首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxidation of ethanol by the liver produces acetaldehyde, which is a highly reactive compound. Low concentrations of acetaldehyde inhibited mitochondrial respiration with glutamate, β-hydroxybutyrate, or α-ketoglutarate as substrates, but not with succinate or ascorbate. High concentrations led to respiratory inhibition with all substrates. Inhibition of succinate- and ascorbate-linked oxidation by acetaldehyde correlates with the inhibition of the activities of succinic dehydrogenase and cytochrome oxidase. A site more sensitive to acetaldehyde appears to be localized prior to the NADH-ubiquinone oxidoreductase segment of the respiratory chain. Acetaldehyde inhibits energy production by the mitochondria, as evidenced by its inhibition of respiratory control, oxidative phosphorylation, the rate of phosphorylation, and the ATP-32P exchange reaction. Energy utilization is also inhibited, in view of the decrease in both substrate- and ATP-supported Ca2+ uptake, and the reduction in Ca2+-stimulated oxygen uptake and ATPase activity. The malate-aspartate, α-glycerophosphate, and fatty acid shuttles for the transfer of reducing equivalents, and oxidation by mitochondria, were highly sensitive to acetaldehyde. Acetaldehyde also inhibited the uptake of anions which participate in the shuttles. The inhibition of the shuttles is apparently caused by interference with NAD+-dependent state 3 respiration and anion entry and efflux. Ethanol (6–80 mm) had no significant effect on oxygen consumption, anion uptake, or mitochondrial energy production and utilization. The data suggest that acetaldehyde may be implicated in some of the toxic effects caused by chronic ethanol consumption.  相似文献   

2.
Shibasaka M  Tsuji H 《Plant physiology》1988,86(4):1008-1012
Respiratory activities were compared among rice seedlings germinated in air for 6 days (aerobic seedlings), those germinated under water for 5 days (submerged seedlings), and those grown in air for 1 day after 5 days' submerged germination (air-adapted seedlings). The respiratory activity of the submerged seedlings increased rapidly on transfer to air and reached a plateau at 16 hours in air. Respiration of the submerged seedlings was as sensitive to cyanide as those of aerobic and air-adapted seedlings. 2,4-Dinitrophenol had no effect on the respiration of the submerged seedlings, but stimulated those of the other two types of seedlings. Mitochondria from three types of seedlings did not differ in the ADP/O ratio and the respiratory control ratio (RCR) when succinate was oxidized. However, mitochondria from submerged seedlings (submerged mitochondria) showed poor RCR of about unity when malate was oxidized. Both the rate of succinate oxidation and succinate dehydrogenase activity were low in submerged mitochondria, but increased during air adaptation. Although submerged mitochondria oxidized malate very slowly, this activity increased after exposure to air without any increase in malate dehydrogenase activity. When NAD+ was added to submerged mitochondria, oxidation of malate was restored to the level of the aerobic controls. Addition of NAD+ enhanced the state 3 rate in submerged mitochondria, and RCR recovered to nearly the same value as that of the aerobic controls. Similar effects of NAD+ on 2-oxoglutarate oxidation were observed. All these defects in submerged mitochondria were repaired during air adaptation. These results suggest that NAD+-linked substrate oxidation was low in submerged mitochondria because of NAD+ deficiency, and that the oxidation increased with an increasing level of NAD+ during air adaptation.  相似文献   

