首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Acetylcholinesterase has been isolated from bovine erythrocyte membranes by affinity chromatography using a m-trimethylammonium ligand. The purified enzyme had hydrophobic properties by the criterion of phase partitioning into Triton X-114. The activity of the hydrophobic enzyme was seen as a slow-moving band in nondenaturing polyacrylamide gels. After treatment with phosphatidylinositol-specific phospholipase C, another form of active enzyme was produced that migrated more rapidly toward the anode in these gels. This form of the enzyme partitioned into the aqueous phase in Triton X-114 phase separation experiments and was therefore hydrophilic. The hydrophobic form bound to concanavalin A in the absence of Triton X-100. As this binding was partially prevented by detergent, but not by alpha-methyl mannoside, D-glucose, or myo-inositol, it is in part hydrophobic. Erythrocyte cell membranes showed acetylcholinesterase activity present as a major form, which was hydrophobic by Triton X-114 phase separation and in nondenaturing gel electrophoresis moved at the same rate as the purified enzyme. In the membrane the enzyme was more thermostable than when purified in detergent. The hydrophobic enzyme isolated, therefore, represents a native form of the acetylcholinesterase present in the bovine erythrocyte cell membrane, but in isolation its stability becomes dependent on amphiphile concentration. Its hydrophobic properties and lectin binding are attributable to the association with the protein of a lipid with the characteristics of a phosphatidylinositol.  相似文献   

2.
Native molecular forms of acetylcholinesterase (AChE) present in a microsomal fraction enriched in SR of rabbit skeletal muscle were characterized by sedimentation analysis in sucrose gradients and by digestion with phospholipases and proteinases. The hydrophobic properties of AChE forms were studied by phase-partition of Triton X-114 and Triton X-100-solubilized enzyme and by comparing their migration in sucrose gradient containing either Triton X-100 or Brij 96. We found that in the microsomal preparation two hydrophilic 13.5 S and 10.5 S forms and an amphiphilic 4.5 S form exist. The 13.5 S is an asymmetric molecule which by incubation with collagenase and trypsin is converted into a 'lytic' 10.5 S form. The hydrophobic 4.5 S form is the predominant one in extracts prepared with Triton X-100. Proteolytic digestion of the membranes with trypsin brought into solution a significant portion of the total activity. Incubation of the membranes with phospholipase C failed to solubilize the enzyme. The sedimentation coefficient of the amphiphilic 4.5 S form remained unchanged after partial reduction, thus confirming its monomeric structure. Conversion of the monomeric amphiphilic form into a monomeric hydrophilic molecule was performed by incubating the 4.5 S AChE with trypsin. This conversion was not produced by phospholipase treatment.  相似文献   

3.
Brain membranes contain tubulin that can be isolated as a hydrophobic compound by partitioning into Triton X-114. We have previously postulated: (a) that this kind of tubulin is a peripheral membrane protein that arises from microtubules that in vivo interact with membranes and (b) that the hydrophobic behaviour is due to the interaction of tubulin with a membrane component. Here we report the in vitro conversion of hydrophilic into hydrophobic tubulin by incubating microtubule associated proteins (MAPs) free taxol-stabilized microtubules with Triton X-100 solubilized membranes. After incubation, the microtubules were sedimented, depolymerized and subjected to partition into Triton X-114. Part of the tubulin was isolated in the detergent phase and contained, as observed in native membranes, a high proportion of the acetylated isotype. Because of the high proportion of acetylated tubulin the in vitro conversion resembles the in vivo interaction. Electrophoretic analysis of the detergent phase shows, besides tubulin, two major protein bands of 29 and 100 kDa molecular mass. The ability of the solubilized membranes to convert hydrophilic into hydrophobic tubulin is greatly diminished if the solubilized membrane preparation is preincubated in the presence of trypsin or heated at 90°C for 5 min, indicating that the membrane component that confers the hydrophobic behaviour to tubulin is of proteinaceous nature.  相似文献   

