首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 688 毫秒
1.
When intracellular free Ca2+ concentration [( Ca2+]i) was monitored in fura2-loaded Swiss 3T3 cells, endothelin increased [Ca2+]i in a dose-dependent manner; after the addition of endothelin, an initial transient peak was observed immediately and was followed by a sustained increase in [Ca2+]i lasting at least 5 min. 45Ca2+ efflux and influx experiments in endothelin-stimulated Swiss 3T3 cells revealed that the change in [Ca2+]i could be explained by a dual mechanism; an initial transient peak induced mainly by the release of Ca2+ from intracellular stores and the sustained increase by an influx of extracellular Ca2+. Cellular generation of inositol 1,4,5-trisphosphate and cyclic AMP were not induced by endothelin, suggesting that other cellular mediators with the capacity to release Ca2+ from intracellular stores play a significant role in the signal transduction pathway of endothelin in Swiss 3T3 cells.  相似文献   

2.
Vasopressin (VP) release from the hypothalamo-neurohypophyseal system (HNS) is stimulated by ATP activation of P2X purinergic receptors and by activation of 1-adrenergic receptors by phenylephrine (PE). These responses are potentiated by simultaneous exposure to ATP+PE. Potentiation was blocked by depleting intracellular calcium stores with thapsigargin. To test the hypothesis that the synergistic response to ATP+PE reflects alterations in the intracellular calcium concentration ([Ca2+]i), [Ca2+]i was monitored in supraoptic neurons in HNS explants loaded with fura 2-AM. Both ATP and PE induced rapid, but transient, elevations in [Ca2+]i. In 0.3 mM Ca2+, the peak response to ATP was greater than to PE but did not differ from the peak response to ATP+PE. A sustained elevation in [Ca2+]i was induced by ATP+PE, that was greater than ATP or PE alone. In 2 mM Ca2+, the peak response to ATP+PE was significantly greater than to either ATP or PE alone, and the sustained response to ATP+PE was greater than to either agent alone. Responses were comparable in the presence of TTX. The sustained elevation in [Ca2+]i was also observed when ATP+PE was removed after 1 min, but it was eliminated by either thapsigargin or removing external calcium, indicating that both calcium influx and calcium release from internal stores are required. Some cells were vasopressinergic based on a VP-induced increase in [Ca2+]i. These observations support the hypothesis that simultaneous exposure to ATP+PE induces a different pattern of [Ca2+]i than either agent alone that may initiate events leading to synergistic stimulation of VP release.  相似文献   

3.
The aim of the present study was to investigate the relationship between agonist-induced changes in intracellular free Ca2+ ([Ca2+]i) and the refilling of intracellular Ca2+ stores in Fura 2-loaded thyroid FRTL-5 cells. Stimulating the cells with ATP induced a dose-dependent increase in ([Ca2+]i). The ATP-induced increase in [Ca2+]i was dependent on both release of sequestered intracellular Ca2+ as well as influx of extracellular Ca2+. Addition of Ni2+ prior to ATP blunted the component of the ATP-induced increase in [Ca2+]i dependent on influx of Ca2+. In cells stimulated with ATP in a Ca(2+)-free buffer, readdition of Ca2+ induced a rapid increase in [Ca2+]i; this increase was inhibited by Ni2+. In addition, the ATP-induced influx of 45Ca2+ was blocked by Ni2+. Stimulating the cells with noradrenaline (NA) also induced release of sequestered Ca2+ and an influx of extracellular Ca2+. When cells were stimulated first with NA, a subsequent addition of ATP induced a blunted increase in [Ca2+]i. If the action of NA was terminated by addition of prazosin, and ATP was then added, the increase in [Ca2+]i was restored to control levels. Addition of Ni2+ prior to prazosin inhibited the restoration of the ATP response. In the presence of extracellular Mn2+, ATP stimulated quenching of Fura 2 fluorescence. The quenching was probably due to influx of Mn2+, as it was blocked by Ni2+. The results thus suggested that stimulating release of sequestered Ca2+ in FRTL-5 cells was followed by influx of extracellular Ca2+ and rapid refilling of intracellular Ca2+ stores.  相似文献   

