首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 284 毫秒
1.
Cell-free enzyme particles from mung bean seedlings catalyze the incorporation of mannose from GDP-[14C]mannose and GlcNAc from UDP-[3H]GlcNAc into glycolipids and into glycoprotein. The most rapidly labeled product from GDP-mannose was characterized as a mannosyl-phosphoryl-polyisoprenol, whereas that from UDP-GlcNAc was a mixture of GlcNAc-(pyro)phosphoryl-polyisoprenol and a disaccharide composed of two N-acetylglucosamine residues attached to the polyisoprenol by a phosphoryl or pyrophosphoryl linkage. Radioactivity from GDP-mannose and UDP-GlcNAc was also incorporated into more polar lipids which have been partially characterized as a series of oligosaccharide-(pyro)phosphoryl-lipids. The mannose-labeled oligosaccharides released from these lipids by mild acid hydrolysis were found to contain GlcNAc at their reducing end indicating that these oligosaccharides contain both GlcNAc and mannose. Both the GlcNAc-labeled and the mannose-labeled oligosaccharides gave multiple radioactive peaks upon paper chromatography indicating that they are composed of a series of different sized oligosaccharides. Finally, radioactivity from GDP-[14C]mannose and UDP-[3H]GlcNAc is incorporated into an insoluble component. Ten percent of the mannose label and all of the GlcNAc label in this insoluble material could be solubilized by digestion with Pronase. The glycopeptides released by Pronase digestion appeared to be approximately the same size as the oligosaccharides from the lipid-linked oligosaccharides based on gel filtration chromatography on Sephadex G-50. The results are consistent with a mechanism for glycoprotein synthesis involving lipid-linked oligosaccharide intermediates.  相似文献   

2.
Microsomal preparations from malignant human breast tumors catalyzed the transfer of mannose and glucose from GDP-[14C]-Man and UDP-[14C]-Glc into lipid-linked sugars and glycoprotein-like substances. As judged by several criteria the obtained lipid-linked monosaccharides behaved as dolichyl phosphate mannose and dolichyl phosphate glucose whereas lipid-linked oligosaccharides behaved as polyprenyl diphosphate derivatives. The optimum conditions for mannosyl- and glucosyl-transfer reactions and the effect of dolichyl phosphate, detergent and EDTA on incubation mixture were described.  相似文献   

3.
A crude membrane preparation from Phaseolus aureus hypocotyls catalyzes the incorporation of mannose from GDP-[14C]mannose into a acid labile glycolipid and a methanol insoluble fraction. Addition of dolichyl monophosphate to the incubation mixture stimulated the formation of both the mannolipid and the methanol insoluble endproduct. Thin-layer chromatography of endogenous lipid and of the stimulated lipid fraction revealed that both compounds run identical. Ficaprenyl monophosphate also stimulates the incorporation of mannose; however, the ficaprenyl monophosphate mannose formed is not identical to the endogenous mannolipid. This suggests that the endogenous acceptor has the properties of an α-saturated polyprenyl monophosphate rather than those of the ficaprenyl phosphate type. The same membrane preparation also incorporates N-acetylglucosamine into an acid labile glyolipid as well as into a polymer fraction. Evidence is presented that the N-acetylglucosamine containing lipid consists of a mixture of dolichyl pyrophosphate N-acetylglucosamine and dolichyl pyrophosphate di-N-acetylchitobiose. It seems likely that the two compounds have a precursor-product relationship. Incubation of dolichyl pyrophosphate di-N-acetylchitobiose together with GDP-mannose gives rise to lipid-bound mannosyl-di-N-acetylchitobiose. Radioactivity from either the [14C]mannolipid or the N-acetyl[14C]glucosamine containing lipid is incorporated into a methanol insoluble product to 3.4 and 6.3%, respectively; it seems, at least in part, to be a glycoprotein.  相似文献   

