首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extensive degraded short tussock grasslands of New Zealand's eastern South Island were dominated by woody vegetation prior to burning and livestock grazing associated with human settlement starting 800 years ago. There is increasing interest in restoring some of these grasslands back to a woody state. However, because of the long time frames involved in establishing a woody cover, it is difficult to predict the impacts that woody restoration will have on the extant herbaceous flora. Using a factorial trial with artificial shade and grazing exclusion, we assessed the potential impact of woody restoration on the structure and composition of the herbaceous flora over a six‐year period. The imposition of artificial shade resulted in significant increases in total species richness and the total cover of herbaceous vegetation, increases in cover of several individual forb and grass species and decreases in the cover of bare ground, moss and lichen in shade treatments. There were also changes in the overall community composition of shaded treatments reflecting these changes in vegetation cover and species richness. We found no statistically significant effects of grazing exclusion. We suggest that increased soil moisture resulting from shade addition plays an important role in increasing the herbaceous component of the flora. While woody restoration will have a range of effects on the herbaceous understorey, for example through competition and changes in soil conditions, our findings are important for planning future woody restoration in these degraded tussock grasslands. In particular, our results suggest that the best approach to ensure the persistence of herbaceous vegetation in woody restorations might be to ensure that restoration plantings result in a spatially heterogeneous vegetation arrangement.  相似文献   

2.
Frequent fires reduce the abundance of woody plant species and favour herbaceous species. Plant species richness also tends to increase with decreasing vegetation biomass and cover due to reduced competition for light. We assessed the influence of variable fire histories and site biomass on the following diversity measures: woody and herbaceous species richness, overall species richness and evenness, and life form evenness (i.e. the relative abundance or dominance among six herbaceous and six woody plant life forms), across 16 mixed jarrah (Eucalyptus marginata) and marri (Corymbia calophylla) forest stands in south‐west Australia. Fire frequency was defined as the total number of fires over a 30‐year period. Overall species richness and species evenness did not vary with fire frequency or biomass. However, there were more herbaceous species (particularly rushes, geophytes and herbs) where there were fewer shrubs and low biomass, suggesting that more herbaceous species coexist where dominance by shrubs is low. Frequently burnt plots also had lower number and abundance of shrub species. Life form evenness was also higher at both high fire frequency and low biomass sites. These results suggest that the impact of fire frequency and biomass on vegetation composition is mediated by local interactions among different life forms rather than among individual species. Our results demonstrate that measuring the variation in the relative diversity of different woody and herbaceous life forms is crucial to understanding the compositional response of forests and other structurally complex vegetation communities to changes in disturbance regime such as increased fire frequency.  相似文献   

3.
Disturbances of the soil and the tree canopy are crucial factors determining the diversity, composition and biomass of the herbaceous layer in forests. This study presents a detailed account of ground vegetation in permanent plots surveyed before and after invasion of wild boar (Sus scrofa) to a temperate deciduous broadleaf forest. Specifically, we aimed to quantify the effect of wild boar rooting on cover, richness and composition of spring ephemerals, summer green herbs and saplings of woody species in relation to tree canopy cover. Rooting frequency in sample plots increased from 0% in 2010 to 61% in 2013. In heavily rooted plots, the mean cover of spring ephemeral geophytes (mainly Anemone nemorosa, A. ranunculoides and Ranunculus ficaria) decreased from 75% to 39% between 2010 and 2013. Species richness of summer green herbs generally increased between 2010 and 2013 and was additionally positively affected by heavy rooting and low canopy cover. Rooting also caused heterogenization of the herbaceous layer and amplified ongoing compositional changes induced by changing light conditions. Frequency and richness of spring ephemeral and woody species remained unchanged. We conclude that overall species richness of the herbaceous layer may increase in the short‐term as a result of increased plant recruitment and seed dispersal. However, wild boar rooting can greatly reduce the ground cover of spring ephemerals in eutrophic broadleaf forests, thereby threatening their important ecological function. To avoid long‐term losses of characteristic spring flora elements, local population control of wild boar is necessary to reduce abundance and frequency of soil rooting.  相似文献   