4.
Signal transduction by the T-cell antigen receptor involves the turnover of polyphosphoinositides and an increase in the concentration of cytoplasmic free Ca2+ ([Ca2+]i). This increase in [Ca2+]i is due initially to the release of Ca2+ from intracellular stores, but is sustained by the influx of extracellular Ca2+. To examine the regulation of sustained antigen-receptor-mediated increases in [Ca2+]i, we studied the relationships between extracellular Ca2+ influx, the mobilization of Ca2+ from intracellular stores, and the contents of inositol polyphosphates after stimulation of the antigen receptor on a human T-cell line, Jurkat. We demonstrate that sustained antigen-receptor-mediated increases in [Ca2+]i are associated with ongoing depletion of intracellular Ca2+ stores. When antigen-receptor-ligand interactions are disrupted, [Ca2+]i and inositol 1,4,5-trisphosphate return to basal values over 3 min. Under these conditions, intracellular Ca2+ stores are repleted if extracellular Ca2+ is present. There is a tight temporal relationship between the fall in [Ca2+]i, the return of inositol 1,4,5-trisphosphate to basal values, and the repletion of intracellular Ca2+ stores. Reversal of the increase in [Ca2+]i preceeds any fall in inositol tetrakisphosphate by 2 min. These studies suggest that sustained antigen-receptor-induced increases in [Ca2+]i, although dependent on extracellular Ca2+ influx, are also regulated by ongoing inositol 1,4,5-trisphosphate-mediated intracellular Ca2+ mobilization. In addition, an elevated concentration of inositol tetrakisphosphate in itself is insufficient to sustain an increase in [Ca2+]i within Jurkat cells.  相似文献   

5.
Peptides containing Arg-Gly-Asp (RGD) immobilized on beads bind to integrins and trigger biphasic, transient increases in intracellular free Ca2+ ([Ca2+]i) in Madin-Darby canine kidney epithelial cells. The [Ca2+]i increase participates in feedback regulation of integrin-mediated adhesion in these cells. We examined influx pathways and inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ store release as possible sources of the [Ca2+]i rise. The RGD-induced [Ca2+]i response requires external Ca2+ (threshold approximately 150 microM), and its magnitude is proportional to extracellular calcium. RGD-induced transients were attenuated by Ca2+ channel inhibitors (Ni2+ and carboxy-amidotriazole) or by plasma membrane depolarization, indicating that Ca2+ influx contributes to the response. Loading cells with heparin reduced the size of RGD-induced [Ca2+]i transients, indicating that IP3-mediated release of Ca2+ from stores may also contribute to the RGD response. Depletion of Ca2+ stores with thapsigargin activated Ni(2+)-sensitive Ca2+ influx that might also be expected to occur after IP3-mediated depletion of stored Ca2-. However, RGD elicited a Ni(2+)-sensitive Ca2+ influx even after pretreatment with thapsigargin, indicating that Ca2+ influx is controlled by a mechanism independent of IP3-mediated store depletion. We conclude that RGD-induced [Ca2+]i transients in Madin-Darby canine kidney cells result primarily from the combination of two distinct mechanisms: 1) IP3-mediated release of intracellular stores, and 2) activation of a Ca2+ influx pathway regulated independently of IP3 and Ca2+ store release. Because Ni2+ and carboxy-amidotriazole inhibited adhesion, whereas store depletion with thapsigargin had little effect, we suggest that the Ca2+ influx mechanism is most important for feedback regulation of integrin-mediated adhesion by increased [Ca2+]i.  相似文献   