3.
Chronic ethanol feeding to rats produces changes in hepatic mitochondria which persist in the absence of ethanol metabolism. The integrity of isolated mitochondria is well preserved, as evidenced by unchanged activities of latent, Mg2+- and dinitrophenol-stimulated ATPase activity, and unaltered permeability to NADH. With succinate or ascorbate as substrates, oxygen uptake by mitochondria from ethanol-fed rats was decreased compared to pair-fed controls. The decrease was comparable under state 4 or state 3 conditions, or in the presence of an uncoupler. However, with the NAD+-dependent substrates, ADP-stimulated oxygen consumption (state 3) was decreased to a greater extent than state 4 or uncoupler-stimulated oxygen consumption in mitochondria from ethanol-fed rats. This suggests that the decrease in energy-dependent oxygen consumption at site I may be superimposed upon damage to the respiratory chain. Using NAD+-dependent substrates (glutamate, α-ketoglutarate or β-hydroxybutyrate) the respiratory control ratio and the PO ratio of oxidative phosphorylation were significantly decreased in mitochondria isolated from the livers of rats fed ethanol. By contrast, when succinate or ascorbate served as the electron donor these functions were unchanged. The rate of phosphorylation is decreased 70% with the NAD+-dependent substrates because of a decreased flux of electrons, as well as a lower efficiency of oxidative phosphorylation. With succinate and ascorbate as substrates, the rate of phosphorylation is decreased 20–30%, owing to a decreased flux of electrons. These data suggest the possibility that, in addition to effects on the respiratory chain, energy-coupling site I may be damaged by ethanol feeding. Energy-dependent Ca2+ uptake, supported by either substrate oxidation or ATP hydrolysis, was inhibited by chronic ethanol feeding.Concentrations of acetaldehyde (1–3 mm) which inhibited phosphorylation associated with the oxidation of NAD+-dependent substrates had no effect on that of succinate or ascorbate. Many of the effects of chronic ethanol feeding on mitochondrial functions are similar to those produced by acetaldehyde in vitro.  相似文献   

4.
Mitochondria from liver, kidney, brain, and skeletal muscle metabolized acetaldehyde. Acetaldehyde oxidation by liver and kidney mitochondria was maximal at low levels of acetaldehyde and was sensitive to rotenone, suggesting the involvement of a NAD+-dependent aldehyde dehydrogenase with a high affinity for acetaldehyde. Acetaldehyde oxidation was stimulated 50% by ADP, suggesting that, in state 4, reoxidation of NADH is rate limiting for acetaldehyde oxidation. In state 4, acetaldehyde oxidation was decreased by NAD+-dependent substrates, as well as by succinate and ascorbate. The inhibition by the latter two substrates was prevented by ADP, dinitrophenol, valinomycin, and gramicidin, but not by oligomycin. Since these compounds are linked to energy transduction and utilization, the data suggest that the inhibition is mediated via energy-dependent reversed electron transport. In state 3, all of these substrates caused considerably less inhibition of acetaldehyde oxidation, suggesting that the activity of aldehyde dehydrogenase, and not of NADH reoxidation, is probably rate limiting for acetaldehyde oxidation. The ionophores valinomycin and gramicidin stimulated acetaldehyde oxidation to a greater extent than ADP. These ionophores also stimulated acetaldehyde oxidation in the presence of ADP. Stimulation by valinomycin occurred in the presence of monovalent cations transported by this ionophore, e.g., K+, Rb+, Cs+. Stimulation by gramicidin also occurred in the presence of these cations, but did not occur with Na+ or Li+. Na+ prevents the stimulation of acetaldehyde oxidation, which occurs in the presence of gramicidin and K+. The stimulation by valinomycin and gramicidin was energy dependent and required the presence of a permeant anion. In the absence of an ionophore, potassium phosphate had no effect on acetaldehyde oxidation. These data suggest that the oxidation of acetaldehyde by rat liver and kidney mitochondria is influenced by the oxidation-reduction state of the mitochondria and by the cationic environment. With brain and muscle mitochondria, the rate of acetaldehyde oxidation increased two- to threefold as the concentration of acetaldehyde was raised from 0.167 to 0.50 mm. Acetaldehyde oxidation in these mitochondria was also sensitive; to rotenone, indicating dependence on NAD+. ADP, valinomycin, gramicidin, and succinate, compounds which either increased or decreased the rate of acetaldehyde oxidation by liver and kidney mitochondria, had no effect on acetaldehyde oxidation by muscle or brain mitochondria. In state 4, mitochondria from Becker-transplantable hepatocellular carcinoma HC-252 oxidized acetaldehyde at the same rate as liver mitochondria. However, in the presence of ADP, dinitrophenol, valinomycin and gramicidin, the rate of acetaldehyde oxidation by the tumor mitochondria was two to three times greater than that of liver mitochondria, suggesting the presence of a more active; acetaldehyde-oxidizing system in tumor than in liver mitochondria.  相似文献   