4.
Increasing fire risk and atmospheric nitrogen (N) deposition have the potential to alter plant community structure and composition, with consequent impacts on biodiversity and ecosystem functioning. This study was conducted to examine short‐term responses of understory plant community to burning and N addition in a coniferous‐broadleaved mixed forest of the subtropical‐temperate transition zone in Central China. The experiment used a pair‐nested design, with four treatments (control, burning, N addition, and burning plus N addition) and five replicates. Species richness, cover, and density of woody and herbaceous plants were monitored for 3 years after a low‐severity fire in the spring of 2014. Burning, but not N addition, significantly stimulated the cover (+15.2%, absolute change) and density (+62.8%) of woody species as well as herb richness (+1.2 species/m2, absolute change), cover (+25.5%, absolute change), and density (+602.4%) across the seven sampling dates from June 2014 to October 2016. Light availability, soil temperature, and prefire community composition could be primarily responsible for the understory community recovery after the low‐severity fire. The observations suggest that light availability and soil temperature are more important than nutrients in structuring understory plant community in the mixed forest of the subtropical‐temperate transition zone in Central China. Legacy woody and herb species dominated the understory vegetation over the 3 years after fire, indicating strong resistance and resilience of forest understory plant community and biodiversity to abrupt environmental perturbation.  相似文献   

5.
Mount Kenya is of ecological importance in tropical east Africa due to the dramatic gradient in vegetation types that can be observed from low to high elevation zones. However, species richness and phylogenetic diversity of this mountain have not been well studied. Here, we surveyed distribution patterns for a total of 1,335 seed plants of this mountain and calculated species richness and phylogenetic diversity across seven vegetation zones. We also measured phylogenetic structure using the net relatedness index (NRI) and the nearest species index (NTI). Our results show that lower montane wet forest has the highest level of species richness, density, and phylogenetic diversity of woody plants, while lower montane dry forest has the highest level of species richness, density, and phylogenetic diversity in herbaceous plants. In total plants, NRI and NTI of four forest zones were smaller than three alpine zones. In woody plants, lower montane wet forest and upper montane forest have overdispersed phylogenetic structures. In herbaceous plants, NRI of Afro‐alpine zone and nival zone are smaller than those of bamboo zone, upper montane forest, and heath zone. We suggest that compared to open dry forest, humid forest has fewer herbaceous plants because of the closed canopy of woody plants. Woody plants may have climate‐dominated niches, whereas herbaceous plants may have edaphic and microhabitat‐dominated niches. We also proposed lower and upper montane forests with high species richness or overdispersed phylogenetic structures as the priority areas in conservation of Mount Kenya and other high mountains in the Eastern Afro‐montane biodiversity hotspot regions.  相似文献   

6.
Questions: How long may it take for desert perennial vegetation to recover from prolonged human disturbance and how do different plant community variables (i.e. diversity, density and cover) change during the recovery process? Location: Sonoran Desert, Arizona, USA. Methods: Since protection from grazing from 1907 onwards, plant diversity, density and cover of perennial species were monitored intermittently on ten 10 m × 10 m permanent plots on Tumamoc Hill, Tucson, Arizona, USA. Results: The study shows an exceptionally slow recovery of perennial vegetation from prolonged heavy grazing and other human impacts. Since protection, overall species richness and habitat heterogeneity at the study site continued to increase until the 1960s when diversity, density and cover had been stabilized. During the same period, overall plant density and cover also increased. Species turnover increased gradually with time but no significant relation between any of the three community variables and precipitation or Palmer Drought Severity Index (PDSI) was detected. Conclusions: It took more than 50 yr for the perennial vegetation to recover from prolonged human disturbance. The increases in plant species richness, density, and cover of the perennial vegetation were mostly due to the increase of herbaceous species, especially palatable species. The lack of a clear relationship between environment (e.g. precipitation) and community variables suggests that site history and plant life history must be taken into account in examining the nature of vegetation recovery processes after disturbance.  相似文献   

