首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Three new copper(I) complexes with tricyclohexylphosphine (PCy3) and different diimine ligands, [Cu(phen)(PCy3)]BF4 (1) (phen = 1,10′-phennanthroline), [Cu(bpy)(PCy3)2]BF4 (2) (bpy = 2,2′-bipyridine) and [Cu(MeO-CNN)(PCy3)]BF4 (3) (MeO-CNN = 6-(4-methoxyl)phenyl-2,2′-bipyridine), have been synthesized and characterized. X-ray structure reveals that complexes 1 and 3 are three-coordinated with trigonal geometry, while complex 2 adopts distorted tetrahedron geometry. Complexes 1 and 3 exhibit ligand redistribution reactions in chloromethane solution by addition of excess amount of PCy3, in which three-coordinated 1 changes into four-coordinated [Cu(phen)(PCy3)2]+, and 3 leads to form [Cu(PCy3)2]BF4 and CNN-OMe. All the three complexes display yellow 3MLCT emissions in solid state at room temperature with λmax at 558, 564 and 582 nm for 1, 2 and 3, respectively, and red-shift to 605, 628 and 643 nm at 77 K in dichloromethane solution.  相似文献   

2.
Two new μ-oxamido-bridged binuclear copper(II) complexes with formulae of [Cu2(heae)(pic)2] (1) and [Cu2(heae)(Me2phen)2](ClO4)2 · H2O (2), where heae and pic stand for the anion of N,N′-bis(N-hydroxyethylaminoethyl)oxamide and 2,4,6-trinitrophenol, respectively, and Me2phen represents 2,9-dimethyl-1,10-phenanthroline; have been synthesized and characterized by elemental analyses, molar conductivity measurements, IR and electronic spectra studies. The crystal structures of the two binuclear copper(II) complexes have been determined by X-ray single-crystal diffraction. In both the two binuclear complexes the central two copper(II) atoms are bridged by trans-heae. In complex 1 the coordination environment around each copper(II) atom can be described as a distorted octahedral geometry, while in complex 2 each copper(II) atom displays a square-pyramid stereochemistry. Hydrogen bonding and π-π stacking interactions link the binuclear copper(II) complex 1 or 2 into a 3D infinite network. The cytotoxicities of the two binuclear copper(II) complexes were tested by Sulforhodamine B (SRB) assays against human hepatocellular carcinoma cell SMMC-7721 and human lung adenocarcinoma cell A549. Both of the two binuclear copper(II) complexes exhibit potent cytotoxic effects against SMMC-7721 and A549 cell lines. The interactions of the two binuclear complexes with herring sperm DNA (HS-DNA) are investigated by using absorption and emission spectra and electrochemical techniques and viscometry. The results suggest that both the two binuclear copper(II) complexes interact with HS-DNA in the mode of intercalation with the intrinsic binding constants of 1.73 × 105 M−1 (1) and 1.92 × 106 M−1 (2). The influence of structural variation of the terminal ligands in the binuclear complexes on DNA-binding properties is preliminarily discussed.  相似文献   

3.
Four new Cu(II) complexes [Cu(pzda)(2,2′-bpy)(H2O)] · 2.5H2O (1), [Cu(pzda)(phen)(H2O)] · H2O (2), [Cu(pzda)(4,4′-bpy)] · H2O (3) and [Cu(pzda)(bpe)0.5(H2O)] (4) were synthesized by hydrothermal reactions of copper salt (acetate or sulphate) with pyrazine-2,6-dicarboxylic acid (H2pzda), and 2,2′-bipyridine (2,2′-bpy), 1,10-phenanthroline (phen), 4,4′-bipyridine (4,4′-bpy) or 1,2-bis(4-pyridyl)-ethane (bpe), respectively. For 1 and 2, they are both monomeric entities which are further assembled into 3D supramolecular networks by hydrogen bonds and π-π stacking interactions. Complex 3 has a 2D metal-organic framework which is connected into 3D supramolecular network by hydrogen bonds. However, for 4, the bpe ligand bridges two Cu(II) ions into binuclear unit, and then the binuclear molecules are assembled into 3D supramolecular network by hydrogen bonds between the coordination water molecule and the carboxylate oxygen atoms. The thermal decomposition mechanism of complexes 1 and 2 cooperated with powder XRD at different temperatures is discussed. The results reveal that once liberation of water molecules takes place the supramolecular network of 1 and 2 collapses.  相似文献   