4.
The antibiotic bacitracin was found to inhibit the incorporation of mannose and GlcNAc from their respective sugar nucleotides into lipid-linked saccharides. The inhibition of both systems was apparent in the aorta particulate enzyme system but it was much more pronounced with the solubilized enzyme system. In both cases, GlcNAc incorporation into Dol-P-P-GlcNAc was more sensitive than mannose incorporation into Dol-P-Man, with 50% inhibition being seen at about 0.1–0.2 mm antibiotic. Bacitracin inhibition of mannose incorporation appeared to be overcome at high concentrations of dolichyl phosphate but, in these cases, an unexplained stimulation was observed. However, GlcNAc inhibition could not be overcome by high concentrations of dolichol phosphate, metal ion, or both together. Thus, the mechanism of inhibition by bacitracin is not clear. Bacitracin also inhibited the transfer of mannose from GDP-mannose to lipid-linked oligosaccharides and to glycoprotein in the particulate enzyme, as well as the transfer of radioactivity from Dol-P-Man or from lipid-linked oligosaccharides to glycoprotein. Thus, bacitracin apparently blocks each of the steps in the lipid-linked pathway. In yeast spheroplasts, bacitracin inhibited the incorporation of [14C]mannose into Dol-P-Man, into lipid-linked oligosaccharides, and into glycoprotein. However, in this case, the antibiotic also blocked the incorporation of leucine into protein. Bacitracin also inhibited the cell-free synthesis of mannosyl-phosphoryl-decaprenol in Mycobacterium smegmatis with 50% inhibition being observed at a concentration of about 0.5 mm.  相似文献   

5.
Summary The molecular mechanism of reduced incorporation of radioactively labeled mannose into hamster liver glycoconjugates during the progression of vitamin A deficiency was investigated. In particular the in vivo incorporation of [2-3H]mannose into GDP-mannose, dolichyl phosphate mannose (Dol-P-Man), lipid-linked oligosaccharides, and glycopeptides of hamster liver was examined. Hamsters maintained on a vitamin A-free diet showed a reduction in the incorporation of mannose into GDP-mannose about 10 days before clinical signs of vitamin A deficiency could be observed. The decrease in [2-3H]mannose incorporated into GDP-mannose was accompanied by a reduction in label incorporated into Dol-P-Man, lipid linked oligosaccharides and glycopeptides, which became more severe with the progression of vitamin A deficiency. By the time they reached a plateau stage of growth, hamsters fed the vitamin A-free diet showed a 50% reduction in the amount of [2-3H]mannose converted to GDP-mannose, and the radioactivity associated with Dol-P-Man and glycopeptides was reduced by approximately 60% as compared to retinoic acid-supplemented controls. These results strongly indicate that the reduced incorporation of mannose into lipidic intermediates and glycoproteins observed during vitamin A deficiency is due to impaired GDP-mannose synthesis.Abbreviations Dol-P-Man Dolichyl Phosphate Mannose - Dol-P Dolichyl Phosphate  相似文献   

6.
Membrane preparations from growing regions of pea stems and activelydividing mouse L-cells form lipid-linked saccharides from GDP-mannose and UDP-N-acetylglucosamine. These lipids have properties which are consistent with those of mono-and di-phosphoryl polyisoprenyl derivatives. In experiments using plant membranes, the monophosphoryl derivative labeled with GDP-(14C) mannose contains mannose only, while the diphosphoryl derivative labeled with the same nucleotide sugar is heterogeneous, containing oligosaccharides corresponding to mannosaccharides of 5, 7, and 9-12 residues. Only the diphosphoryl polyisoprenyl derivatives are labeled with UDP-(14C)glucosamine and these contain predominantly chitobiose and N-acetylglucosamine itself. Unlabeled GDP-mannose added after UDP-N-acetyl (14C)glucosamine results in the formation of higher lipid-linked oligosaccharides which are apparently the same as those which are labeled with GDP-(14C)mannose alone. Incubation of the membranes with GDP-(14C)mannose in the presence of Mn2+, unlabeled UDP-glucose or unlabeled UDP-N-acetylglucosamine results in marked changes in the accumulation of both the polyisoprenyl monophosphoryl mannose and polyisoprenyl diphosphoryl oligosaccharides. Animal cell membranes synthesise lipid-linked oligosaccharides when incubated with UDP-N-acetylglucosamine and GDP-mannose. These oligosaccharides are similar in size to those synthesised by the plant membranes but their formation is more efficient. The potential roles of these compounds in glycoprotein biosynthesis in both plant and animal tissues is discussed.  相似文献   