6.
Activation of a wide variety of membrane receptors leads to a sustained elevation of intracellular Ca2+ ([Ca2+]i) that is pivotal to subsequent cell responses. In general, in nonexcitable cells this elevation of [Ca2+]i results from two sources: an initial release of Ca2+ from intracellular stores followed by an influx of extracellular Ca2+. These two phases, release from intracellular stores and Ca2+ influx, are generally coupled: stimulation of influx is coordinated with depletion of Ca2+ from stores, although the mechanism of coupling is unclear. We have previously shown that histamine effects a typical [Ca2+]i response in interphase HeLa cells: a rapid rise in [Ca2+]i followed by a sustained elevation, the latter dependent entirely on extracellular Ca2+. In mitotic cells only the initial elevation, derived by Ca2+ release from intracellular stores, occurs. Thus, in mitotic cells the coupling of stores to influx may be specifically broken. In this report we first provide additional evidence that histamine-stimulated Ca2+ influx is strongly inhibited in mitotic cells. We show that efflux is also strongly stimulated by histamine in interphase cells but not in mitotics. It is possible, thus, that in mitotics intracellular stores are only very briefly depleted of Ca2+, being replenished by reuptake of Ca2+ that is retained within the cell. To ensure the depletion of Ca2+ stores in mitotic cells, we employed the sesquiterpenelactone, thapsigargin, that is known to affect the selective release of Ca2+ from intracellular stores by inhibition of a specific Ca(2+)-ATPase; reuptake is inhibited. In most cells, and in accord with Putney's capacitative model (1990), thapsigargin, presumably by depleting intracellular Ca2+ stores, stimulates Ca2+ influx. This is the case for interphase HeLa cells. Thapsigargin induces an increase in [Ca2+]i that is dependent on extracellular Ca2+ and is associated with a strong stimulation of 45Ca2+ influx. In mitotic cells thapsigargin also induces a [Ca2+]i elevation that is initially comparable in magnitude and largely independent of extracellular Ca2+. However, unlike interphase cells, in mitotic cells the elevation of [Ca2+]i is not sustained and 45Ca2+ influx is not stimulated by thapsigargin. Thus, the coupling between depletion of intracellular stores and Ca2+ influx is specifically broken in mitotic cells. Uncoupling could account for the failure of histamine to stimulate Ca2+ influx during mitosis and would effectively block all stimuli whose effects are mediated by Ca2+ influx and sustained elevations of [Ca2+]i.  相似文献   

7.
The effects of serum on inositol 1,4,5-trisphosphate (IP3) formation and Ca2+ mobilization in the human submandibular cell line A253 were studied. Exposure of A253 cells to fetal bovine serum (FBS) elicited a 3.3-fold increase in IP3 formation and a concentration-dependent transient increase in cytosolic free Ca2+ concentration ([Ca2+]i), which was similar in Ca2+-containing and Ca2+-free media. Newborn bovine serum (NBS), but not bovine serum albumin (BSA), induced a similar response. The Ca2+ release triggered by FBS was significantly (88%) reduced by the phospholipase C inhibitor U73122, indicating that Ca2+ release induced by FBS is through the PLC pathway. Pretreatment with the tyrosine kinase inhibitor genistein abolished the FBS- and NBS-induced Ca2+ release, suggesting that tyrosine kinase plays an important role in mediating the Ca2+ release. Pre-exposure to ATP or thapsigargin (TG) significantly reduced the FBS-induced [Ca2+]i increase, indicating that Ca2+ release caused by FBS is from the TG- or ATP-sensitive Ca2+ store. While FBS exposure elicited a large Ca2+ release, it reduced Ca2+ influx. Furthermore, FBS significantly inhibited the Ca2+ influx activated by the depletion of intracellular stores by ATP or TG. These results suggest that (1) serum elicits Ca2+ release from ATP- and TG-sensitive stores, which is mediated by IP3; (2) the serum-induced Ca2+ release may be modulated by a tyrosine kinase-associated process; and (3) serum strongly inhibits Ca2+ influxes including the store depletion-activated Ca2+ influx.  相似文献   

