首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
This paper examined the biodegradability of a new aliphatic polyester, polyethylene succinate (PES), at a high incubation temperature of 50°C. The distribution and population of total colonies and of PES degrading micro organisms on polymer-emulsified agar plates were determined using the plate count and clear zone methods. The PES-decomposers were present in six of 10 soil samples and the total number ranged from 2.0×104 to 2.2×106 c.f.u./g of samples. Degrading microorganisms constituted between 20 and 80% of the total colonies on PES–agar plates. A single PES-degrading strain, TT96, was isolated and tested for its biodegrading capacity on PES powder and on other aliphatic polyesters: poly(beta-hydroxybutyrate) (PHB), polycaprolactone (PCL), poly(butylene succinate) (PBS), and poly(L-lactide) (PLA). Degraded films of PES and PBS were presented and compared using scanning electron microscopy. Strain TT96 was able to create clear zones on all the polymers used, except on PHB-agar plates. Liquid culture test after 2 weeks showed that TT96 completely degraded PCL powder but had very little activity on other samples. Scanning electron micrograph confirmed the microbial attack of TT96 on PES and PBS films. PES film surfaces were degraded more uniformly compared to PBS films which were decomposed only in some parts.  相似文献   

2.
Hoang KC  Tseng M  Shu WJ 《Biodegradation》2007,18(3):333-342
Thermophilic actinomycetes were isolated from sediment of the Chingshuei hot spring in north Taiwan, and the strain HS 45-1 was selected from colonies which formed distinct clear zones on agar plate with emulsified polyethylene succinate (PES). The film of PES disappeared within 6 days in liquid cultures at 50°C. The strain HS 45-1 was also able to degrade poly (ε-carpolactone) (PCL) and poly (3-hydroxybutyrate) (PHB) films completely within 6 days in liquid cultures. Basing on the results of phynotypic characteristics, phylogenetic studies and DNA-DNA hybridization, strain HS 45-1 should be assigned to Micorbispora rosea subsp. taiwanensis.  相似文献   

3.
The biodegradability of poly(tetramethylene succinate) (PTMS), a synthetic aliphatic polyester with a high melting point, was evaluated. The ecological study showed that the distribution of PTMS-degrading microorganisms in soil environments was quite restricted compared with the distribution of microorganisms that degrade poly((epsilon)-caprolactone) (PCL), a polyester with a low melting point. However, in soil samples in which the formation of a clear zone was observed, PTMS-degrading microorganisms constituted 0.2 to 6.0% of the total number of microorganisms, which is very close to the percentage (0.8 to 8.0%) observed for PCL-degrading microorganisms. Five strains were isolated from colonies which formed distinct clear zones on agar plates with emulsified PTMS. In liquid cultures of the isolates with ground PTMS powder, strain HT-6, an actinomycete, showed the highest PTMS degrading activity. It assimilated about 60% of the ground PTMS powder after 8 days of cultivation. When a PTMS emulsion was used, a higher degradation rate was observed and more than 90% of the PTMS was assimilated in 6 days. PTMS degradation products were analyzed by gas chromatography, and it was found that 1,4-butanediol, 4-hydroxy n-butyrate, and succinic acid accumulated during cultivation. Degradation of PTMS film by the strain occurred in two steps: fragmentation and then the formation of hemispherical holes on the surface of the film. Strain HT-6 was also able to assimilate PCL and poly((beta)-hydroxybutyrate) (PHB). The crude enzyme showed a wide range of substrate specificity, being able to degrade low-molecular-weight PTMS, PCL, PHB, and even high-molecular-weight PTMS.  相似文献   