7.
The effects of the glycosylation inhibitor 2-deoxy-2-fluoro-D-glucose on the formation of the lipid-linked oligosaccharides and monosaccharides that are involved in protein glycosylation were investigated. In chick embryo cells treated with fluoroglucose the formation of lipid-linked oligosaccharides cannot go to completion and oligosaccharides with decreased amounts of glucose and mannose can be detected. These oligosaccharides are probably biosynthetic intermediates and serve as acceptors of sugar residues while reversing fluoroglucose-inhibition by the addition of mannose and glucose to the culture medium. In contrast to deoxyglucose, fluoroglucose was not incorporated into lipid-linked oligosaccharides. Fluoroglucose inhibits the formation in vivo of dolichyl phosphate glucose and dolichyl phosphate mannose, but not the transfer of those sugar residues from the lipid monophosphate derivative to the lipid-linked oligosaccharides. The pool size of UDP-glucose, but not of GDP-mannose and UDP-N-acetylglucosamine, was decreased. Also, the formation of lipid-linked N-acetylglucosamine was not affected by fluoroglucose. Fluoroglucose was applied to deplete cellular membranes of endogenous lipid-linked mannose and glucose, and can possibly be used to discern different pathways of glycosylation.  相似文献   

8.
The peptide antibiotic tridecaptin caused a 2--4-fold stimulation in the incorporation of mannose from GDP-[14C]mannose and glucose from UDP-[3H]glucose into lipid-linked monosaccharides by both the particulate and the soluble enzyme fractions from pig aorta. In both cases, the major products and the ones stimulated by antibiotic were dolichyl phosphate mannose and dolichyl phosphate glucose. The stimulation in activity was unaffected by increasing concentrations of dolichyl phosphate, GDP-mannose, UdP-glucose, Mn2+ or the detergent Nonidet P40. Tridecaptin stimulation was apparently not due to protection of sugar nucleotide substrate, since addition of various concentrations of sugar nucleotides did not alter the stimulation. Nor did the addition of tridecaptin result in any increase in the amount of radioactive sugar nucleotide recovered from incubation mixtures. Tridecaptin bound to the particulate enzyme and could not be removed by centrifugation of the particles.  相似文献   