8.
Jan CR 《Life sciences》2005,77(5):589-599
In Madin-Darby canine kidney (MDCK) cells, the effect of p-chloroamphetamine, a neurotoxin that depletes intracellular serotonin, on intracellular Ca2+ concentration ([Ca2+]i) and viability was measured by using the Ca2+-sensitive fluorescent dye fura-2 and the viability detecting fluorescent dye tetrazolium. p-Chloroamphetamine (> or = 10 microM) caused a rapid rise of [Ca2+]i in a concentration-dependent manner. p-Chloroamphetamine-induced [Ca2+]i rise was partly reduced by removal of extracellular Ca2+. p-Chloroamphetamine-induced extracellular Ca2+ influx was also suggested by Mn2+ influx-induced fura-2 fluorescence quench. In Ca2+-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+-ATPase, caused a monophasic [Ca2+]i rise, after which p-chloroamphetamine failed to increase [Ca2+]i; also, pretreatment with p-chloroamphetamine reduced 50% of thapsigargin-sensitive Ca2+ stores. U73122, an inhibitor of phospholipase C, abolished ATP (but not p-chloroamphetamine)-induced [Ca2+]i rise. Overnight incubation with 1-500 microM p-chloroamphetamine decreased cell viability. These findings suggest that p-chloroamphetamine evokes a rapid increase in [Ca2+]i in renal tubular cells by stimulating both extracellular Ca2+ influx and intracellular Ca2+ release, and is cytotoxic.  相似文献   

9.
We have investigated the effects of endothelin on phosphoinositide metabolism and Ca2+ mobilization in cultured A10 cells. Endothelin stimulated a significant increase in inositol phosphate formation in a time- and dose-dependent manner. IP3 was significantly elevated by 30 sec and reached a 2.0-fold above control at 1 min. The EC50 for endothelin was 0.5 nM. The initiation of inositol phosphate formation was independent of extracellular Ca2+, and the Ca2+ ionophore, A23187, did not stimulate IP3 formation. However, the sustained elevation of inositol phosphates was partially inhibited by incubating cells in buffer lacking Ca2+ or in buffer containing nicardipine. Endothelin mobilized both intracellular and extracellular Ca2+ reaching a peak intracellular concentration of 350 +/- 11 nM by 1 min when cells were bathed with Ca2+-complete buffer. Intracellular Ca2+ remained 2-fold above baseline for at least 15 min. In contrast, when cells were exposed to endothelin in Ca2+-free buffer, the peak value of [Ca2+]i was 195 +/- 20 nM and returned to baseline by 2 min. Nicardipine completely blocked the influx of extracellular Ca2+ but did not interfere with the mobilization of intracellular stores. We conclude that endothelin produces a rapid and sustained elevation in inositol phosphate formation. The rapid production of IP3 is consistent with the time course for mobilization of intracellular Ca2+. Elevated cytosolic Ca2+ levels are maintained by the influx of extracellular Ca2+ through a nicardipine-sensitive Ca2+ channel and are involved in the sustained formation of inositol phosphates. These data provide an explanation for the sustained, nicardipine-inhibitable contraction of coronary artery strips induced by endothelin.  相似文献   

10.
We have studied the effects of extracellular nucleotides on the cytosolic free calcium concentration [( Ca2+]i) in J774 macrophages using quin2 and indo-1 as indicator dyes. Micromolar quantities of ATP induced a biphasic increase in [Ca2+]i: a rapid and transient increase (peak I) which was due to mobilization of Ca2+ from intracellular stores and a second more sustained elevation (peak II) due to influx of extracellular Ca2+. The sustained peak II elevation had two components, a "low threshold" (1 microM ATP) response which saturated at 10-50 microM ATP and a "high threshold" response, apparent at [ATP] greater than 100 microM. The latter component was not seen with nucleotides other than ATP and correlated with an ATP-induced generalized increase in plasma membrane permeability. A variant J774 cell line was isolated which does not demonstrate this ATP-induced increase in plasma membrane permeability; nevertheless, it demonstrated both the release of Ca2+ from intracellular stores and the low threshold component of the Ca2+ influx across the plasma membrane in response to nucleoside di- and triphosphates. Several lines of evidence indicate that the fully ionized (i.e. free acid) forms of nucleoside di- and triphosphates were the ligands that mediated these increases in [Ca2+]i. These data show that extracellular nucleotides mediate Ca2+ fluxes by two distinct mechanisms in J774 cells. In one, the rise in [Ca2+]i is due to release of Ca2+ from intracellular stores and Ca2+ influx across the plasma membrane. This response is elicited preferentially by the free acid forms of purine and pyrimidine nucleoside di- and triphosphates. In the other, the rise in [Ca2+]i reflects a more generalized increase in plasma membrane permeability and is elicited by ATP4- only.  相似文献   