7.
Question: What are the plant population‐ and community‐level effects of removal of dominant plant species in the shortgrass steppe? Location: The Shortgrass Steppe Long‐Term Ecological Research site in northern Colorado, USA. Methods: We annually measured plant cover and density by species for 10 years after a one‐time aboveground removal of the dominant perennial grass, Bouteloua gracilis. Removal and control plots (3 m × 3 m) were within grazed and ungrazed locations to assess the influence of grazing on recovery dynamics. Our analyses examined plant species, functional type, and community responses to removal, paying special attention to the dynamics of subdominant and rare species. Results: Basal cover of B. gracilis increased by an average of 1% per year, but there was significantly less plant cover in treatment compared to control plots for 5 years following removal. In contrast to the lower cover in treatment plots, the plant density (number of plants m?2) of certain subdominant perennial grasses, herbaceous perennial and annual forbs, a dwarf shrub, and cactus increased after removal of the dominant species, with no major change in species richness (number of species per 1 m × 1 m) or diversity. Subdominant species were more similar between years than rare species, but dominant removal resulted in significantly lower similarity of the subdominant species in the short term and increased the similarity of rare species in the long term. Conclusions: Removal of B. gracilis, the dominant perennial grass in the shortgrass steppe, increased the absolute density of subdominant plants, but caused little compensation of plant cover by other plants in the community and changes in species diversity.  相似文献   

8.
We studied the influence of environmental factors relating to climate, soil and vegetation cover on total species richness, species richness of different life-forms and species composition of plant communities occurring in Quercus ilex woodlands, across a 450-km long transect in Northern Algeria constituting a gradient of aridity and human use. We sampled vegetation and collected environmental data in 81 10 m × 10 m plots in five zones representing the largest Q. ilex woodlands throughout the study area, analysing them within an a priori hypothesis framework with the use of Path Analysis. Changes in plant diversity were mainly influenced by environmental factors related to precipitation and temperature regimes, as well as by total plant cover. In particular, changes in species composition were determined by factors associated with the temperature regime through their influence on both woody and annual herbaceous plant richness, and by factors related to the precipitation regime through their influence on perennial herbaceous plant richness, likely due to the differential tolerances of these functional groups to cold and water stress. Our results emphasize the importance of differences in environmental adaptability of the most important life-forms with regard to explaining compositional change (beta diversity) along aridity gradients, and the mediator role of total plant cover in relation to the effects of soil conditions on plant diversity.  相似文献   

9.
The decline in grasslands and other species‐rich early successional habitats on the coastal sandplains of the northeastern United States has spurred management to increase the area of these declining plant communities. We mechanically removed overstory oak and applied seed from a nearby sandplain grassland on the island of Martha’s Vineyard, Massachusetts, to evaluate this technique for creating an open oak community able to support sandplain herbaceous species. We compared vegetation structure and composition before and after clearing in an area of total tree removal (clearcutting), an area where 85% of tree basal area was removed (savanna cutting), and in adjacent coastal oak forest. Plant responses to clearcutting and savanna cutting were similar. Sandplain herbs colonized at high frequencies after seeding and increased herbaceous cover from less than 7% before clearing to 22–38% three growing seasons later. Pennsylvania sedge (Carex pensylvanica) increased in cover approximately 6‐fold, accounting for 84–90% of the increased herbaceous cover. Other native ruderals and exotic herbs reached 2 and less than or equal to 1%, cover, respectively, after three years. Species richness across cleared treatments increased from 30 to 79 species. All forest species were retained. Forest shrubs and trees initially declined from their dominant cover but rebounded after three years. Tree clearing plus seeding appeared to be a viable management practice for increasing cover of herbaceous sandplain species while causing minimal increases in exotic herbaceous cover. The long‐term persistence of sandplain herbs may require periodic disturbances that limit woody regrowth.  相似文献   