4.
Hoshino A  Isono Y 《Biodegradation》2002,13(2):141-147
Commercial lipases were examined for their degradation efficiency of aliphatic polyester films. In 100 days immersion of polyester films in lipase solutions at37 °C at pH 7.0,Lipase Asahi derived from Chromobacterium viscosum degraded polybutylene succinate-co-adipate (PBSA), poly (-caprolactone) (PCL) and polybutylene succinate (PBS), and Lipase F derived from Rhizopus niveus degraded PBSA and PCL during 4–17 days. Lipase F-AP15 derived fromRhizopus orizae could degrade PBSA in 22 days. In these cases, PBS and PBSA were mainly degraded to dimers, whereas PCL was mainly degraded to monomers. Only poly(3-hydroxybutyrate-co-3-hydroxyvalerate)(PHB/V) and poly (L-lactide) (PLA) were not degraded in the experiments. However, PLA degraded completely at 55 °C, pH 8.5 with Lipase PL during 20 days. This result could be explained with the sequential reactions of the chemical hydrolysis of the polymer to oligomers at higher pH and temperature, and the succeeding enzymatic hydrolysis of oligomers to the monomers.  相似文献   

5.
Biodegradable plastics (BPs) have attracted much attention since more than a decade because they can easily be degraded by microorganisms in the environment. The development of aliphatic-aromatic co-polyesters has combined excellent mechanical properties with biodegradability and an ideal replacement for the conventional nondegradable thermoplastics. The microorganisms degrading these polyesters are widely distributed in various environments. Although various aliphatic, aromatic, and aliphatic-aromatic co-polyester-degrading microorganisms and their enzymes have been studied and characterized, there are still many groups of microorganisms and enzymes with varying properties awaiting various applications. In this review, we have reported some new microorganisms and their enzymes which could degrade various aliphatic, aromatic, as well as aliphatic-aromatic co-polyesters like poly(butylene succinate) (PBS), poly(butylene succinate)-co-(butylene adipate) (PBSA), poly(ε-caprolactone) (PCL), poly(ethylene succinate) (PES), poly(l-lactic acid) (PLA), poly(3-hydroxybutyrate) and poly(3-hydoxybutyrate-co-3-hydroxyvalterate) (PHB/PHBV), poly(ethylene terephthalate) (PET), poly(butylene terephthalate) (PBT), poly(butylene adipate-co-terephthalate (PBAT), poly(butylene succinate-co-terephthalate) (PBST), and poly(butylene succinate/terephthalate/isophthalate)-co-(lactate) (PBSTIL). The mechanism of degradation of aliphatic as well as aliphatic-aromatic co-polyesters has also been discussed. The degradation ability of microorganisms against various polyesters might be useful for the treatment and recycling of biodegradable wastes or bioremediation of the polyester-contaminated environments.  相似文献   

6.
Hydrolysis of polyesters by serine proteases   总被引:2,自引:0,他引:2  
The substrate specificity of -chymotrypsin and other serine proteases, trypsin, elastase, proteinase K and subtilisin, towards hydrolysis of various polyesters was examined using poly(L-lactide) (PLA), poly(-hydroxybutyrate) (PHB), poly(ethylene succinate) (PES), poly(ethylene adipate) (PEA), poly(butylene succinate) (PBS), poly(butylene succinate-co-adipate) (PBS/A), poly[oligo(tetramethylene succinate)-co-(tetramethylane carbonate)] (PBS/C), and poly(-caprolactone) (PCL). -Chymotrypsin could degrade PLA and PEA with a lower activity on PBS/A. Proteinase K and subtilisin degraded almost all substrates other than PHB. Trypsin and elastase had similar substrate specificities to -chymotrypsin.  相似文献   