11.
In the neurosecretory cell line PC12 the cytosolic free Ca2+ concentration, [Ca2+]i, and membrane potential were affected by both external ATP and the nonapeptide bradykinin, BK. The latter caused a rapid and large release of Ca2+ from intracellular stores (Ca2+ redistribution) and, in the presence of external Ca2+, a long lasting, but moderate Ca2+ influx, which was insensitive to dihydropyridine blockers. On the contrary, ATP evoked a [Ca2+]i rise which rapidly inactivated. At least three different mechanisms accounted for the ATP-induced increase in [Ca2+]i: less than 20% of the total response was due to intracellular Ca2+ redistribution, consistent with a small increase in inositol 1,4,5-trisphosphate level; the rest (over 80%) was equally accounted for by ATP-activated cation channels and voltage-gated Ca2+ channels. ATP and BK (the latter after K+ channel blockade) caused plasma membrane depolarization. With both agonists the inward current was carried by both Na+ and Ca2+, although the BK-activated current appeared to be more selective for Ca2+. Channels triggered by ATP and BK differed not only in their cation selectivity, but also in modulation by both [Ca2+]i and drugs such as the phorbol ester phorbol 12-myristate 13-acetate and the new antagonist of ligand-activated Ca2+ influx, SK&F 96365.  相似文献   

12.
The effect of the lipophilic gold compound, auranofin (AUR) on the calcium homeostasis of human neutrophils treated with or without n-formyl-methionyl-leucyl-phenylalanine (FMLP) was investigated. In agreement with previous reports, FMLP induced a rapid release of intracellular Ca2+ stores followed by a smaller influx of extracellular Ca2+. AUR and staurosporine enhanced while phorbol 12-myristate 13-acetate suppressed the secondary influx of Ca2+. Mn2(+)-quenching-of-fluorescence studies indicate that phorbol 12-myristate 13-acetate incubation blocked cation entry. AUR or staurosporine potentiation of FMLP effects on cytoplasmic free Ca2+ [( Ca2+]i) was attributed to suppression of negative feedback effects of protein kinase C. AUR (5-45 microM) per se induced a slow release of internal Ca2+ stores followed by a delayed influx of extracellular Ca2+. Control studies showed that AUR did not induce the formation of inositol 1,4,5-trisphosphate, lyse cells, or promote dye leakage. Dithiothreitol suppressed the AUR effect. AUR triggered biphasic but smaller increases in [Ca2+]i of neutrophil cytoplasts. Studies with permeabilized neutrophils showed that AUR directly released Ca2+ from internal stores. By comparison, gold sodium thiomalate, which had no effect on intact cells, also released Ca2+ from permeabilized cells. Present results indicate that AUR modulated [Ca2+]i directly by mobilized Ca2+ from multiple storage sites and indirectly by inhibiting protein kinase C.  相似文献   