9.
A particulate enzyme preparation prepared from the intimal layer of pig aorta catalyzed the transfer of mannose from mannosyl-phosphoryl-polyprenol (MPP) into a series of oligosaccharides that were linked to lipid. The reaction required detergent with Triton X-100 and NP-40 being best at a concentration of 0.5%. Several other detergents were inactive or only slightly active. The pH optima for this activity was about 7 to 7.5 in Tris buffer and the apparent Km for MPP was about 2 x 10(-7) M. The reaction was not stimulated by the addition of divalent cation and, in fact, was inhibited by the high concentrations of cation. The addition of EDTA did not inhibit the transfer of mannose from MPP and was somewhat stimulatory. The transferase(s) activity was "solubilized" from the particles by treatment with Triton X-100. This solubilized enzyme still formed a series of lipid-linked oligosaccharides from either MPP or GDP-mannose. The oligosaccharides were released from the lipid by mild acid hydrolysis and were separated by paper chromatography. Some five or six radioactive oligosaccharides were formed from either MPP or from GDP-mannose and these oligosaccharides had similar mobilities upon paper chromatography. However, MPP was a better donor for the larger oligosaccharides (i.e. those containing 8, 9, or 10 sugar residues), whereas GDP-mannose was better for formation of the oligosaccharide containing 7 sugar residues. In the presence of EDTA and detergent no MPP was formed from GDP-mannose, but radioactivity was still incorporated into the lipid-linked oligosaccharides. Under these conditions essentially all of the radioactivity was in the oligosaccharide containing 7 sugar residues. Since much of this activity could be released as mannose by acetolysis, GDP-mannose may be the direct mannosyl donor for formation of 1 leads to 6 branches. Oligosaccharides 7, 8, 9, and 10 were isolated and partially characterized in terms of their molecular weights, sugar composition, susceptibility to alpha-mannosidase, and 14C products formed by acetolysis and periodate oxidation. The molecular weights ranged from 1310 for oligosaccharide 7 to 1750 for oligosaccharide 10. Hydrolysis of each oligosaccharide and reduction with NaB3H4 gave the expected ratio of [3H]hexitol to [3H]hexosaminitol based on the molecular weight of the oligosaccharide. However, the hexitol fraction contained [3H]mannitol and [3H]glucitol. Since the amount of radioactivity in glucitol was 2 to 4 times that in mannitol and since only glucosaminitol was found in the amino sugar peak, it seems likely that each 14C-oligosaccharide was contaminated with an unlabeled oligosaccharide of equal molecular weight containing glucose and GlcNAc. Acetolysis of the 14C-oligosaccharides gave rise to 14C peaks of mannose, mannobiose, and mannotriose. In the larger oligosaccharides, most of the radioactivity was in mannobiose whereas in oligosaccharide 7 most of the radioactivity was in mannose...  相似文献   

10.
Glycosyl transferases that participate in the assembly of the lipid-linked oligosaccharide intermediates were solubilized from cultured soybean cells using 0.3% Nonidet P-40 (NP-40) in the presence of 10% glycerol. The solubilized enzyme preparation was reasonably stable and 50% of the activity still remained after storage at −10°C for 1 month. The solubilized enzyme synthesized [14C]Man3GlcNAc2-pyrophosphoryl-polyprenol and [14C]Man5GlcNAc2-pyrophosphoryl-polyprenol when incubated with GDP-[14C]mannose plus a partially purified acceptor lipid isolated from calf liver. The formation of these lipid-linked oligosaccharides did not require the addition of dolichyl-phosphate or metal ions. In fact, the addition of 5 to 10 millimolar ethylenediaminetetraacetate stimulated the incorporation of mannose into lipid-linked oligosaccharides 2- to 3-fold. Since little or no dolichyl-phosphoryl-mannose is formed in the presence of ethylenediaminetetraacetate, the results suggest that the mannosyl residues added to form Man3GlcNAc2-lipid and Man5GlcNAc2-lipid come directly from GDP-mannose without the participation of dolichyl-phosphoryl-mannose. On the other hand, the formation of significant amounts of Man6GlcNAc2-lipid, Man7GlcNAc2-lipid, and Man8GlcNAc2-lipid occurred when the above incubations were supplemented with dolichyl-phosphate and metal ions. Based on various time course studies and supplementation studies with various additions, it appears likely that the first five mannose residues to form Man5GlcNAc2-lipid come directly from GDP-mannose, whereas other mannose units to form larger oligosaccharide-lipids come from dolichyl-phosphoryl-mannose.  相似文献   