5.
The effects of α-pinene, which is one of the major components of essential oils of several aromatic species, on energy metabolism of mitochondria isolated from maize (Zea mays L.) coleoptiles and primary roots were investigated. α-Pinene exerted similar effects on oxygen consumption irrespective of the source of mitochondria or of the substrate (L-malate, succinate or NADH). At concentrations lower than 250 μM, α-pinene stimulated respiration in state IV and inhibited respiration in state III. At higher concentrations the effect of α-pinene on state IV respiration was shifted toward inhibition. Complete suppression of respiratory control ratio was evident at α-pinene concentrations higher than 100 μM. When mitochondria were uncoupled with carbonyl cyanide 4-trifluoromethoxyphenyl-hydrazone (FCCP), α-pinene caused only inhibition of respiration. In the presence of α-pinene, the transmembrane potential was decreased as indicated by changes in the safranine binding by energized mitochondria. α-Pinene did not affect the activities of succinate dehydrogenase (EC 1.3.5.1) and L-malate dehydrogenase (L-malate:NAD+ oxidoreductase; EC 1.1.1.37). The results indicate that α-pinene acts by at least two mechanisms: uncoupling of oxidative phosphorylation and inhibition of electron transfer. Confirming the impairment of mitochondrial energy metabolism, α-pinene strongly inhibited mitochondrial ATP production. It is apparent that the actions of α-pinene on isolated mitochondria are consequences of unspecific disturbances in the inner mitochondrial membrane.  相似文献   

6.
Isolated liver mitochondria oxidized acetaldehyde in the following order: State 4< state 3< valinomycin. Ca2+, in concentrations greater than 0.10 mM, inhibited the oxidation of acetaldehyde by isolated liver mitochondria under all conditions. Valinomycin-stimulated oxidation of acetaldehyde was more sensitive to inhibition by Ca2+ than were the state 3 or 4 rates of acetaldehyde oxidation. Acetaldehyde could support an energy-dependent uptake of Ca2+ at rates about 20 percent that found with succinate. Ruthenium red, an inhibitor of Ca2+ translocation, almost completely prevented the inhibition by Ca2+, under all conditions. The addition of externally added NAD+ or NADH provided complete relief against the inhibitions by Ca2+ of the state 4 and 3 rates of acetaldehyde oxidation. Although some relief was also observed with the valinomycin-stimulated system, significant inhibition persisted. Cations such as Zn2+, Cu2+, or Hg2+ also inhibited acetaldehyde oxidation, whereas Mg2+ and Mn2+ were without effect. These cations also blocked glutamate oxidation and presumably inhibit acetaldehyde oxidation by preventing reoxidation of NADH. The greater sensitivity of the ionophore-stimulated oxidation of acetaldehyde to inhibition by Ca2+ may reflect release of intramitochondria K+, which is known to occur in the presence of Ca2+, suggesting that acetaldehyde oxidation is influenced by the cation environment within the mitochondria.  相似文献   