13.
To investigate the mechanisms by which inositol phosphates regulate cytosolic free Ca2+ concentration ([Ca2+]c), we injected Xenopus oocytes with inositol phosphates and measured Ca2+-activated Cl- currents as an assay of [Ca2+]c. Inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) injection (0.1-10.0 pmol) induced an initial transient Cl- current (I1) followed by a second more prolonged Cl- current (I2). Both currents were Ca2+-dependent, but the source of Ca2+ was different. Release of intracellular Ca2+ stores produced I1, whereas influx of extracellular Ca2+ produced I2; Ca2+-free bathing media and inorganic calcium channel blockers (Mn2+, Co2+) did not alter I1 but completely and reversibly inhibited I2. Injection of the Ins(1,4,5)P3 metabolite, inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4) (0.2-10.0 pmol) generated a Ca2+-dependent Cl- current with superimposed current oscillations that resulted from release of intracellular Ca2+, not Ca2+ influx. Injection of the Ins(1,3,4,5)P4 metabolite, inositol 1,3,4-trisphosphate (10.0 pmol), or the synthetic inositol trisphosphate isomer, inositol 2,4,5-trisphosphate (1.0-10.0 pmol), mimicked the effect of Ins(1,4,5)P3, stimulating an I1 resulting from release of intracellular Ca2+ and an I2 resulting from influx of extracellular Ca2+. The results indicate that several inositol trisphosphate isomers stimulate both release of intracellular Ca2+ and influx of extracellular Ca2+. Ins(1,3,4,5)P4 also stimulated release of intracellular Ca2+, but it was neither sufficient nor required for Ca2+ influx.  相似文献   

14.
1. We determined the cytoplasmic Ca2+ concentration ([Ca2+]i) in cultured human muscle cells using the fluorescent indicator Quin-2. 2. The [Ca2+]i was dependent on the external Ca2+ concentration. Acetylcholine in the presence of external Ca2+ caused a transient increase in [Ca2+]i. Inhibition by nifedipine indicated that this response was mediated through activated voltage-operated channels. In nominally Ca2(+)-free buffer acetylcholine did not markedly increase [Ca2+]i. Therefore, the increase in [Ca2+]i as a response to depolarization is mainly due to influx of external Ca2+. 3. Various concentrations of caffeine did not influence the [Ca2+]i. Dantrolene decreased [Ca2+]i, both in the presence and absence of external Ca2+. The reduction probably resulted from an action of dantrolene on the intracellular Ca2+ stores, since dantrolene did not influence 45Ca2+ influx or efflux and caffeine partially counteracted the reduction.  相似文献   

15.
Rat glomerular mesangial cell monolayers loaded with the fluorescent probe fura-2 responded to exogenous platelet-activating factor (PAF) with a rapid increase in cytosolic free calcium concentration ([Ca2+]i). PAF-induced [CA2+]i transients consisted of a dose-dependent phasic peak response followed by a sustained tonic phase of increased [Ca2+]i. Chelation of extracellular calcium with EGTA suppressed the tonic phase of increased [Ca2+]i but did not affect the phasic peak response. This suggests two mechanisms for the elevation of [Ca2+]i: a transient mobilization from intracellular stores and an enhanced calcium influx across the plasma membrane, possibly mediated by receptor-operated channels. Lyso-PAF had no effect on basal [Ca2+]i and the PAF-receptor antagonist L652,731 selectively inhibited responses to PAF. PAF-stimulated mesangial cells displayed homologous desensitization to reexposure to PAF while still being responsive to other calcium-mobilizing agonists. Preincubation of cells with the protein kinase C (PKC) activator phorbol myristate acetate diminished the PAF-induced [Ca2+]i transient, suggesting a regulatory role for PKC in PAF-activation of mesangial cells. An increase in [Ca2+]i, as a result of receptor-linked activation of phospholipase C, may mediate PAF-induced hemodynamic and inflammatory events in renal glomeruli.  相似文献   

