GST, and GPX. On the other hand, Se pretreatment of seedlings under Cd-induced stress showed a synergistic effect; it increased the AsA and GSH contents, the GSH/GSSG ratio, and the activities of APX, MDHAR, DHAR, GR, GPX, CAT, Gly I, and Gly II which ultimately reduced the MDA and H2O2 levels. However, in most cases, pretreatment with 50???M Se showed better results compared to pretreatment with 100???M Se. The results indicate that the exogenous application of Se at low concentrations increases the tolerance of plants to Cd-induced oxidative damage by enhancing their antioxidant defense and MG detoxification systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号