4.
Brain membrane preparations contain tubulin that can be extracted with Triton X-114. After the extract is allowed to partition, 8% of the total brain tubulin is isolated as a hydrophobic compound in the detergent-rich phase. Cytosolic tubulin does not show this hydrophobic behaviour since it is recovered in the aqueous phase. Membrane tubulin can be released by 0.1 M Na2CO3 treatment at pH11.5 in such a way that the hydrophobic tubulin is converted into the hydrophilic form. These results suggest that tubulin exists associated with some membrane component that confers the hydrophobic behaviour to tubulin. If the tissue is homogenized in microtubule-stabilizing buffer containing Triton X-100, the hydrophobic tubulin is isolated from the microtubule fraction. This result indicates that the hydrophobic tubulin isolated from membrane preparations belongs to microtubules thatin vivo are associated to membranes. Therefore, hydrophobic tubulin (tubulin-membrane component complex) can be obtained from membranes or from microtubules depending on the conditions of brain homogenization.Abbreviations TBS Tris-buffered saline - Mes 2-(N-morpholine) ethane sulfonic acid  相似文献   

5.
Synaptic plasma membranes (SPM) of rat brain contained a 5'-nucleotidase that was specifically released by Bacillus thuringiensis phosphatidylinositol-specific phospholipase C (PIPLC). About 30% of the enzyme was readily released and the remainder was less susceptible. Purified 5'-nucleotidase was treated with PIPLC and the resultant enzyme was almost totally partitioned into the detergent-poor phase following phase-separation in Triton X-114 indicating that PIPLC converted the enzyme from an amphipathic to a hydrophilic form. The results suggest that 5'-nucleotidase is anchored into SPM by a covalently attached phosphatidylinositol moiety.  相似文献   

6.
The orientation of mannosidase II, an integral Golgi membrane protein involved in asparagine-linked oligosaccharide processing, has been examined in rat liver Golgi membranes. Previous studies on mannosidase II purified from Golgi membranes revealed an intact subunit of 124,000 daltons, as well as a catalytically active 110,000-dalton degradation product generated during purification (Moremen, K. W., and Touster, O. (1985) J. Biol. Chem. 260, 6654-6662). In Triton X-100 extracts of Golgi membranes, the intact enzyme was cleaved by a variety of proteases to generate degradation products similar to those observed previously. At appropriate concentrations, chymotrypsin, pronase, and proteinase K generated 110,000-dalton species, while trypsin and Staphylococcus aureus V8 protease generated 115,000-dalton forms. Cleavage by chymotrypsin under mild conditions (10 micrograms/ml, 10 min, 20 degrees C) resulted in a complete conversion to a catalytically active 110,000-dalton form of the enzyme which was extremely resistant to further degradation. Attempts to demonstrate these protease digestions in nonpermeabilized Golgi membranes were unsuccessful, a result suggesting that the protease-sensitive regions are not accessible on the external surface of the membrane. In Golgi membranes permeabilized by treatment with 0.5% saponin, mannosidase II could readily be cleaved to the 110,000-dalton form by digestion with chymotrypsin under conditions similar to those which result in a proteolytic inactivation of galactosyltransferase, a lumenal Golgi membrane marker. Although mannosidase II catalytic activity was not diminished by this chymotrypsin digestion, as much as 90% of the enzyme activity was converted to a nonsedimentable form. To examine the effect of the proteolytic cleavage on the partition behavior of the enzyme, control and chymotrypsin-treated Triton X-114 extracts of Golgi membranes were examined by phase separation at 35 degrees C. The undigested enzyme partitioned into the detergent phase consistent with its location as an integral Golgi membrane protein, while the 110,000-dalton chymotrypsin-digested enzyme partitioned almost exclusively into the aqueous phase in a manner characteristic of a soluble protein. These results suggest that mannosidase II catalytic activity resides in a proteolytically resistant, hydrophilic 110,000-dalton domain. Attachment of this catalytic domain to the lumenal face of Golgi membranes is achieved by a proteolytically sensitive linkage to a 14,000-dalton hydrophobic membrane anchoring domain.  相似文献   