16.
The mechanisms by which the chemotactic peptide formyl-methyl-leucyl-phenyl-alanine stimulates Ca2+ influx across the plasma membrane were investigated in the human promyelocytic cell line HL-60, induced to differentiate with dimethyl sulfoxide. Ca2+ influx was determined: (a) from the initial rate of Mn2+ influx, apparent from the quenching of intracellular quin2 or fura-2 fluorescence; (b) from the rate of the elevation of cytosolic free calcium, [Ca2+]i, upon readdition of Ca2+ to cells previously stimulated in the absence of extracellular Ca2+. [3H]Inositol tris-, tetrakis-, and pentakisphosphates were analyzed by a high performance liquid chromatography procedure which was optimized for the separation of inositol tetrakisphosphates, yielding three predominant isomers: inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4), inositol 1,4,5,6-tetrakisphosphate, and inositol 1,3,4, 6-tetrakisphosphate. Both the kinetics and agonist dose dependence of Ca2+ influx stimulation correlated closely with the corresponding receptor-mediated variations of [Ca2+]i either in the presence or in the absence of extracellular Ca2+. Of the different inositol phosphates determined in parallel and under the same conditions, accumulation of [3H]Ins(1,3,4,5)P4 correlated best with Ca2+ influx both temporally and in its dose dependence in the presence or in the absence of extracellular Ca2+; inositol 1,3,4-trisphosphate was also correlated but to a lesser extent. Attenuations of [Ca2+]i elevations by decreasing extracellular Ca2+ or by increasing the cytosolic Ca2+ buffering capacity with quin2 led to parallel inhibition of Ca2+ influx and Ins(1,3,4,5)P4 production. In conclusion: 1) activation of Ca2+ influx by formyl-methionyl-leucyl-phenylalanine depends on the elevation of [Ca2+]i, the latter being initiated by Ca2+ mobilization from intracellular stores; 2) Ins(1,3, 4,5)P4 is a strong candidate for maintaining receptor-mediated activation of Ca2+ influx in differentiated HL-60 cells.  相似文献   

17.
The membrane signaling properties of the neuronal type-5 muscarinic acetylcholine receptor (M5 AChR) as expressed in murine L cells were studied. Recipient Ltk- cells responded to ATP acting through a P2-purinergic receptor by increasing phosphoinositide hydrolysis 2-fold but were unresponsive to 17 receptor agonists that are stimulatory in other cells. L cells expressing the M5 AChR responded to carbachol (CCh) with an approximately 20-fold increase in phospholipase C activity, mobilization of Ca2+ from endogenous stores, causing a transient peak increase in the intracellular concentration of Ca2+ ([Ca2+]i), influx of extracellular Ca2+, causing a sustained increase in [Ca2+]i dependent on extracellular Ca2+, and release of [3H]arachidonic acid from prelabeled cells, without altering resting or prostaglandin E1-elevated intracellular cAMP levels. None of the effects of the M5 AChR were inhibited by pertussis toxin. The regulation of L cell [Ca2+]i was studied further. ATP had the same effects as CCh and the two agonists acted on a shared intracellular pool of Ca2+. The peak and sustained [Ca2+]i increases were reduced by cholera toxin and forskolin, neither of which altered significantly phosphoinositide hydrolysis. This is consistent with interference with the action of inositol 1,4,5-trisphosphate (IP3) through cAMP-mediated phosphorylation and suggests a continued involvement of IP3 during the sustained phase of [Ca+]i increases. The temporal pattern of the sustained [Ca2+]i increase differed whether elicited by CCh or ATP, and was enhanced in pertussis toxin-treated cells. This is consistent with existence of a kinetic control of the sustained [Ca2+]i change by a receptor-G protein-dependent mechanism independent of the IP3 effector site(s) (e.g. pulsatile activation of phospholipase C and/or pulsatile activation of a receptor/G protein-operated plasma membrane Ca2+ channel). Thus, the non-excitable L cell may be a good model for studying [Ca2+]i regulations, as may occur in other nonexcitable cells of which established cell lines do not exist, and for studying of receptors that as yet cannot be studied in their natural environment.  相似文献   