7.
Tseng M  Hoang KC  Yang MK  Yang SF  Chu WS 《Biodegradation》2007,18(5):579-583
Thermophilic actinomycetes strains were isolated from various environment in Taiwan and screened for degradation of poly(ethylene succinate) (PES), poly(ε-caprolactone) (PCL) and/or poly(β-hydroxybutyrate) (PHB) by the clear-zone method. Out of 341 strains of thermophilic actinomycetes, 105 isolates were PHB-degraders (30.8%), 198 isolates were PCL-decomposers (58.1%), and 99 isolates could degrade PES (29.0%). Furthermore, 77 isolates could degrade both PHB and PCL (22.6%), 35 isolates could degrade both PHB and PES (10.3%), 81 isolates could degrade both PES and PCL (23.8%) and 31 isolates could degrade the three polyesters used in this study (9.1%). Base on the morphological and chemical characteristics, these 31 isolates belonging to Actinomadura (12.9%), Microbispora (25.8%), Streptomyces (48.4%), Thermoactinomyces (9.7%) and Saccharomonospora genus (3.22%).  相似文献   

8.
Actinomycete strains were isolated from upstream and downstream regions of the Touchien River in Taiwan and screened for the ability to degrade poly(ethylene succinate) (PES), poly(ε-caprolactone) (PCL) and/or poly(β-hydroxybutyrate) (PHB) by the clear-zone method. Out of 305 isolates 135 isolates were PHB-degraders (44.2%), 83 isolates were PCL-decomposers (27.2%), and 64 isolates could degrade PES (21.0%). Furthermore, 46 isolates could degrade both PHB and PCL (15%), 39 isolates could degrade both PHB and PES (12.8%), and 12 isolates could degrade the three polyesters used in this study. Based on the appearance of isolates, the major isolates belong to the Streptomyces genus (91.9%) and Micromonospora genus (8.1%).  相似文献   

9.
聚丁二酸丁二醇酯(poly(butylene succinate), PBS)是一种人工合成的脂肪族聚酯化合物。PBS的生产成本低、热稳定性好,具有良好加工性能、机械性能以及力学性能等优点。本文就近年来PBS在生物降解方面的研究进展进行了综述,具体包括PBS的生物堆肥降解、PBS的微生物降解以及PBS降解酶的相关研究。最后对PBS生物降解研究进展做出了总结。  相似文献   

10.
In this study, fungi isolated from soil were screened for their ability to form clear zones on agar plates with emulsified poly(ε-caprolactone) (PCL). The most active strain, designated as DSYD05, was identified as Penicillium oxalicum on the basis of morphological characteristics and phylogenetic analysis. Mutant DSYD05-1, obtained by ultraviolet-light mutagenesis from strain DSYD05, was more effective in PCL degradation. In liquid cultures of the mutant strain with PCL emulsion, DSYD05-1 showed the highest PCL-degrading activity after 4?days of cultivation. The products of PCL degradation were analysed by mass spectrometry; the results indicated that 6-hydroxyhexanoic acid was produced and assimilated during cultivation. The degradation of PCL film by DSYD05-1 was observed by scanning electron microscopy, and was indicative of a three-stage degradation process. The degradation of amorphous parts of the film preceded that of the crystalline center and then the peripheral crystalline regions. In addition, DSYD05-1 showed a wide range of substrate specificity, with capability to degrade PCL, poly(β-hydroxybutyrate), and poly(butylene succinate), but not poly(lactic acid), indicating that the strain could have potential for application in the treatment or recycling of bio-plastic wastes.  相似文献   

11.
Pseudozyma antarctica JCM 10317 exhibits a strong degradation activity for biodegradable plastics (BPs) such as agricultural mulch films composed of poly(butylene succinate) (PBS) and poly(butylene succinate-co-adipate) (PBSA). An enzyme named PaE was isolated and the gene encoding PaE was cloned from the strain by functional complementation in Saccharomyces cerevisiae. The deduced amino acid sequence of PaE contains 198 amino acids with a predicted molecular weight of 20,362.41. High identity was observed between this sequence and that of cutinase-like enzymes (CLEs) (61–68 %); therefore, the gene encoding PaE was named PaCLE1. The specific activity of PaE against emulsified PBSA was 54.8?±?6.3 U/mg. In addition to emulsified BPs, PaE degraded solid films of PBS, PBSA, poly(ε-caprolactone), and poly(lactic acid).  相似文献   