7.
Syncollin is a pancreatic zymogen granule protein that was isolated through its ability to bind to syntaxin. Here we show that syncollin has a cleavable signal sequence and can be removed from granule membranes by washing with sodium carbonate. When membranes were subjected to Triton X-114 partitioning, syncollin was found predominantly in the aqueous phase, indicating that it is not sufficiently hydrophobic to be embedded in the membrane. Syncollin has intramolecular disulfide bonds and was accessible to water-soluble cross-linking and biotinylating reagents only when granules were lysed by sonication. These results indicate that syncollin is tightly bound to the luminal surface of the granule membrane. In situ, syncollin was resistant to proteases such as trypsin. When granule membranes were solubilized in ionic detergents such as deoxycholate, this trypsin resistance was maintained, and syncollin migrated on sucrose density gradients as a large (150 kDa) protein. In contrast, in non-ionic detergents such as Triton X-100, syncollin became partially sensitive to trypsin and behaved as a monomer. Syncollin in alkaline extracts of granule membranes was also monomeric. However, reduction of the pH regenerated the oligomeric form, which was insoluble. We conclude that syncollin exists as a homo-oligomer and that its ability to self-associate can be reversibly modulated via changes in pH. In light of our findings, we reassess the likely role of syncollin in the pancreatic acinar cell.  相似文献   

8.
Polyphenoloxidase from grape berries is extracted only by nonionic detergents with a hydrophilic-lipophilic balance between 12.4 and 13.5. The enzyme was partially purified in latent form, free of phenolics and chlorophylls, by using temperature phase partitioning in a solution of Triton X-114. This method permits the purification of the enzyme with the same fold purification as the commonly used method, but with a yield three times higher and a 90% reduction in time needed. The latent enzyme can be activated by different treatments, including trypsin and cationic and anionic detergents. Cetyltrimethylamonium bromide was found to be the most effective detergent activator, followed by sodium dodecyl sulfate. Polyphenoloxidase in grape berries, in spite of being an integral membrane protein, had an anomalous interaction with Triton X-114, remaining in the detergent-poor phase after phase separation. This could be explained by its having a short hydrophobic tail that anchors it to the membrane.  相似文献   

9.
The thylakoid polypeptides of the cyanobacterium Anacystis nidulans R2 were analyzed by Triton X-114 phase fractionation [C. Bordier (1981) J. Biol. Chem.256, 1604–1607, as adapted for photosynthetic membranes by T. M. Bricker and L. A. Sherman (1982) FEBS Lett.149, 197–202]. In this procedure, polypeptides with extensive hydrophobic regions (i.e., intrinsic proteins) form mixed micelles with Triton X-114, and are separated from extrinsic proteins by temperature-mediated precipitation of the mixed Triton X-114-intrinsic protein micelles. The polypeptide pattern after phase fractionation was highly complementary, with 62 of the observed 110 polypeptide components partitioning into the Triton X-114-enriched fraction. Identified polypeptides fractionating into the Triton X-114 phase included the apoproteins for Photosystems I and II, cytochromes f and b6, and the herbicide-binding protein. Identified polypeptides fractioning into the Triton X-114-depleted (aqueous) phase included the large and small subunits of RuBp carboxylase, cytochromes c550 and c554, and ferredoxin. Enzymatic radioiodination of the photosynthetic membranes followed by Triton X-114 phase fractionation allowed direct identification of intrinsic polypeptide components which possess surface-exposed regions susceptible to radioiodination. The most prominent of these polypeptides was a 34-kDa component which was associated with photosystem II. This phase partitioning procedure has been particularly helpful in the clarification of the identity of the membrane-associated cytochromes, and of photosystem II components. When coupled with surface-probing techniques, this procedure is very useful in identifying intrinsic proteins which possess surface-exposed domains. Phase fractionation, in conjunction with the isolation of specific membrane components and complexes, has allowed the identification of many of the important intrinsic thylakoid membrane proteins of A. nidulans R2.  相似文献   

10.
Cholesterol oxidase from various bacterial sources (membrane-bound and extracellular) was studied in Triton X-114R solutions above the cloud point. The influence of temperature, salt, enzyme concentration and source, and pH on phase equilibrium and enzyme partitioning was investigated in this detergent-based aqueous two-phase system. The method combines remarkable recovery (over 70% and 90% in the detergent-rich phase for the extracellular and membrane-bound forms, respectively) and 10 to 20-fold concentration of the enzyme in just one purification step. The results from cholesterol oxidase are compared with other proteins, both hydrophobic and hydrophilic. The system shows considerable promise for selectively partitioning proteins based on their surface hydrophobicity.  相似文献   