10.
The Nkuhlu large‐scale long‐term exclusion experiment in Kruger National Park was designed to study the long‐term effects of large herbivores on vegetation. One treatment excludes elephants, another excludes all herbivores larger than hares and another one comprises an open, control area. Vegetation monitoring was implemented in 2002 when a baseline survey was conducted prior to exclusion. Monitoring was repeated 5 years after exclusion. Data from the surveys were analysed to establish how structure and composition of woody vegetation had changed 5 years after herbivore exclusion. The analysis showed that neither plant assemblage nor mean vegetation height had changed significantly since exclusion. However, both species richness and density of woody plants increased 5 years after exclusion of all large herbivores, but not after the exclusion of elephants alone. One already common species, Dichrostachys cinerea, became more common after excluding all large herbivores compared with either no exclusion or elephant exclusion, possibly leading to competitive suppression of other species. Species other than D. cinerea tended to either increase or decrease in density, but the changes were insufficient to induce significant shifts in the overall assemblage of woody plants. The results indicate that after 5 years of exclusion, the combined assemblage of large herbivores, and not elephants alone, could induce changes in species richness and abundances of woody plants, but the effect was so far insufficient to induce measureable shifts in the assemblages of woody plants. It is possible that assemblages will change with time and increasing elephant numbers may amplify future changes.  相似文献   

11.
After a long period in which fuel loads were sparse, fire recently has occurred with high frequency in the ungrazed riparian zone of the Upper San Pedro River in southern Arizona's Chihuahuan Desert. We studied four accidental fires that occurred during 1994–2003 (two in different years at the same site). Woody vegetation was contrasted between three burned sites and matched spatial controls, and before and after the most recent fire. Herbaceous vegetation was sampled in multiple years producing a chronosequence of time since fire (from 4 months to 8 years). Riparian fire was associated with reductions in woody plant species diversity and canopy cover. In contrast, fire caused a short-term (2 year) pulse of herbaceous plant diversity, driven by annual species, and persistent increase in herbaceous cover. Path analysis indicated that the increase in herbaceous cover was mediated in part by the reduction in tree canopy cover. Ordination (nonmetric multidimensional scaling) and regression analysis also indicated that canopy cover and/or fire played a role in structuring the herbaceous community, although its effects were secondary to that of hydrologic factors (stream flow rate, seasonal flood size). By converting riparian forests to grasslands and savannahs, fire may be shifting structure of the Upper San Pedro floodplain vegetation closer toward conditions present during past centuries when fire was frequent in the upland desert grasslands and embedded riparian corridor.  相似文献   

12.
Abstract. Questions: This paper examines the long‐term change in the herbaceous layer of semi‐arid vegetation since grazing ceased. We asked whether (1) there were differences in the temporal trends of abundance among growth forms of plants; (2) season of rainfall affected the growth form response; (3) the presence of an invasive species influenced the abundance and species richness of native plants relative to non‐invaded plots, and (4) abundance of native plants and/or species richness was related to the time it took for an invasive species to invade a plot. Location: Alice Springs, Central Australia. Methods: Long‐term changes in the semi‐arid vegetation of Central Australia were measured over 28 years (1976–2004) to partition the effects of rainfall and an invasive perennial grass. The relative abundance (biomass) of all species was assessed 25 times in each of 24 plots (8 m × 1 m) across two sites that traversed floodplains and adjacent foot slopes. Photo‐points, starting in 1972, were also used to provide a broader overview of a landscape that had been intensively grazed by cattle and rabbits prior to the 1970s. Species’abundance data were amalgamated into growth forms to examine their relationship with environmental variation in space and time. Environmental variables included season and amount of rainfall, fire history, soil variability and the colonization of the plots by the exotic perennial grass Cenchrus ciliaris (Buffel grass). Results: Constrained ordination showed that season of rainfall and landscape variables relating to soil depth strongly influenced vegetation composition when Cenchrus was used as a covariate. When Cenchrus was included in constrained ordination, it was strongly related to the decline of all native growth forms over time. Univariate comparisons of non‐invaded vs impacted plots over time revealed unequivocal evidence that Cenchrus had caused the decline of all native growth form groups and species richness. They also revealed a contrasting response of native plants to season of rainfall, with a strong response of native grasses to summer rainfall and forbs to winter rainfall. In the presence of Cenchrus these responses were strongly attenuated. Discussion: Pronounced changes in the composition of vegetation were interpreted as a response to removal of grazing pressure, fluctuations in rainfall and, most importantly, invasion of an exotic grass. Declines in herbaceous species abundance and richness in the presence of Cenchrus appear to be directly related to competition for resources. Indirect effects may also be causing the declines of some woody species from changed fire regimes as a result of increased fuel loads. We predict that Cenchrus will begin to alter landscape level processes as a result of the direct and indirect effects of Cenchrus on the demography of native plants when there is a switch from resource limited (rainfall) establishment of native plants to seed limited recruitment.  相似文献   