11.
The particulate enzyme from pig aorta catalyzed the transfer of glucose from UDP-glucose into glucosyl-phosphoryl-dolichol, into lipid-linked oligosaccharides, and into glycoprotein. Radioactive lipid-linked oligosaccharides were prepared by incubating the extracts with GDP-[14C]mannose and UDP-[3H]glucose. When the labeled oligosaccharides were run on Bio-Gel P-4, the two different labels did not exactly coincide; the 3H peak eluted slightly earlier indicating that it was of higher molecular weight than the 14C material, but there was considerable overlap. The purified oligosaccharide(s) contained glucose, mannose, and N-acetylglucosamine but the ratios of these sugars varied from one enzyme preparation to another, probably depending on the endogenous oligosaccaride-lipids present in the microsomal preparation. Treatment of the [3H]glucose-labeled oligosaccharide with α-mannosidase gave rise to a 3H-labeled oligosaccharide which moved somewhat faster on Bio-Gel P-4 than the original oligosaccharide, suggesting it had lost one or two sugar residues. These data indicate that mannose and glucose are in the same oligosaccharide. The antibiotic, amphomycin, inhibited the transfer of glucose from UDP-glucose into the lipid-linked saccharides. However the synthesis of glucosyl-phosphoryl-dolichol was much more sensitive then was the synthesis of lipid-linked oligosaccharides. The glucose-labeled oligosaccharide produced in the absence of amphomycin was of high molecular weight based on paper chromatography. But in the presence of partially inhibitory concentrations of antibiotic, the oligosaccharide migrated more rapidly on paper chromatograms. However, amphomycin had no effect on the synthesis of glucosyl-ceramide by the aorta extracts. In fact, the antibiotic may stimulate glucosyl-ceramide by making more of the substrate, UDP-glucose, available for synthesis of this lipid.  相似文献   

12.
Incubation of liver microsomes from hibernating ground squirrel with GDP-[14C]mannose and exogenous dolichyl phosphate resulted in the synthesis of dolichyl phosphate [14C]mannose. The mannosyltransferase activity was about 3-fold higher in microsomes from hibernating ground squirrels than in those from active animals. Incubation for 30 min of liver microsomes from hibernating animals with dolichyl pyrophosphate N,N'-diacetyl-[14C]chitobiose and GDP-[14C]mannose led to the synthesis of lipid-[14C]trisaccharide. When liver microsomes were incubated with lipid-[14C]trisaccharide and unlabelled GDP-mannose, lipid-tetra- to heptasaccharides were discovered in the chloroform-methanol (2:1) extract. Since, under the experimental conditions, negligible synthesis of dolichyl phosphate mannose was observed, it was assumed that GDP-mannose was a donor of mannose in the conversion of lipid-trisaccharide into lipid-oligosaccharides containing 2-5 mannose residues.  相似文献   

13.
In the presence of exogenous dolichyl phosphate mannosyl transferase activity towards dolichyl phosphate was nearly 3-fold higher in microsomes from pig embryonic liver compared to that from adult liver. After incubation of microsomes from embryonic liver with UDP-N-acetylglucosamine and GDP-[14C]mannose lipid-linked tri- to undecasaccharides were discovered in CHCl3-CH3OH (2:1, v/v) and CHCl3-CH3OH-H2O (1:1:0.3, by vol) extracts. The main proportion of the radioactivity was incorporated into penta-, sexta and undecasaccharides. Amphomycin at concentration 500 micrograms/ml inhibited almost completely dolichyl phosphate mannose synthesis in embryonic liver microsomes without inhibition the formation of lipid-linked penta- and sextasaccharides. It was suggested that mannose transferred to lipid-linked tetra- to heptasaccharides comes from GDP-mannose but not from dolichyl phosphate mannose.  相似文献   

14.
Particulate membrane fractions from pig brain catalyse the synthesis of lipid-linked sugar derivatives of the dolichyl phosphate pathway. Flavomycin, a phosphoglycolipid antibiotic produced by various species of streptomycetes, interferes with the formation of these glycolipids to a different extent. The formation of dolichyl phosphate glucose was shown to be most susceptible to the antibiotic, being blocked by about 50% in the presence of 0.2mm-flavomycin, whereas the synthesis of dolichyl diphosphate N-acetylglucosamine, dolichyl diphosphate chitobiose and dolichyl diphosphate chitobiosyl mannose required higher concentrations to achieve a comparable inhibition. Although the formation of dolichyl phosphate mannose was hardly affected, the accumulation of oligosaccharides with five to seven sugar units was observed, when dolichyl diphosphate oligosaccharides were synthesized with GDP-[(14)C]mannose in the presence of 1mm-flavomycin. This indicates that the inhibition of the synthesis of larger-sized oligosaccharides, known to be mediated by lipid-bound mannose, was not caused by an actual deficiency in dolichyl phosphate mannose. At flavomycin concentrations that inhibited the formation of dolichyl phosphate glucose by 50%, the transfer of lipid-linked saccharides to either the hexapeptide Tyr-Asn-Gly-Thr-Ser-Val or endogenous protein acceptors was hardly influenced. The mode of action of flavomycin is still obscure, but seems not to be of a competitive nature, since the inhibition was unaffected by increasing concentrations of dolichyl phosphate. Some evidence indicates that, besides a direct interaction of the antibiotic with some transferases, a non-specific incorporation into the membrane and alteration of its properties might be responsible for those inhibitory effects on all enzymes which were observed at high concentrations of flavomycin.  相似文献   