7.
Isocitrate dehydrogenase (IDH) activities were measured in mitochondria isolated from aerial parts of 21-day-old spruce (Picea abies L. Karst.) seedlings. Mitochondria were purified by two methods, involving continuous and discontinuous Percoll gradients. Whatever the method of purification, the mitochondrial outer membrane was about 69% intact, and the mitochondria contained very low cytosolic, chloroplastic and peroxisomal contaminations. Nevertheless, as judged by the recovery of fumarase activity, purification on a continuous 28% Percoll gradient gave the best yield in mitochondria, which exhibited a high degree of inner membrane intactness (91%). The purified mitochondria oxidized succinate and malate with good respiratory control and ADP/O ratios. The highest oxidation rate was obtained with succinate as substrate, and malate oxidation was improved (+ 60%) by addition of exogenous NAD+. Experiments using standard respiratory chain inhibitors indicated that, in spruce mitochondria, the alternative pathway was present. Both NAD+-isocitrate dehydrogenase (EC 1.1.1.41) and NADP+-isocitrate dehydrogenase (EC 1.1.1.42) were present in the mitochondrial matrix fraction, and NAD+-IDH activity was about 2-fold higher than NADP+-IDH activity. The NAD+-IDH showed sigmoidal kinetics in response to isocitrate and standard Michaelis-Menten kinetics for NAD+ and Mg2+. The NADP+-IDH, in contrast, displayed lower Km values. For NAD+-IDH the pH optimum was at 7.4, whereas NADP+-IDH exhibited a broad pH optimum between 8.3 and 9. In addition, NAD+-IDH was more thermolabile. Adenine nucleotides and 2-oxoglutarate were found to inhibit NAD(P)+-IDH activities only at high concentrations.  相似文献   

8.
Michel Neuburger  Roland Douce 《BBA》1980,589(2):176-189
Mitochondria isolated from spinach leaves oxidized malate by both a NAD+-linked malic enzyme and malate dehydrogenase. In the presence of sodium arsenite the accumulation of oxaloacetate and pyruvate during malate oxidation was strongly dependent on the malate concentration, the pH in the reaction medium and the metabolic state condition.Bicarbonate, especially at alkaline pH, inhibited the decarboxylation of malate by the NAD+-linked malic enzyme in vitro and in vivo. Analysis of the reaction products showed that with 15 mM bicarbonate, spinach leaf mitochondria excreted almost exclusively oxaloacetate.The inhibition by oxaloacetate of malate oxidation by spinach leaf mitochondria was strongly dependent on malate concentration, the pH in the reaction medium and on the metabolic state condition.The data were interpreted as indicating that: (a) the concentration of oxaloacetate on both sides of the inner mitochondrial membrane governed the efflux and influx of oxaloacetate; (b) the NAD+/NADH ratio played an important role in regulating malate oxidation in plant mitochondria; (c) both enzymes (malate dehydrogenase and NAD+-linked malic enzyme) were competing at the level of the pyridine nucleotide pool, and (d) the NAD+-linked malic enzyme provided NADH for the reversal of the reaction catalyzed by the malate dehydrogenase.  相似文献   

9.
1. Glutamate oxidation in brain and liver mitochondrial systems proceeds mainly through transamination with oxaloacetate followed by oxidation of the α-oxoglutarate formed. Both in the presence and absence of dinitrophenol in liver mitochondria this pathway accounted for almost 80% of the uptake of glutamate. In brain preparations the transamination pathway accounted for about 90% of the glutamate uptake. 2. The oxidation of [1-14C]- and [5-14C]-glutamate in brain preparations is compatible with utilization through the tricarboxylic acid cycle, either after the formation of α-oxoglutarate or after decarboxylation to form γ-aminobutyrate. There is no indication of γ-decarboxylation of glutamate. 3. The high respiratory control ratio obtained with glutamate as substrate in brain mitochondrial preparations is due to the low respiration rate in the absence of ADP: this results from the low rate of formation of oxaloacetate under these conditions. When oxaloacetate is made available by the addition of malate or of NAD+, the respiration rate is increased to the level obtained with other substrates. 4. When the transamination pathway of glutamate oxidation was blocked with malonate, the uptake of glutamate was inhibited in the presence of ADP or ADP plus dinitrophenol by about 70 and 80% respectively in brain mitochondrial systems, whereas the inhibition was only about 50% in dinitrophenol-stimulated liver preparations. In unstimulated liver mitochondria in the presence of malonate there was a sixfold increase in the oxidation of glutamate by the glutamate-dehydrogenase pathway. Thus the operating activity of glutamate dehydrogenase is much less than the `free' (non-latent) activity. 5. The following explanation is put forward for the control of glutamate metabolism in liver and brain mitochondrial preparations. The oxidation of glutamate by either pathway yields α-oxoglutarate, which is further metabolized. Since aspartate aminotransferase is present in great excess compared with the respiration rate, the oxaloacetate formed is continuously removed by the transamination reaction. Thus α-oxoglutarate is formed independently of glutamate dehydrogenation, and the question is how the dehydrogenation of glutamate is influenced by the continuous formation of α-oxoglutarate. The results indicate that a competition takes place between the α-oxoglutarate-dehydrogenase complex and glutamate dehydrogenase, probably for NAD+, resulting in preferential oxidation of α-oxoglutarate.  相似文献   