13.
Ecological survey was executed to assess woody species encroachment into the grassland plain of Nechisar National Park (NNP). Forty‐one woody species were recorded. Dichrostachys cinerea Wight & Arn., Acacia mellifera (Vahl) Benth., Acacia nilotica (L) Willd., Acacia senegal (L.) Willd., Acacia seyal Del. and Acacia tortilis (Forssk.) Hayne were among the major encroaching woody species. The majority of the woody species were found to be highly aggregated in their pattern of distribution, while only few species showed some degree of randomness. The mean woody species density was ca. 1995 woody plants ha?1. Mean cover of woody, grass, unpalatable forbs and total herbaceous species were 31%, 58%, 68% and 121%, respectively. The woody species density and cover, unpalatable forbs and bare land cover were significantly higher in the highly grazed and fire‐suppressed part of the grassland plain. Pearson correlation coefficient matrix indicated that woody species cover and density were negatively correlated with total herbaceous and grass cover. The high woody, unpalatable forbs and bare land cover indicated the progressively increasing perennial grass species diversity deterioration in the grass plain of the Park. Decline in the grassland condition, unless reversed, will jeopardize the biological diversity as well as the aesthetic value of the NNP.  相似文献   

14.
Landscape pattern metrics are widely used for predicting habitat and species diversity. However, the relationship between landscape pattern and species diversity is typically measured at a single spatial scale, even though both landscape pattern, and species occurrence and community composition are scale‐dependent. While the effects of scale on landscape pattern are well documented, the effects of scale on the relationships between spatial pattern and species richness and composition are not well known. Here, our main goal was to quantify the effects of cartographic scale (spatial resolution and extent) on the relationships between spatial pattern and avian richness and community structure in a mosaic of grassland, woodland, and savanna in central Wisconsin. Our secondary goal was to evaluate the effectiveness of a newly developed tool for spatial pattern analysis, multiscale contextual spatial pattern analysis (MCSPA), compared to existing landscape metrics. Landscape metrics and avian species richness had quadratic, exponential, or logarithmic relationships, and these patterns were generally consistent across two spatial resolutions and six spatial extents. However, the magnitude of the relationships was affected by both resolution and extent. At the finer resolution (10‐m), edge density was consistently the best predictor of species richness, followed by an MCSPA metric that measures the standard deviation of woody cover across extents. At the coarser resolution (30‐m), NDVI was the best predictor of species richness by far, regardless of spatial extent. Another MCSPA metric that denotes the average woody cover across extents, together with percent of woody cover, were always the best predictors of variation in avian community structure. Spatial resolution and extent had varying effects on the relationships between spatial pattern and avian community structure. We therefore conclude that cartographic scale not only affects measures of landscape pattern per se, but also the relationships among spatial pattern, species richness, and community structure, often in complex ways, which reduces the efficacy of landscape metrics for predicting the richness and diversity of organisms.  相似文献   