12.
A new thermophilic microorganism capable of degrading poly(D-3-hydroxybutyrate) (PHB) was isolated from soil. A phylogenetic analysis based on 16S rDNA sequences indicated that the new isolate belongs to genus Streptomyces. PHB film and powder were completely degraded after 6 and 3 d cultivation, respectively at 50 degrees C. Scanning micrographs showed adherence of the microbial cells to the entire film surface, indicating that biodegradation occurs by colonization of the PHB surface. The film was degraded both by microbial attack and by the action of an extracellular enzyme secreted by the microorganism. The strain can also degrade poly(ethylene succinate), poly(ester carbonate), polycaprolactone and poly(butylene succinate), but to a lesser extent.  相似文献   

13.
A newly described medium with esculin for identification of Cryptococcus neoformans was compared with Staib's Guizotia abyssinica extract-creatinine medium (GAEC) with and without diphenyl (DF). Twenty-seven samples of pigeon manure were examined. Cr. neoformans was found in 6 samples (22%) on GAEC plates (-DF); ESC medium (-DF) and malt extract agar allowed isolation from 2 and 3 samples respectively. Cr. neoformans was found in 0 to 2 samples when DF was added. Colonies of Cr. neoformans found on ESC plates had no distinctive pigmentation although inocula of pure cultures produced brown colonies. On GAEC plates some colonies of Cr. neoformans turned brown not until after 2 weeks of incubation. At 1 month the presence of pigmented colonies on GAEC plates (-DF) allowed the identification of 5 of the 6 samples from which Cr. neoformans was isolated. Other yeasts were grown from 26 samples (96%) and Torulopsis candida was found to be more frequent than Cr. neoformans.  相似文献   

14.
Biodegradable molecularly imprinted polymers based on poly(ε-caprolactone)   总被引:1,自引:0,他引:1  
Novel biodegradable molecularly imprinted polymers (MIPs) based on poly(ε-caprolactone) (PCL) were prepared by combining two important properties required of ideal biomaterials, biodegradability (with biocompatibility) and molecular recognition properties. Acrylate or methacrylate end-capped PCL macromers were synthesized through the reaction of PCL diol or triol with acryloyl or methacryloyl chloride. The synthesis of acrylate or methacrylate end-capped macromers was confirmed using FT-IR and H NMR spectroscopic techniques. These macromers were used to prepare biodegradable crosslinked networks by photopolymerization with functional monomer (acrylic acid) and a model template (theophylline). The theophylline-imprinted polymer showed higher binding capacity for theophylline compared with non-imprinted polymer (NIP), and also showed selectivity for theophylline over caffeine (similar structure molecules). PCL-based MIP degraded 8% of the initial weight in 30 days in phosphate-buffered saline (PBS) solution (pH 7.4) and over 90% of the initial weight within 24 h in 1 N NaOH at 37°C.  相似文献   