10.
Kalanchoë pinnata mitochondria readily oxidized succinate, malate, NADH, and NADPH at high rates and coupling. The highest respiration rates usually were observed in the presence of succinate. The high rate of malate oxidation was observed at pH 6.8 with thiamine pyrophosphate where both malic enzyme (ME) and pyruvate dehydrogenase were activated. In CAM phase III of K. pinnata mitochondria, both ME and malate dehydrogenase (MDH) simultaneously contributed to metabolism of malate. However, ME played a main function: malate was oxidized via ME to produce pyruvate and CO2 rather than via MDH to produce oxalacetate (OAA). Cooperative oxidation of two or three substrates was accompanied with the dramatic increase in the total respiration rates. Our results showed that the alternative (Alt) pathway was more active in malate oxidation at pH 6.8 with CoA and NAD+ where ME operated and was stimulated, indicating that both ME and Alt pathway were related to malate decarboxylation during the light. In K. pinnata mitochondria, NADH and NADPH oxidations were more sensitive with KCN than that with succinate and malate oxidations, suggesting that these oxidations were engaged to cytochrome pathway rather than to Alt pathway and these capacities would be desirable to supply enough energy for cytosol pyruvate orthophosphate dikinase activity.  相似文献   

11.
《BBA》2022,1863(3):148532
The mitochondrial respiratory chain (RC) enables many metabolic processes by regenerating both mitochondrial and cytosolic NAD+ and ATP. The oxidation by the RC of the NADH metabolically produced in the cytosol involves redox shuttles as the malate-aspartate shuttle (MAS) and is of paramount importance for cell fate. However, the specific metabolic regulations allowing mitochondrial respiration to prioritize NADH oxidation in response to high NADH/NAD+ redox stress have not been elucidated. The recent discovery that complex I (NADH dehydrogenase), and not complex II (Succinate dehydrogenase), can assemble with other respiratory chain complexes to form functional entities called respirasomes, led to the assumption that this supramolecular organization would favour NADH oxidation. Unexpectedly, characterization of heart and liver mitochondria demonstrates that the RC systematically favours electrons provided by the ‘respirasome free’ complex II. Our results demonstrate that the preferential succinate driven respiration is tightly controlled by OAA levels, and that OAA feedback inhibition of complex II rewires RC fuelling increasing NADH oxidation capacity. This new regulatory mechanism synergistically increases RC's NADH oxidative capacity and rewires MDH2 driven anaplerosis of the TCA, preventing malate production from succinate to favour oxidation of cytosolic malate. This regulatory mechanism synergistically adjusts RC and TCA fuelling in response to extramitochondrial malate produced by the MAS.  相似文献   