15.
Different types of relationship between herbaceous species richness and several parameters indicating abundance of plant material (herbaceous, woody plants, litter and bare ground cover) are presented. The data were obtained from 50 sites along a 300 km strip running from E to W within Spain and Portugal. Each site was representative of the silvo-pastoral landscape of the Mediterranean type ecosystems of the Iberian peninsula, and contained two neighboring patches, one of grassland and the other of shrubland. 3,600 20 × 20 cm subplots were randomly located (72 per site, 36 per patch) crossing the boundary grassland/shrubland. This approach allowed us to analyze the richness-occupation relationship of the space from different points of view: among and within the sites, and among and within the grassland and shrubland plant communities. We found a unimodal relationship between richness-cover similar to the one generally accepted between richness and biomass. Our results show that the dependence of this relationship varies depending on the spatial scale of the analysis and on the type of data used. When the whole region is taken into account, significant unimodal relationships are found between richness and herbaceous cover, litter and bare ground, and a negative linear relationship with woody plant cover. Within the sites there are mainly linear or non-significant relationships. But the results also depend on the type of communities analyzed. In pastures, the unimodal relationship represents the combination of positive and negative linear responses for low and high cover values, respectively. The value for herbaceous cover in which maximum richness occurs is around 60%. In shrublands, this value for cover also corresponds to maximum species richness, although the possibilities of reaching it are limited by other variables, such as woody plant cover. This implies that, on not considering variability at local scale, the relationship is linear and positive. This paper shows the existence of a common model related to herbaceous cover, but this model has multiple controlling factors that act differently in each type of community.  相似文献   

16.
1. Drylands worldwide are typified by extreme variability in hydrologic processes, which structures riparian communities at various temporal and spatial scales. One key question is how underlying differences in hydrology over the length of interrupted perennial rivers influence spatial and temporal patterns in species richness and species composition. 2. We examined effects of differences in dry season hydrology on species richness, composition and cover of herbaceous plant communities in the streamside zone (the zone influenced directly by low flows in the channel). Data were collected at ephemeral, intermittent and perennial flow reaches on three rivers of the desert Southwest (Arizona, U.S.A.): Lower Cienega Creek, Hassayampa River and Lower San Pedro River. 3. Patterns of species richness varied with temporal scale of analysis, that is between single‐year and multi‐year time frames. At the annual timescale, quadrat species richness (m?2) and herbaceous cover were higher at sites with perennial flow than at either intermittent or ephemeral sites. In contrast to this single‐year pattern, the highest long‐term richness occurred at intermittent sites. 4. Quadrat species richness, total species richness at a site (per 18 1‐m2 plots) and cover were more variable year to year at non‐perennial sites than at perennial flow sites. On two of the three rivers, ephemeral sites had the highest inter‐annual compositional variance, while the perennial sites had the lowest. 5. Compositional differences between the hydrologic site types were dominated by species turnover, not nestedness. The perennial sites had more wetland and perennial species than the other two site types. The intermittent sites had more annual species than did the other two types. 6. High long‐term species richness and distinct species composition of intermittent sites are probably sustained by pronounced temporal variability in environmental conditions (i.e. frequent and persistent flow events, and dry periods). Plants at these sites take advantage of greater moisture than those at ephemeral sites and also experience less competition from resident species than those at perennial sites. 7. Conservation of desert riparian diversity depends upon the protection of consistently wet conditions at perennial flow sites, as well as the maintenance of the processes that cause fluctuations in environmental conditions at non‐perennial sites.  相似文献   

17.
Overabundance of woody plants in semiarid ecosystems can degrade understory herbaceous vegetation and often requires shrub reduction and seeding to recover ecosystem services. We used meta‐analysis techniques to assess the effects of fire and mechanical shrub reduction over two post‐treatment timeframes (1–4 and 5–10 years) on changes in cover and frequency of 15 seeded species at 63 restoration sites with high potential for recovery. Compared to mechanical treatments, fire resulted in greater increases in seeded species. Native shrubs did not increase, and forbs generally declined over time; however, large increases in perennial grasses were observed, suggesting that seeding efforts contributed to enhanced understory herbaceous conditions. We found greater increases in a few non‐native species than native species across all treatments, suggesting the possibility that interference among seeded species may have influenced results of this regional assessment. Differences among treatments and species were likely driven by seedbed conditions, which should be carefully considered in restoration planning. Site characteristics also dictated seeded species responses: while forbs showed greater increases in cover over the long term at higher elevation sites considered to be more resilient to disturbance, surprisingly, shrubs and grasses had greater increases in cover and frequency at lower elevation sites where resilience is typically much lower. Further research is needed to understand the causes of forb mortality over time, and to decipher how greater increases of non‐native relative to native seeded species will influence species diversity and successional trajectories of restoration sites.  相似文献   