11.
The detergent Triton X-114, because of its convenient cloud point temperature (22 °C), has been used extensively to extract membrane proteins and to separate them in two phases according to their hydropathy. The upper detergent-poor phase contains mostly hydrophilic proteins, whereas hydrophobic ones are found mainly in the lower detergent-rich phase. In this work, we developed a method to fractionate membrane proteins and estimate their hydropathy based on a series of cloud point partitions with Triton X-114. With this method, beetroot plasma membrane proteins were separated in different fractions according to their hydropathy, following the binomial distribution law as expected. This method revealed the presence of both hydrophilic and hydrophobic Ca2+-dependent protein kinases in those membranes. At least five distinct Ca2+-dependent kinases were observed in in-gel kinase activity assays. This separation procedure was also used as the first step in the purification of a hydrophobic 60-kDa kinase.  相似文献   

12.
The molecular properties of the neuron-specific, synaptic-enriched glycoprotein GP50 have been investigated with the aid of the monoclonal antibody MabSM-GP50. GP50 immunoreactivity was detected in the brains of the frog, trout, pigeon, snake, rabbit, mouse, cow, and human, although variation in quantity and electrophoretic mobility of the immunoreactive protein between species was apparent. Deglycosylation of synaptic membranes (SMs) with endoglycosidase H, peptide:N-glycosidase F, trifluoromethane-sulfonic acid, and alkaline sodium borohydride indicated that GP50 is associated primarily, if not exclusively, with high-mannose and/or hybrid-type oligosaccharides and lacks complex N-linked and O-linked sugar chains. GP50 remained associated with the membrane fraction following extraction of SMs with alkaline sodium carbonate, was partially (55%) present in the detergent phase following the phase partitioning of SMs in the presence of Triton X-114, and was resistant to proteolytic digestion with trypsin when present as a component of intact membranes. Taken together, these results indicate that GP50 is an integral component of the SM. Sucrose gradient centrifugation of Triton X-100 extracts of SMs or of forebrain and cerebellar homogenates resolved GP50 into two fractions with sedimentation coefficients of 3.6S and 7.3S, which accounted for 45 and 55% of the total, respectively. The 7.3S form occurred exclusively in the aqueous phase following partitioning with Triton X-114, whereas the 3.6S species was found in both the aqueous and detergent phases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The membrane nature of squalene oxide cyclase from Saccharomyces cerevisiae was investigated by comparing properties of the enzyme recovered from both microsomes and the soluble fraction of the yeast homogenate. The "apparent soluble" form and microsomal form of the enzyme were both stimulated by the presence of mammalian soluble cytoplasm and corresponded to one another in response to detergents Triton X-100 and Triton X-114. The observed strong dependence of the enzyme activity on the presence of detergents and the behavior of the enzyme after Triton X-114 phase separation were peculiar to a lipophilic membrane-bound enzyme. A study of the conditions required to extract the enzyme from microsomes confirmed the lipophilic character of the enzyme. Microsomes, exposed to ipotonic conditions to remove peripheral membrane proteins, retained most of the enzyme activity within the integral protein fraction. Quantitative dissociation of the enzyme from membranes occurred only if microsomes were treated with detergents (Triton X-100 or octylglucoside) at concentrations which alter membrane integrity. The squalene oxide cyclase was purified 140 times from yeast microsomes by (a) removal of peripheral proteins, (b) extraction of the enzyme from the integral protein fraction with octylglucoside, and (c) separation of the solubilized proteins by DEAE Bio-Gel A chromatography. Removal of the peripheral proteins seemed to be a key step necessary for obtaining high yields.  相似文献   

14.
Rat liver alpha-mannosidase II, a hydrolase involved in the processing of asparagine-linked oligosaccharides, is an integral membrane glycoprotein facing the lumen of Golgi membranes. We have previously shown (Moremen, K. W., and Touster, O. (1986) J. Biol. Chem. 261, 10945-10951) that mild chymotrypsin digestion of permeabilized or solubilized Golgi membranes will result in the cleavage of the intact 124,000-dalton alpha-mannosidase II subunit, releasing a 110,000-dalton hydrophilic polypeptide which contains the catalytic site. Consistent with the removal of a membrane binding domain, the chymotrypsin-generated 110,000-dalton peptide was found exclusively in the aqueous phase in Triton X-114 phase separation studies, whereas the intact enzyme was found in the detergent phase. Taking advantage of this conversion in phase partitioning behavior, a purification procedure was developed to isolate the 110,000-dalton proteolytic digestion product as a homogeneous polypeptide for further characterization and protein sequencing at a yield of greater than 65% from a rat liver Golgi-enriched membrane fraction. An improved purification procedure for the intact enzyme was also developed. The two forms of the enzyme were compared yielding the following results. (a) The catalytic activity of the intact and cleaved forms of alpha-mannosidase II were indistinguishable in Km, Vmax, inhibition by the alkaloid, swainsonine, and in their activity toward the natural substrate GlcNAc-Man5GlcNAc. (b) Both the intact and cleaved forms of the enzyme appear to be disulfide-linked dimers. (c) The two forms of the enzyme contain different NH2-terminal sequences suggesting that the cleaved NH2 terminus contains the membrane-spanning domain. (d) Additional peptide sequences were obtained from proteolytic fragments and cyanogen bromide digestion products in order to create a partial protein sequence map of the enzyme. These results are consistent with a model common among Golgi processing enzymes of a hydrophilic catalytic domain anchored to the lumenal face of Golgi membranes through an NH2-terminal hydrophobic membrane-anchoring domain.  相似文献   