12.
The effect of substitution of KCl for sucrose in the reaction medium on succinate oxidation and hydrogen peroxide generation was investigated in the mitochondria isolated from stored taproots of sugar beet (Beta vulgaris L.). In a sucrose-containing medium, oxidation of succinate was inhibited by oxaloacetate; this inhibition was especially pronounced upon a decrease in substrate concentration and eliminated in the presence of glutamate, which removed oxaloacetate in the course of transamination. Irrespective of succinate concentration, substitution of KCl for sucrose in the medium considerably enhanced suppression of succinate oxidation apparently as a result of slow activation of succinate dehydrogenase (SDH) by its substrate. In this case, mitochondria showed the symptoms of uncoupling, lower values of membrane potential (ΔΨ), respiratory control (RC), and ADP/O induced by electrophoretic transport of potassium via K+ channel of mitochondria. KCl-dependent suppression of succinate oxidation by taproot mitochondria was accompanied by a considerable inhibition of H2O2 production as compared with the sucrose-containing medium. These results indicate that in the presence of potassium ions, ΔΨ dissipates, suppression of succinate oxidation by oxaloacetate increases, and succinate-dependent generation of ROS in sugar beet mitochondria is inhibited. A possible physiological role of oxaloacetate-restricted SDH activity in the suppression of respiration of storage organs protecting mitochondria from oxidative stress is discussed.  相似文献   

13.
Malate oxidation in plant mitochondria proceeds through the activities of two enzymes: a malate dehydrogenase and a NAD+-dependent malic enzyme. In cauliflower, mitochondria malate oxidation via malate dehydrogenase is rotenone- and cyanide-sensitive. Addition of exogenous NAD+ stimulates the oxidation of malate via malic enzyme and generates an electron flux that is both rotenone- and cyanide-insensitive. The same effects of exogenous NAD+ are also observed with highly cyanide-sensitive mitochondria from white potato tubers or with mitochondria from spinach leaves. Both enzymes are located in the matrix, but some experimental data also suggest that part of malate dehydrogenase activity is also present outside the matrix compartment (adsorbed cytosolic malate dehydrogenase?). It is concluded that malic enzyme and a specific pool of NAD+/NADH are connected to the cyanide-insensitive alternative pathway by a specific rotenone-insensitive NADH dehydrogenase located on the inner face of the inner membrane. Similarly, malate dehydrogenase and another specific pool of NAD+/NADH are connected to the cyanide- (and antimycin-) sensitive pathway by a rotenone-sensitive NADH dehydrogenase located on the inner face of the inner membrane. A general scheme of electron transport in plant mitochondria for the oxidation of malate and NADH can be given, assuming that different pools of ubiquinone act as a branch point between various dehydrogenases, the cyanide-sensitive cytochrome pathway and the cyanide-insensitive alternative pathway.  相似文献   

14.
1. In rat-liver mitochondria both the dehydrogenase and transaminase routes participate in glutamate oxidation. However, the rate of ammonia production by the dehydrogenase pathway progressively decreases with the time of incubation. 2. Glutamate deamination is stimulated by blocking the transaminase pathway with arsenite or malonate. On the other hand, this process is completely suppressed by succinate, malate, pyruvate and oxaloacetate. Succinate and pyruvate inhibit, whereas malate and oxaloacetate stimulate, aspartate formation. 3. Glutamate deamination increases with increasing concentrations of 2,4-dinitrophenol from 0·05 to 0·2mm, and then becomes inhibited, together with the rate of oxygen consumption. Aspartate formation is progressively inhibited with increasing 2,4-dinitrophenol concentration from 0·05 to 0·8mm. In the presence of 0·20mm-2,4-dinitrophenol the rate of ammonia production is higher than in the presence of phosphate acceptors and decreases much slower and linearly with the time of incubation. 4. The addition of NAD+ enhances glutamate deamination without affecting oxygen uptake.  相似文献   