4.
Three new binuclear copper(II) complexes have been synthesized and structurally characterized by X-ray crystallography, [Cu2(1,4-tpbd)(dafo)2(MeOH)2](ClO4)4·2.5H2O (1), [Cu2(1,4-tpbd) (DMSO)2(ClO4)2](OH)2·6H2O (2) and [Cu2(1,4-tpbd)(OAC)2(ClO4)2]·5H2O (3) (1,4-tpbd = N,N,N′,N′-tetrakis(2-pyridylmethyl)benzene-1,4-diamine). Complex 1 to 3 shows similar binuclear structure and each Cu atom adopts five-coordinated square-pyramidal geometry. The interactions of the three complexes with CT-DNA (Calf-thymus DNA) have been investigated by UV absorption, fluorescence spectroscopy, circular dichroism spectroscopy and viscosity. Furthermore, the three complexes display oxidative cleavage of supercoiled DNA in the presence of external agents. Complex 3 shows higher DNA affinity and nuclease activity may be attributed to its cis structural configuration and labile acetate and perchlorate anions. The cleavage mechanisms between the complexes and plasmid DNA are likely to involve singlet oxygen or singlet oxygen-like entity as reactive oxygen species. In addition, in vitro cytotoxicity studies on the Hela cell line show that the IC50 values of complexes 1-3 are 14.75, 13.67 and 16.58 μM, respectively. The apoptosis-inducing activity was also assessed by AO/EB (Acridine Orange/Ethidium bromide) staining assay, indicating they have the potential to act as effective metal-based anticancer drugs.  相似文献   

5.
Two new neutral, binuclear CuIICuII bis(oxamato) complexes with the formula [Cu2(opba)(pmdta)(MeOH)] · 1/2MeOH · dmf (3) and [Cu2(nabo)(pmdta)(MeOH)] (4), with opba = o-phenylene-bis(oxamato), nabo = 2,3-naphthalene-bis(oxamato), pmdta = N,N,N′,N″,N″-pentamethyldiethylenetriamine and dmf = dimethylformamide have been synthesized and their crystal structures have been determined. The structure of 3 consists of dimeric [Cu2(opba)(pmdta)(MeOH)] entities, joined together by mutual intermolecular Cu?O contacts of the Cu2+ ion of one [Cu(opba)]2− complex fragment and one carboxylate atom of the oxamato group of a second [Cu(opba)]2− complex fragment. The structure of 4 consists of neutral binuclear complexes joined together by hydrogen bonds and π-π interactions, giving rise to an unique supramolecular 1D-chain. The magnetic properties of 3 and 4 were studied by susceptibility measurements versus temperature. For the intramolecular J parameter, identical values of (−114 ± 2) cm−1 (3) and (−112 ± 2) cm−1 (4) were obtained.  相似文献   

6.
Three new homopolynuclear complexes with azido bridges have been obtained by using [Cu(AA)(BB)]+ building-blocks (AA = acetylacetonate; BB = 1,10-phenanthroline or 2,2′-bipyridine). The reaction between [Cu(acac)(phen)(H2O)](ClO4) and NaN3 leads to a mixture of two compounds: a binuclear complex, [{Cu(acac)(phen)}21,3-N3)](ClO4) · 2H2O (1), and a linear tetranuclear one, [{Cu(acac)(phen)(ClO4)}2{Cu(phen)(μ1,1-N3)2}2] (2). The reaction between [Cu(acac)(bipy)(H2O)](ClO4) and NaN3 affords also a mixture of two compounds: [{Cu(acac)(bipy)}21,3-N3)]3(ClO4)3 · 3.75H2O (3) and [Cu(acac)(bipy)(N3)][Cu(acac)(bipy)(H2O)](ClO4) (4). The X-ray crystal structures of compounds 1-4 have been solved (for compound 4 the crystal structure was previously reported). In compounds 1 and 3, two {Cu(AA)(BB)} fragments are bridged by the azido anion in an end-to-end fashion. Two isomers, cis and trans with respect to azido bridge, were found in crystal 3. The structure of compound 2 consists of two Cu(II) central cations bridged by two μ1,1-azido ligands, each of them being also connected to a {Cu(acac)(phen)} fragment through another μ1,1-azido ligand. The cryomagnetic properties of the compounds 1 and 2 have been investigated and discussed. The magnetic behaviour of compound 1 shows the absence of any interactions between the metallic ions. In the tetranuclear complex 2, the magnetic interactions between the external and central copper(II) ions(J1), and between the central metallic ions (J2) were found ferromagnetic (J1 = 0.36 cm−1, J2 = 7.20 cm−1).  相似文献   