15.
Yang J  Tian W  Li Q  Li Y  Cao A 《Biomacromolecules》2004,5(6):2258-2268
In a previous study, we have reported chemical synthesis of novel aliphatic poly(butylene succinate-co-cyclic carbonate) P(BS-co-CC)s bearing various functionalizable carbonate building blocks, and this work will continue to present our new studies on their enzymatic degradation and in vitro cell biocompatibility assay. First, enzymatic degradation of the novel P(BS-co-CC) film samples was investigated with two enzymes of lipase B Candida Antartic (Novozyme 435) and lipase Porcine Pancreas PPL, and it was revealed that copolymerizing linear poly(butylene succinate) PBS with a functionalizable carbonate building block could remarkably accelerate the enzymatic degradation of a synthesized product P(BS-co-CC), and its biodegradation behavior was found to strongly depend on the overall impacts of several important factors as the cyclic carbonate (CC) comonomer structure and molar content, molar mass, thermal characteristics, morphology, the enzyme-substrate specificity, and so forth. Further, the biodegraded residual film samples and water-soluble enzymatic degradation products were allowed to be analyzed by means of proton nuclear magnetic resonance (1H NMR), gel permeation chromatograph (GPC), differential scanning calorimeter (DSC), attenuated total reflection FTIR (ATR-FTIR), scanning electron microscope (SEM), and liquid chromatograph-mass spectrometry (LC-MS). On the experimental evidences, an exo-type mechanism of enzymatic chain hydrolysis preferentially occurring in the noncrystalline domains was suggested for the synthesized new P(BS-co-CC) film samples. With regard to their cell biocompatibilities, an assay with NIH 3T3 mouse fibroblast cell was conducted using the novel synthesized P(BS-co-CC) films as substrates with respect to the cell adhesion and proliferation, and these new biodegradable P(BS-co-CC) samples were found to exhibit as low cell toxicity as the PLLA control, particularly the two samples of poly(butylene succinate-co-18.7 mol % dimethyl trimethylene carbonate) P(BS-co-18.7 mol % DMTMC) and poly(butylene succinate-co-21.9 mol % 5-benzyloxy trimethylene carbonate) P(BS-co-21.9 mol % BTMC) were interestingly found to show much better cell biocompatibilities than the PLLA reference.  相似文献   

16.
Degradation of natural and synthetic polyesters under anaerobic conditions   总被引:4,自引:0,他引:4  
Often, degradability under anaerobic conditions is desirable for plastics claimed to be biodegradable, e.g. in anaerobic biowaste treatment plants, landfills and in natural anaerobic sediments. The biodegradation of the natural polyesters poly(beta-hydroxybutyrate) (PHB), poly(beta-hydroxybutyrate-co-11.6%-beta-hydroxyvalerate) (PHBV) and the synthetic polyester poly(epsilon-caprolactone) (PCL) was studied in two anaerobic sludges and individual polyester degrading anaerobic strains were isolated, characterized and used for degradation experiments under controlled laboratory conditions. Incubation of PHB and PHBV films in two anaerobic sludges exhibited significant degradation in a time scale of 6-10 weeks monitored by weight loss and biogas formation. In contrast to aerobic conditions, PHB was degraded anaerobically more rapidly than the copolyester PHBV, when tested with either mixed cultures or a single strained isolate. PCL tends to degrade slower than the natural polyesters PHB and PHBV. Four PHB and PCL degrading isolates were taxonomically identified and are obviously new species belonging to the genus Clostridium group I. The depolymerizing enzyme systems of PHB and PCL degrading isolates are supposed to be different. Using one isolated strain in an optimized laboratory degradation test with PHB powder, the degradation time was drastically reduced compared to the degradation in sludges (2 days vs. 6-10 weeks).  相似文献   

17.
A selective medium (LC agar) was developed for enumeration of Lactobacillus casei populations from commercial yogurts and fermented milk drinks that may contain strains of yogurt bacteria (Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus), probiotic bacteria (Lactobacillus acidophilus and bifidobacteria) and L. casei. Appropriate dilutions were pour-plated in specially formulated LC agar acidified to pH 5.1 and the plates incubated at 27°C for 72 to 96 h under anaerobic conditions. Growth of S. thermophilus was prevented by adjusting pH to 5.1. L. delbrueckii ssp. bulgaricus did not ferment ribose as the carbon source, as a result the organisms did not form colonies. L. acidophilus formed colonies on MRS-ribose agar; however, this organism did not grow in the specially formulated LC agar containing ribose. Similarly, Bifidobacterium spp. did not form colonies in LC agar. L. casei formed colonies on LC agar. © Rapid Science Ltd. 1998  相似文献   