15.
The mechanism by which Helminthosporium maydis race T toxin inhibits respiration dependent on NAD+-linked substrates in T cytoplasm corn mitochondria was investigated. The toxin did not cause leakage of the soluble matrix enzyme malate dehydrogenase from the mitochondria or inhibit malate dehydrogenase or isocitrate dehydrogenase directly. The toxin did increase the permeability of the inner membranes of T cytoplasm, but not N cytoplasm, mitochondria to NAD+. Added NAD+ partially or fully restored toxin-inhibited electron transport in T cytoplasm mitochondria. Thiamin pyrophosphate had a similar effect when malate was the substrate. It was concluded that the inhibition of respiration of NAD+-linked substrates by the toxin is due to depletion of the intramitochondrial pool of NAD+ and other coenzymes.  相似文献   

16.
The mechanisms and accurate control of citrate oxidation by Percoll-purified potato (Solanum tuberosum) tuber mitochondria were characterized in various metabolic conditions by recording time course evolution of the citric acid cycle related intermediates and O2 consumption. Intact potato tuber mitochondria showed good rates of citrate oxidation, provided that nonlimiting amounts of NAD+ and thiamine pyrophosphate were present in the matrix space. Addition of ATP increased initial oxidation rates, by activation of the energy-dependent net citrate uptake, and stimulated succinate and malate formation. When the intramitochondrial NADH to NAD+ ratio was high, α-ketoglutarate only was excreted from the matrix space. After addition of ADP, aspartate, or oxaloacetate, which decreased the NADH to NAD+ ratio, flux rates through the Krebs cycle dehydrogenases were strongly increased and α-ketoglutarate, succinate, and malate accumulated up to steady-state concentrations in the reaction medium. It was concluded that NADH to NAD+ ratio could be the primary signal for coordination of fluxes through electron transport chain or malate dehydrogenase and NAD+-linked Krebs cycle dehydrogenases. In addition, these results clearly showed that the tricarboxylic acid cycle could serve as an important source of carbon skeletons for extra-mitochondrial synthetic processes, according to supply and demand of metabolites.  相似文献   

17.
The effect of lonidamine, an antispermatogenic and antitumor drug, on the oxygen consumption, ATPase activity, and redox state of the electron carriers of Ehrlich ascites tumor mitochondria has been studied. Lonidamine inhibits ADP- and uncoupler-stimulated respiration on various NAD- and FAD-linked substrates, but does not affect state 4 respiration. Experiments to determine its site of action showed that lonidamine does not significantly inhibit electron flow through cytochrome oxidase. Electron flow through site 2, the ubiquinone-cytochrome b-cytochrome c1 complex, also was unaffected by lonidamine, which failed to inhibit the oxidation of duroquinol. Moreover, inhibition of electron flow through site 2 was also excluded because of the inability of the N,N,N′,N′-tetramethyl-p-phenylenediamine bypass to relieve the lonidamine inhibition of the oxidation of pyruvate + malate. The F0F1ATPase activity and vectorial H+ ejection are also unaffected by lonidamine. The inhibition of succinate oxidation by lonidamine was found to take place at a point between succinate and iron-sulfur center S3. Spectroscopic experiments demonstrated that lonidamine inhibits the reduction of mitochondrial NAD+ by pyruvate + malate and other NAD-linked substrates in the transition from state 1 to state 4. However, lonidamine does not inhibit reduction of added NAD+ by submitochondrial vesicles or by soluble purified NAD-linked dehydrogenases. These observations, together with other evidence, suggest that electron transport in tumor mitochondria is inhibited by lonidamine at the dehydrogenase-coenzyme level, particularly when the electron carriers are in a relatively oxidized state and/or when the inner membrane-matrix compartment is in the condensed state. The action of lonidamine in several respects resembles the selective inhibition of electron transport in tumor cells produced by cytotoxic macrophages.  相似文献   