7.
A series of mononuclear acetonitrile complexes of the type [Ru(CH3CN)(L)(terpy)]2+ {L = phen (1), dpbpy (3), and bpm (5)}, and their reference complexes [RuCl(L)(terpy)]+ {L = phen (2), dpbpy (4), and dpphen (6)} were prepared and characterized by electrospray ionization mass spectrometry, UV-vis spectroscopy, and cyclic voltammograms (CV). Abbreviations of the ligands (Ls) are phen = 1,10-phenanthroline, dpbpy = 4,4′-diphenyl-2,2′-bipyridine, bpm = 2,2′-bipyrimidine, dpphen = 4,7-diphenyl-1,10-phenanthroline, bpy = 2,2′-bipyridine, and terpy = 2,2′:6′,2″-terpyridine. The X-ray structures of the two complexes 2 and 3 were newly obtained. The metal-to-ligand charge transfer (MLCT) bands in the visible region for 1, 3, and 5 in acetonitrile were blue shifted relative to those of the reference complexes [RuCl(L)(terpy)]+. CV for all the [Ru(CH3CN)(L)(terpy)]2+ complexes showed the first oxidation wave at around 0.95 V, being more positive than those of [RuCl(L)(terpy)]+. The time-dependent-density-functional-theory approach (TDDFT) was used to interpret the absorption spectra of 1 and 2. Good agreement between computed and experimental absorption spectra was obtained. The DFT approach also revealed the orbital interactions between Ru(phen)(terpy) and CH3CN or Cl. It is demonstrated that the HOMO-LUMO energy gap of the acetonitrile ligand is larger than that of the Cl one.  相似文献   

8.
Ferromagnetic dicopper(II) complexes [Cu2(μ-O2CCH3)(μ-OH)(L)2(μ-L1)](PF6)2, where L = 1,10-phenanthroline (phen), L1 = H2O in 1 and L = dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq), L1 = CH3CN in 2, are prepared and structurally characterized. Crystals of 1 and 2 belong to the monoclinic space group of P21/n and P21/m, respectively. The copper(II) centers display distorted square-pyramidal geometry having a phenanthroline base and two oxygen atoms of the bridging hydroxo and acetate group in the basal plane. The fifth coordination site has weak axially bound bridging solvent molecule H2O in 1 and CH3CN in 2. The Cu···Cu distances are 3.034 and 3.046 Å in 1 and 2, respectively. The complexes show efficient hydrolytic cleavage of supercoiled pUC19 DNA as evidenced from the mechanistic studies that include T4 DNA ligase experiments. The binuclear complexes form monomeric copper(II) adducts [Cu(L)2(BNPP)](PF6) (L = phen, 3; dpq, 4) with bis(4-nitrophenyl)phosphate (BNPP) as a model phosphodiester. The crystal structures of 3 and 4 reveal distorted trigonal bipyramidal geometry in which BNPP binds through the oxygen atom of the phosphate. The kinetic data of the DNA cleavage reactions of the binuclear complexes under pseudo- and true-Michaelis-Menten conditions indicate remarkable enhancement in the DNA hydrolysis rate in comparison to the control data.  相似文献   

9.
The new mononuclear bis(oxamato) complex [n-Bu4N]2[Cu(obbo)] (1) (obbo=o-benzyl-bis(oxamato)) has been synthesized as a precursor for trinuclear oxamato-bridged transition metal complexes. Starting from 1 the homotrinuclear complexes [Cu3(obbo)(pmdta)2(NO3)](NO3)·CH2Cl2·H2O (2) and [Cu3(obbo)(tmeda)2(NO3)2(dmf)] (3) have been prepared, where pmdta = N,N,N′,N″,N″-pentamethyldiethylenetriamine, tmeda = N,N,N′,N′-tetramethylethylenediamine and dmf = dimethylformamide. The crystal structures of 1-3 were solved. The magnetic properties of 2 and 3 were studied by susceptibility measurements versus temperature. For the intramolecular J parameter values of −111 cm−1 (2) and −363 cm−1 (3) were obtained.  相似文献   