15.
The milk-fat-globule membrane (MFGM) was isolated from guinea-pig milk and the membrane-associated proteins and glycoproteins characterized by electrophoretic techniques. Major components of the membrane included PAS-I, a sialoglycoprotein of Mr greater than or equal to 200000, the redox enzyme xanthine oxidase and the glycoprotein, butyrophilin. Membrane preparations also contained two other glycoproteins, GP-80 and GP-55, of Mr 80000 and 55000, respectively. Comparison of guinea-pig xanthine oxidase and butyrophilin with proteins from bovine MFGM by peptide mapping procedures, showed that the two proteins in both species were similar, but not identical. GP-55 may also be related to glycoproteins of Mr 45000 and 48000 in the bovine membrane. The integral and peripheral components of guinea-pig MFGM were identified by treating membrane preparations with sodium carbonate solutions at high pH and by partitioning the membrane proteins in solutions of Triton X-114. By these criteria xanthine oxidase and GP-55 appeared to be peripheral components and GP-80 an integral protein of the membrane. PAS-I and butyrophilin displayed hydrophilic properties in Triton X-114 solutions, but could not be removed from membrane preparations with sodium carbonate. Possible reasons for these ambiguous data are discussed. The observed similarity between several of the proteins of guinea-pig and bovine MFGM implies that these proteins may have specific functions related to milk secretion in mammary tissue, e.g. in the budding of milk-fat globules or the exocytosis of milk protein and lactose at the apical surface.  相似文献   

16.
Carboxypeptidase E (CPE), a peptide hormone-processing enzyme, is present within secretory granules in both a soluble form and a form which is membrane-bound at pH 5.5 but soluble at neutral pH. Antisera raised against a peptide corresponding to the predicted COOH-terminus of CPE bind to the membrane-associated form of CPE but not to the soluble form. This COOH-terminal region is predicted to form an amphiphilic alpha-helix, containing several pairs of hydrophobic residues separated by hydrophilic residues. Synthetic COOH-terminal peptides 11-24 residues in length are able to bind to bovine pituitary membranes and can be extracted by conditions that extract the membrane-bound form of CPE. The influence of pH on the membrane binding of a 21-residue COOH-terminal peptide is similar to the membrane binding of CPE: at pH values less than 6 the majority of the peptide is membrane-bound, while at pH values above 8 less than 20% is membrane-bound. Both the 21-residue COOH-terminal peptide and the purified membrane form of CPE, but not the soluble form, partition into Triton X-114 only at low pH (pH less than 6). Combined polar and hydrophobic interactions of the COOH-terminal peptide appear to be responsible for the reversible, pH-dependent association of CPE with membranes.  相似文献   

17.
The interaction of the human acrosomal protein SP-10 with the acrosomal membranes was analyzed by the ability of Triton X-114 (TX-114) and other agents to release SP-10 from the acrosome. Treatment of human sperm with TX-114 revealed a pool of SP-10 that was released by TX-114 and a pool of SP-10 that was TX-114-resistant. TX-114-resistant SP-10 was associated with the equatorial segment and with TX-114-resistant portions of the acrosomal matrix and the inner acrosomal membrane. Phase partitioning of TX-114-released and TX-114-resistant SP-10 pools showed that both were hydrophilic, indicating that these pools consist of proteins that are peripherally associated with, rather than integral to, the acrosomal membranes. Sequential treatments of human sperm with various agents showed that repeated washes with TX-114 or 1.5 M NaCl had little or no effect on TX-114-resistant SP-10, whereas treatment with a chaotropic salt (150 mM sodium thiocyanate) and buffers at pH extremes (pH 2.0 and 10.0) completely released this pool of SP-10 from the acrosome. Together the results suggest that SP-10 is a hydrophilic peripheral acrosomal membrane protein that may be associated with a TX-114-resistant "anchor."  相似文献   