18.
Respiration-linked oxidation of 3-hydroxybutyryl-CoA, crotonyl-CoA and saturated fatty acyl (C4, C8 and C14)-CoA esters was studied in different mitochondrial preparations. Oxidation of acyl-CoA esters was poor in intact mitochondria; however, it was significant, as well as, NAD+ and CoA-dependent in gently and in vigorously sonicated mitochondria. The respiration-linked oxidation of crotonyl-CoA and 3-hydroxybutyryl-CoA proceeded at much higher rates (over 700%) in gently disrupted mitochondria than in completely disrupted mitochondria. The redox dye-linked oxidation of crotonyl-CoA (with inhibited respiratory chain) was also higher in gently disrupted mitochondria (149%) than in disrupted ones. During the respiration-linked oxidation of 3-hydroxybutyryl-CoA the steady-state NADH concentrations in the reaction chamber were determined, and found to be 8 μM in gently sonicated and 15 μM in completely sonicated mitochondria in spite of the observation that the gently sonicated mitochondria oxidized the 3-hydroxybutyryl-CoA much faster than the completely sonicated mitochondria. The NAD+-dependence of 3-hydroxybutyryl-CoA oxidation showed that a much smaller NAD+ concentration was enough to half-saturate the reaction in gently disrupted mitochondria than in completely disrupted ones. Thus, these observations indicate the positive kinetic consequence of organization of β-oxidation enzyme in situ. Respiration-linked oxidation of bytyryl-, oxtanoyl- and palmitoyl-CoA was also studied and these CoA intermediates were oxidized at approx. 50% of the rate of crotonyl- and 3-hydroxybutyryl-CoA in the gently disrupted mitochondria. In vigorously disrupted mitochondria the oxidation rate of these saturated acyl-CoA intermediates was hardly detectable indicating that the connection between the acyl-CoA dehydrogenase and the respiratory chain had been disrupted.  相似文献   

19.
The effects of phthalate esters on the oxidation of succinate, glutamate, beta-hydroxybutyrate and NADH by rat liver mitochondria were examined and it was found that di-n-butyl phthalate (DBP) strongly inhibited the succinate oxidation by intact and sonicated rat mitochondria, but did not inhibit the State 4 respiration with NAD-linked substrates such as glutamate and beta-hydroxybutyrate. However, oxygen uptake accelerated by the presence of ADP and substrate (State 3) was inhibited and the rate of oxygen uptake decreased to that without ADP (State 4). It was concluded that phthalate esters were electron and energy transport inhibitors but not uncouplers. Phthalate esters also inhibited NADH oxidation by sonicated mitochondria. The degree of inhibition depended on the carbon number of alkyl groups of phthalate esters, and DBP was the most potent inhibitor of respiration. The activity of purified beef liver glutamate dehydrogenase [EC 1.4.1.3] was slightly inhibited by phthalate esters.  相似文献   

20.
Addition of NAD+ to purified potato (Solanum tuberosum L.) mitochondria respiring α-ketoglutarate and malate in the presence of the electron transport inhibitor rotenone, stimulated O2 uptake. This stimulation was prevented by incubating mitochondria with N-4-azido-2-nitrophenyl-aminobutyryl-NAD+ (NAP4-NAD+), an inhibitor of NAD+ uptake, but not by 1 mm EGTA, an inhibitor of external NADH oxidation. NAD+-stimulated malate-cytochrome c reductase activity, and reduction of added NAD+ by intact mitochondria, could be duplicated by rupturing the mitochondria and adding a small quantity to the cuvette. The extent of external NAD+ reduction was correlated with the amount of extra mitochondrial malate dehydrogenase present. Malate oxidation by potato mitochondria depleted of endogenous NAD+ by storing on ice for 72 hours, was completely dependent on added NAD+, and the effect of NAD+ on these mitochondria was prevented by incubating them with NAP4-NAD+. External NAD+ reduction by these mitochondria was not affected by NAP4-NAD+. We conclude that all effects of exogenous NAD+ on plant mitochondrial respiration can be attributed to net uptake of the NAD+ into the matrix space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号