18.
Interaction of antibodies to ganglioside GM1 with Neuro2a cells was studied to investigate the role of GM1 in cell signaling. Binding of anti-GM1 to Neuro2a cells induced the formation of 3H-inositol phosphates (3H-IPs) and elevated the intracellular Ca2+ concentration [Ca2+]i. The rise in [Ca2+]i was due to the influx of Ca2+ from the extracellular medium and release from intracellular Ca2+ pools. The Ca2+ influx pathway did not allow the permeation of Na+ or K+. The influx was inhibited by amiloride, a specific blocker of T-type Ca2+ channels, whereas nifedipine and diltiazem, blockers of L-type Ca2+ channels, did not have any effect. Thus, anti-GM1 appears to activate a T-type Ca2+ channel in Neuro2a cells. The intracellular Ca2+ release was inhibited by pretreatment of cells with neomycin sulfate, phorbol dibutyrate, and pertussis toxin (PTx), which also inhibited the 3H-IP formation in Neuro2a cells. Addition of caffeine neither elevated the [Ca2+]i nor affected the anti-GM1-induced [Ca2+]i rise. The data reveal that the binding of anti-GM1 to Neuro2a cells activates phospholipase C via a PTx-sensitive G protein, which leads to formation of IPs and release of Ca2+ from inositol trisphosphate-sensitive pool of endoplasmic reticulum. Anti-GM1 also arrested the differentiation of Neuro2a cells in culture and significantly stimulated their proliferation. This stimulatory effect of anti-GM1 on cell proliferation was blocked by amiloride but not by PTx, suggesting that the influx of Ca2+ was essentially required for cell proliferation. Our data suggest a role for GM1 in the regulation of transmembrane signaling events and cell growth.  相似文献   

19.
The effect of the specific potassium (K+) ionophore valinomycin on increase in intracellular calcium concentration [( Ca2+]i) was studied in vascular smooth muscle cells (VSMC). Valinomycin at more than 10(-9) M dose-dependently suppressed phasic increase in [Ca2+]i in VSMC induced by angiotensin II (AII) in both control and Ca2+-free solution, indicating that it suppressed the release of Ca2+ from intracellular Ca2+ stores. Nicorandil and cromakalim, which are both K+ channel openers, also suppressed the increases in [Ca2+]i induced by AII in the Ca2+ free solution. However, valinomycin did not suppress AII-induced production of inositol 1,4,5-trisphosphate (IP3), which is known to mediate the release of Ca2+. These results indicate that decrease of intracellular K+ induced by valinomycin suppressed the release of Ca2+ from intracellular Ca2+ stores induced by IP3.  相似文献   

20.
Jan CR  Tseng CJ 《Life sciences》1999,65(23):2513-2522
The effect of miconazole on intracellular calcium levels ([Ca2+]i) in Madin Darby canine kidney (MDCK) cells was studied using fura-2 as the Ca2+ indicator. Miconazole increased [Ca2+]i dose-dependently at concentrations of 5-100 microM. The [Ca2+]i transient consisted of an initial rise, a gradual decay and an elevated plateau (220 s after addition of the drug). Removal of extracellular Ca2+ partly reduced the miconazole response. Mn2+ quench of fura-2 fluorescence confirmed that miconazole induced Ca2+ influx. The miconazole-sensitive intracellular Ca2+ store overlapped with that sensitive to thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+ pump, because 20 microM miconazole depleted the thapsigargin (1 microM)-sensitive store, and conversely, thapsigargin abolished miconazole-induced internal Ca2+ release. Miconazole (20-50 microM) partly inhibited the capacitative Ca2+ entry induced by 1 microM thapsigargin, measured by depleting intracellular Ca2+ store in Ca(2+)-free medium followed by addition of 10 mM CaCl2. Miconazole induced capacitative Ca2+ entry on its own. Pretreatment with 0.1 mM La3+ partly inhibited 20 microM miconazole-induced Mn2+ quench of fura-2 fluorescence and [Ca2+]i rise, suggesting that miconazole induced Ca2+ influx via two pathways separable by 0.1 mM La3+. Miconazole-induced internal Ca2+ release was not altered when the cytosolic level of inositol 1,4,5-trisphosphate (IP3) was substantially inhibited by the phospholipase C inhibitor U73122.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号