18.
Two yeast strains, which have the ability to degrade biodegradable plastic films, were isolated from the larval midgut of a stag beetle, Aegus laevicollis. Both of them are most closely related to Cryptococcus magnus and could degrade biodegradable plastic (BP) films made of poly(butylene succinate) (PBS) and poly(butylene succinate-co-adipate) (PBSA) effectively. A BP-degrading enzyme was purified from the culture broth of one of the isolated strains employing a newly developed affinity purification method based on the binding action of the enzyme to the substrate (emulsified PBSA) and its subsequent degradative action toward the substrate. Partial amino acid sequences of this enzyme suggested that it belongs to the cutinase family, and thus, the enzyme was named CmCut1. It has a molecular mass of 21 kDa and a degradative activity for emulsified PBSA which was significantly enhanced by the simultaneous presence of Ca2+ or Mg2+ at a concentration of about 2.5 mM. Its optimal pH was 7.5, and the optimal temperature was 40 °C. It showed a broad substrate specificity for p-nitrophenyl (pNP)-fatty acid esters ranging from pNP-acetate (C2) to pNP-stearate (C18) and films of PBSA, PBS, poly(ε-caprolactone), and poly(lactic acid).  相似文献   

19.
We developed a new medium, designated peptone bile amphotericin cycloheximide (PBAC) agar, which contains (per liter) 10 g of peptone, 300 mg of bile salts, 1 mg of amphotericin B, 1 g of cycloheximide, and 15 g of agar. When 21 samples of fresh ground beef were studied and plate count agar counts were used as references, we obtained a mean recovery of 28% of total counts with violet red bile agar overlay, whereas we obtained 48% recovery with PBAC agar. With 12 samples of frozen ground beef, recovery on violet red bile agar overlay was 29% of the recovery on plate count agar, whereas the corresponding value on PBAC agar was 45%. PBAC agar allowed the enumeration of 1.4 times as many gram-negative bacteria as violet red bile agar overlay. None of eight strains of gram-positive bacteria and none of eight strains of yeasts grew on PBAC agar. Of 158 colonies randomly selected from pour plates of eight fresh ground meat samples, 95% stained gram negative. In comparison, only 70% of 151 colonies selected from corresponding plate count agar plates were gram negative. The lack of background color, turbidity, and ease of use make PBAC agar easier to handle than other media used for gram-negative bacteria, such as violet red bile agar, violet red bile agar overlay, and crystal violet tetrazolium agar. In the preparation PBAC agar, all ingredients are autoclaved together except amphotericin B, which is filter sterilized and added before the plates are poured.  相似文献   

20.
A biodegradable block copolymer (PCL-b-PLLA, M(n) = 1.72 x 10(4), M(w)/M(n) = 1.37) of poly(epsilon-caprolactone) (PCL) and poly(L-lactide) (PLLA) with very low crystallinity was obtained by forming the inclusion complex between alpha-cyclodextrin molecules and PCL-b-PLLA followed by coalescence of the guest polymer chains. Films of the as-synthesized and coalesced copolymer samples, PCL and PLLA homopolymers of approximately the same chain lengths as the corresponding blocks of PCL-b-PLLA, and a physical blend of PCL/PLLA homopolymers with the same molar composition as PCL-b-PLLA were prepared by melt-compression molding between Teflon plates. Subsequently, the in vitro biodegradation behavior of these films was studied in phosphate buffer solution containing lipase from Rhizopus arrhizus, by means of ultraviolet spectra, attenuated total reflectance FTIR spectra, differential scanning calorimetry, wide-angle X-ray diffraction measurements, and weight loss analysis. PCL segments were found to degrade much faster than PLLA segments, both in the pure state and in copolymer or blend samples. Consistent with our expectation, suppression of the phase separation, as well as a decrease of crystallinity, in the coalesced copolymer sample led to a much faster enzymatic degradation than that of either as-synthesized copolymer or the PCL/PLLA physical blend sample, especially during the early stages of biodegradation. Thus the biodegradation behavior of biodegradable block copolymers, which is of decisive importance in drug delivery and controlled release systems, may be regulated by the novel and convenient means recently reported by us.(1)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号