10.
Three new copper complexes, [CuIICuI(ip)(ipH)(4,4′-bipy)3/2]n (1), [Cu(ip)(4,4′-bipy)]n · 3nH2O (2), and [Cu(ipH)2(4,4′-bipy)]n (3), have been hydrothermally synthesized by the reaction of Cu(NO3)2 · 3H2O with isophthalic acid (ipH2) and 4,4′-bipyridine (4,4′-bipy) under different reaction conditions. Complex 1, a mixed-valence copper(I,II) complex, exhibits a 2-D interpenetrating grid framework, in which five-coordinated CuII and three-coordinated CuI environments are established. The oxidation states of center Cu atoms have been confirmed by X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance spectra (EPR). Complex 2 features a 2-D box-like bilayer architecture, in which CuII atoms are linked by ip ligands to form a 1-D double-chain and the resulting chains are further strutted by the 4,4′-bipy ligands. In complex 3, two bridging 4,4′-bipy ligands and two terminal ipH ligands confine the CuII center in a square plane coordination geometry. The whole molecule of 3 was arranged into a 1-D linear chain structure. Additionally, the thermogravimetric analyses (TGA) for complexes 1-3 are also discussed in this paper.  相似文献   

11.
The complex [PtMe2(bu2bpy)], 1, bu2bpy = 4,4′-di-t-butyl-2,2′-bipyridine reacts with mercury(II) halides HgX2 (X = Cl, Br, O2CCF3, O2CMe) to give the corresponding complexes [PtMe2X(HgX)(bu2bpy)], 2, by trans oxidative addition followed, when X = O2CCF3, O2CMe only, by easy isomerization to the cis isomers 3. The complexes 2 or 3 react with complex 1 to give the corresponding adducts [PtMe2X(bu2bpy)(μ-HgX)PtMe2X(bu2bpy)], 4, which are shown to contain both covalent and donor-acceptor Pt-Hg bonds in the solid state, and which exhibit very easy fluxionality in solution.  相似文献   

12.
Two new mononuclear bis(oxamato) complexes with the formula [nBu4N]2[M(nabo)] M = Ni (4), Cu (5), with nabo = 2,3-naphthalene-bis(oxamato) have been synthesized as precursors for trinuclear oxamato-bridged transition metal complexes. Starting from 5 the homo-trinuclear complex [Cu3(nabo)(pmdta)2(BF4)](BF4) · MeCN · Et2O (7), with pmdta = N,N,N′,N″,N″-pentamethyldiethylenetriamine, has been prepared. The central N,N′-2,3-naphthalene bridge of 7 is so far the most extended π-conjugated bridge of trinuclear bis(oxamato) type transition metal complexes. The goal of this work was to verify the N,N′-2,3-naphthalene bridge of 7 on its magnetic properties in comparison to the N,N′-o-phenylene bridge of the related homo-trinuclear complex [Cu3(opba)(pmdta)2(NO3)](NO3) · 2MeCN (6) (opba = o-phenylene-bis(oxamato)). The crystal structures of 4-7 were solved. The magnetic properties of 6 and 7 were studied by susceptibility measurements versus temperature. For the intramolecular J parameter, values of −89 cm−1 (6) and −113 cm−1 (7) were obtained. The different J values are discussed based on the crystal structures of 6 and 7.  相似文献   

13.
Four new complexes, {[Mn(imH)2(pdc)]·H2O}n (1), [Zn2(pdc)2(H2O)5]·2H2O (2), [Zn(imH)2(pdc)]·H2O (3), {[Zn2(pdc)2(bpy)(H2O)2]·5H2O}n (4) [imH = imidazole pdc = pyridine 2,6-dicarboxylate, bpy = 4,4′-bipyridine] have been synthesized under hydrothermal conditions and structurally characterized by elemental analysis, IR, PXRD, single-crystal X-ray diffraction and thermogravimetric analyses. All the four complexes display a three-dimensional (3D) open framework with one-dimensional (1D) channels that are filled with lattice water molecules. Particularly, in 4, the lattice water molecules form an infinite water chain. Both 1 and 4 consist of 1D polymeric chains. While 2 contains a dinuclear Zn(II) unit, and 3 is a mononuclear complex. Further, the result of thermal analysis of 1 and 2 shows the robustness of the overall supramolecular three-dimensional architecture. Complexes 1, 3, and 4 exhibit strong fluorescent emissions in the solid state at room temperature and could be significant in the field of photoactive materials.  相似文献   