18.
NADPH-protochlorophyllide oxidoreductase (PChilde reductase, EC 1.3.1.33), a key enzyme in light-dependent greening and the conversion of etioplasts into chloroplasts was investigated in the the greening mutant C-2A' of the unicellular green alga Scenedesmus obliquus. In the absence of detergent, the solubilization of the enzyme increased with high glycerol concentrations in the buffer. Solubilization capacities of 4 non-ionic or zwitterionic detergents, Triton X-100, CHAPS, octylglucoside and decyl-maltopyranoside, were compared. Due to the addition of these detergents, the enzyme activity in the soluble fraction was increased severalfold. Hydrophobicity of the enzyme was analyzed by Triton X-114 phase partitioning. The protein had a preference for the aqueous phase, but its distribution was strongly influenced by the glycerol concentration of the buffer. These results indicate that the PChlide reductase of the green alga Scenedesmus obliquus is a hydrophobic, membrane-associated enzyme, but not an integral membrane protein.  相似文献   

19.
Stoichiometry of membrane components associated with Photosystem II was determined in a highly active O2-evolving Photosystem II preparation isolated from spinach chloroplasts by the treatment with digitonin and Triton X-100. From the analysis with sodium dodecyl sulfate polyacrylamide gel electrophoresis and Triton X-114 phase partitioning, the preparation was shown to contain the reaction center protein (43 kDa), the light-harvesting chlorophyll-protein complex (the main band, 27 kDa), the herbicide-binding protein (32 kDa) and cytochrome b-559 (10 kDa) as hydrophobic proteins, and three proteins (33, 24 and 18 kDa) which probably constitute the O2-evolution enzyme complex as hydrophilic proteins. These proteins were associated stoichiometrically with the Photosystem II reaction center: one Photosystem II reaction center, approx. 200 chlorophyll, one high-potential form of cytochrome b-559, one low-potential form of cytochrome b-559, one 33 kDa protein, one (to two) 24 kDa protein and one (to two) 18 kDa protein. Measurement of fluorescence induction showed the presence of three electron equivalents in the electron acceptor pool on the reducing side of Photosystem II in our preparation. Three molecules of plastoquinone A were detected per 200 chlorophyll molecules with high-performance liquid chromatography. The Photosystem II preparation contained four managanese atoms per 200 chlorophyll molecules.  相似文献   

20.
Peroxisomes from mouse liver were fractionated with Triton X-114, a procedure which yields a detergent phase consisting of proteins containing hydrophobic binding sites, and a nondetergent, or aqueous, phase containing hydrophilic proteins. When this method was applied to peroxisomes from control mice, catalase and fatty acyl-CoA oxidase distributed to the aqueous phase, whereas the integral membrane protein, PMP68, and the bifunctional protein were recovered exclusively in the detergent phase. Urate oxidase distributed intermediate between these two phases. With peroxisomes from mice treated with the peroxisome proliferator clofibrate, the bifunctional protein was recovered in both the detergent and the aqueous phases, and urate oxidase was shifted toward the aqueous phase. Other analyses of the subperoxisomal distribution of the bifunctional protein were consistent with a proportion of this protein being tightly associated with the peroxisomal membrane, or with some other uncharacterized, poorly soluble, component. Sucrose gradient centrifugation of the aqueous phase resulting from Triton X-114 fractionation of peroxisomes revealed that a major proportion of catalase, fatty acyl-CoA oxidase, the bifunctional protein, and other unidentified proteins behaved as if associated under these conditions. In this respect, use of a higher concentration of Triton X-114 for peroxisome fractionation led to the partitioning of some catalase and fatty acyl-CoA oxidase to the detergent phase, indicating the presence of some detergent-accessible hydrophobic binding sites even on these proteins. These data have been interpreted as indicating matrix protein associations in vivo, associations which may be responsive to proliferator treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号