18.
Changes in structural and compositional attributes of shinnery oak (Quercus havardii Rydb.) plant communities have occurred in the twentieth century. These changes may in part relate to altered fire regimes. Our objective was to document effects of prescribed fire in fall (October), winter (February), and spring (April) on plant composition. Three study sites were located in western Oklahoma; each contained 12, 60 × 30‐m plots that were designated, within site, to be seasonally burned, annually burned, or left unburned. Growing season canopy cover for herbaceous and woody species was estimated in 1997–1998 (post‐treatment). At one year post‐fire, burning in any season reduced shrub cover, and spring burns reduced cover most. Winter and annual fires increased cover of rhizomatous tallgrasses, whereas burning in any season decreased little bluestem cover. Perennial forbs increased with fall and winter fire. Shrub stem density increased with fire in any season. Communities returned rapidly to pre‐burn composition with increasing time since fire. Fire effects on herbaceous vegetation appear to be manifested through increases in bare ground and reduction of overstory shrub dominance. Prescribed fire can be used as a tool in restoration efforts to increase or maintain within and between community plant diversity. Our data suggest that some plant species may require or benefit from fire in specific seasons. Additional research is needed to determine the long‐term effects of repeated fire over time.  相似文献   

19.
Land managers frequently apply vegetation removal and seeding treatments to restore ecosystem function following woody plant encroachment, invasive species spread, and wildfire. However, the long‐term outcome of these treatments is unclear due to a lack of widespread monitoring. We quantified how vegetation removal (via wildfire or management) with or without seeding and environmental conditions related to plant community composition change over time in 491 sites across the intermountain western United States. Most community metrics took over 10 years to reach baseline conditions posttreatment, with the slowest recovery observed for native perennial cover. Total cover was initially higher in sites with seeding after vegetation removal than sites with vegetation removal alone, but increased faster in sites with vegetation removal only. Seeding after vegetation removal was associated with rapidly increasing non‐native perennial cover and decreasing non‐native annual cover. Native perennial cover increased in vegetation removal sites irrespective of seeding and was suppressed by increasing non‐native perennial cover. Seeding was associated with higher non‐native richness across the monitoring period as well as initially higher, then declining, total and native species richness. Several cover and richness recovery metrics were positively associated with mean annual precipitation and negatively associated with mean annual temperature, whereas relationships with weather extremes depended on the lag time and season. Our results suggest that key plant groups, such as native perennials and non‐native annuals, respond to restoration treatments at divergent timescales and with different sensitivities to climate and weather variation.  相似文献   

20.
Spiders are an abundant and diverse group of generalist predators in arable fields. Knowledge on what landscape and site factors affect this group can be valuable for efforts to reduce biodiversity loss in agricultural landscapes and can have implications for natural pest control. We investigated the impact of landscape and site factors on epigeic spiders in 29 winter oilseed rape fields (Brassica napus, OSR) embedded in differently structured landscapes in an agricultural region east of Vienna (Austria). Landscape factors included proportions of non‐crop areas, woody areas and fallows, lengths of road‐side strips and hedges, and landscape diversity at different spatial scales (r=250–2000 m). Site factors included OSR stand density, soil index, soil cultivation intensity, nitrogen fertilisation level, OSR vegetation cover in late autumn, and insecticide applications. Data were analysed using regression, ordination, and variation partitioning. Different characteristics of spider assemblages responded to different landscape factors at different spatial scales. Observed species richness showed the strongest positive reponse to proportions of woody areas at rather small scale (radius 500 m), but the relation remained significant up to the 1250 m radius. Standardised species richness was positively related to non‐crop area at the smallest scale (radius 250 m). Activity density was positively related to length of road‐side strips with maximum effects at large scale (radius 1750 m) and non‐crop area (radius 750 m). Site characteristics (stand density, insecticide applications, and late autumn ground cover) and landscape factors (woody areas and fallows at radius 500 m) were similarly important for explaining species composition. We interpret the scale‐dependency of relations as the result of differences in dispersal power of the studied spider species. These results demonstrate the important, scale dependent influence of natural and semi‐natural habitats on spider assemblages in arable fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号