14.
Self-assembly of flexible 1,3-bis(1,2,4-triazol-1-yl)propane (btp), inorganic Cu(II) salt and rigid benzene-based carboxylate coligand generates four complexes, {[Cu(btp)2(CH3OH)(H2O)]·H2O·2ClO4}n (1), {[Cu(btp)(Hbtc)2]·0.5H2O}n (2), [Cu(btp)2(H3btea)2]n (3), and [Cu(btp)(nb)2] (4) (H3btc = 1,3,5-benzenetricarboxylic acid, H4btea = 1,2,4,5-benzenetetracarboxylic acid, Hnb = p-nitrobenzoic acid), which are fully structural characterized by single-crystal X-ray crystallography, elemental analysis, IR, and TG-DTA techniques. Structural determinations reveal that the polymeric two-dimensional (2D) Cu-btp grid-like layer for 1, 1D linear single- and double-stranded chains for 2 and 3, as well as the discrete binuclear structure for 4, are jointly directed by the coordination polyhedrons of the Cu(II) ion and the exo-bidentate bridging btp core ligand with various conformations. The theoretical calculations suggest that the trans-trans btp is the most stable conformation, and the metal binding site is collectively determined by the electron density of N donors and the spatial orientation of the btp ligand. Unexpectedly, the polycarboxylate anions in 1-4 can only act as terminal coligands not popular bridging connectors. The thermal stability of the resulting complexes is also compared.  相似文献   

15.
Three new copper(II) complexes of 5,5-diethlybarbiturate (barb), [Cu(barb)2(dmen)]·0.5H2O (dmen = N,N-dimethylethylenediamine) 1, [Cu(barb)2(bapa)] (bapa = bis(3-aminopropyl)amine) 2, and [Cu(barb)(apen)](barb)·2H2O (apen = N,N′-bis(3-aminopropyl)ethylenediamine) 3, have been synthesized and characterized by chemical, spectroscopic and thermal methods. Single crystal X-ray diffraction studies revealed that all complexes are mononuclear. The copper(II) ion exhibits a square-pyramidal coordination geometry in 1 and 3, but a trigonal-bipyramidal geometry in 2. The barb ligand shows different coordination modes. 1 presents the unequal coordination of the barb ligands: one is monodentate (N) and the other one is bidentate (N, O). In 2, both barb ligands are N-coordinated, whereas in 3, one barb ligand is N-coordinated, while the second barb ligand behaves as a counter-ion. The dmen, bapa and apen ligands act as bi-, tri- and tetradentate ligands, respectively. All complexes display a hydrogen-bonded network structure. The IR spectroscopic analysis shows that the ν(CO) stretching frequencies do not correlate predictably with the coordination mode of the barb ligand in 1. Thermal analysis data for 1-3 are in agreement with the crystal structures.  相似文献   

16.
Three ternary zinc complexes of the open chain polycarboxylic acid, tricarballylic (1,2,3-propane-tricarboxylic) acid (PTCH3) have been isolated and characterized with crystallographic and physicochemical techniques. [Zn(PTCH)(phen)(H2O)]2 · 4H2O (1) (where phen = 1,10-phenanthroline) has a unique dinuclear structure, while [Zn(PTCH)(bpy)]n · 3nH2O (2) and [Zn(PTCH)(epy)]n · 4nH2O (3) (where bpy = 4,4′-bipyridine and epy = 1,2-bis(4-pyridine)ethane) have 2D polymeric structures. The bis-deprotonated ligand, in all three complexes, uses for coordination only two oxygen atoms, which belong to the same carboxylate in 1, and to two different carboxylates in 2 and 3.  相似文献   

17.
Four novel coordination polymers, [Cd(Hdtbb)(dtbb)0.5(DMF)]n (1), {[Cd(dtbb)(2,2′-bpy)(H2O)]·2DMA}n (2), {[Cd2(dtbb)2(1,4-bix)2]·3DMF}n (3) and [Cd(dtbb)(1,4-btx)]n (4) [H2dtbb = 2,2-dithiobisbenzoic acid, 2,2′-bpy = 2,2′-bipyridine, 1,4-bix = 1,4-bis(imidazol-1-ylmethyl)benzene, 1,4-btx = 1,4-bis(triazol-1-ylmethyl)benzene] have been synthesized and structurally characterized. Complexes 1 and 2 possess one-dimensional (1D) infinite structures. The structures of complexes 3 and 4 exhibit two dimensional (2D) frameworks, which mainly due to the differences in the bridging modes of dtbb2− ligand and the effect of the N-donor auxiliary ligands. The infrared spectra, thermogravimetric and luminescent properties were also investigated for these compounds.  相似文献   

18.
Three coordination polymers, namely, [Cd(HOIP)2(1,4-bdc)] (1), [Cu(HOIP)(1,4-bdc)] (2) and [Cu(PDIP)(1,4-bdc)] (3) (HOIP = 2-(4-hydroxylbenzene) imidazo[4,5-f]1,10-phenanthroline, PDIP = 2-(3-pyridine) imidazo[4,5-f]1,10-phenanthroline, and 1,4-bdc = 1,4-benzenedicarboxylate), have been synthesized under the hydrothermal conditions. All complexes have been characterized by elemental analyses, IR and single-crystal X-ray diffraction. Structural analyses reveal that complex 1 possesses infinite one-dimensional (1D) chain bridged by 1,4-bdc ligands, complexes 2 and 3 both exhibit two-dimensional (2D) (4,4) network structures based on dinuclear [Cu2O2] units. However, the weak interactions are different in complexes 1-3. Moreover, the thermal properties of all complexes, fluorescence property of 1, and the electrochemical behavior of 3 are also reported in this paper.  相似文献   

19.
To determine the influence of metal ion and the auxiliary ligand on the formation of metal-organic frameworks, six new coordination polymers, {[Mn2(bpdc)(bpy)3(H2O)2] · 2ClO4 · H2O}n (1), {[Mn(bpdc)(dpe)] · CH3OH · 2H2O}n (2), {[Cu(bpdc)(H2O)2]}n (3), {[Zn(bpdc)(H2O)2]}n (4), {[Cd(bpdc)(H2O)3] · 2H2O}n (5), and {[Co(bpdc)(H2O)3] · 0.5dpe · H2O}n (6) (H2bpdc = 2,2′-bipyridine-3,3′-dicarboxylic acid, bpy = 2,2′-bipyridine, dpe = 1,2-di(4-pyridyl) ethylene), have been synthesized and characterized. Compound 1 forms 1D helical chain structure containing two unique MnII ions. In 2, the bridging ligand dpe links Mn-bpdc double zigzag chains to generate a layer possesses rectangular cavities. In 3, bpdc2− ligand connects to three metal centers forming a 2D network. Different from the above compounds, 4 displays a 1D double-wavelike chain. Compound 5 features a helical chain. Compound 6 also displays a helical chain with guest molecule dpe existing in the structure. These diverse structures illustrate rational adjustment of metal ions and the second ligand is a good method for the further design of helical compounds with novel structures and properties. In addition, the magnetic properties of 2, 3 and 6, the thermal stabilities and photoluminescence properties of 4 and 5 were also studied.  相似文献   

20.
A series of [Cu(I)(2,2′-biquinoline)(L)](ClO4) complexes (L = bis(diphenylphosphino)methane (bppm), 1,2-bis(diphenylphosphino)ethane (bppe), 1,4-bis(diphenylphosphino)butane (bppb)) have been synthesized and characterized by elemental analysis, conductivity, ESI-mass, NMR and UV-Vis spectroscopies, cyclic voltammetry, X-ray diffraction ([Cu(I)(2,2′-biquinoline)(bppe)](ClO4)) and DFT calculations. These compounds are monometallic species in a distorted tetrahedral arrangement, in contrast with related compounds found as dinuclear according to diffraction studies. The spectroscopic properties are not directly correlated with the length of alkyl chain bridge between the bis-diphenylphosphine groups. In this way, the chemical shift of some 2,2′-biquinoline protons and the metal to ligand charge transfer (Cu to 2,2′-biquinoline) follows the order [Cu(2,2′-biquinoline)(bppm)](ClO4), [Cu(2,2′-biquinoline)(bppb)](ClO4), [Cu(2,2′-biquinoline)(bppe)](ClO4). The same dependence is followed by the potentials to Cu(II)/Cu(I) couple. These results are discussed in terms of inter-phosphorus alkane chain length and tetrahedral distortions on copper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号