15.
Microsomal preparations from rat adipose tissue catalyse the transfer of [14C]mannose from GDP-[14C]mannose to an endogenous acceptor forming a [14C]mannosyl lipid. The mannosyl lipid co-chromatographs with hen oviduct dolichyl monophosphate β-mannose on three solvent systems. It is stable to mild alkaline hydrolysis, but strong alkaline treatment yields a compound that co-migrates with mannose 1-phosphate. The mannosyl lipid is labile to mild acid hydrolysis, yielding [14C]mannose. Formation of the compound is reversible by GDP, but not GMP, and is stimulated by exogenous dolichyl phosphate.

The kinetics of transfer of [14C]mannose from GDP-[14C]mannose to form dolichyl monophosphate mannose were studied by using preparations derived from rats fed on one of four diets: G (high glucose), L (high lard), F (fructose) or GC (high glucose, 0.9% cholesterol). The Km and Vmax. values for transfer from GDP-mannose were virtually indistinguishable in the four preparations.

In the absence of exogenous dolichyl phosphate, the largest amount of transfer of [14C]mannose into the mannosyl lipid was observed with preparations from fructose-fed animals. Preparations from glucose-fed animals showed about 60% as much transfer, whereas membranes from rats fed the other diets showed intermediate values between the fructose- and glucose-fed animals. The inclusion of cholesterol in the glucose diet elicited an increase in transfer of mannose.

Under conditions of saturating exogenous dolichyl phosphate, preparations from lard-fed animals have 1.5 times as much enzyme activity as do preparations from animals fed the other three diets.

  相似文献   

16.
Membrane preparations from developing cotyledons of red kidney bean (Phaseolus vulgaris L.) transferred radioactive mannose from GDP-mannose (U-[14C]mannose) to endogenous acceptor proteins. The transfer was inhibited by the antibiotic tunicamycin, suggesting the involvement of lipidoligosaccharide intermediates typical of the pathway for glycosylation of asparagine residues. This was supported by the similarity of the linkage types of radioactive mannose in lipid-oligosaccharide and glycoprotein products; both contained labeled 2-linked mannose, 3,6-linked and terminal mannose typical of glycoprotein “core” oligosaccharides. As expected for “core” glycosylation, the transfer of labeled N-acetylglucosamine (GlcNAc) from UDP-GlcNAc (6-[3H]GLcNAc) to 4-linkage in endogenous glycoproteins could also be demonstrated. However, most of the radioactive GlcNAc was incorporated into terminal linkage, in a reaction insensitive to tunicamycin. The proteins receiving “core” oligosaccharide in vitro were heterogeneous in size, in contrast to those receiving most of the GlcNAc (which chiefly comprised the seed reserve-proteins phaseolin and phytohemagglutinin). It is suggested that following “core” glycosylation, single GlcNAc residues are attached terminally to the oligosaccharides of these seed proteins, without the involvement of lipid-linked intermediates. Phaseolin from mature seeds does not possess a significant amount of terminal GlcNAc and so it is possible that these residues are subsequently removed in a processing event.  相似文献   

17.
The antibiotic, tsushimycin, inhibits the formation of dolichyl phosphate mannose, dolichyl phosphate glucose and dolichyl pyrophosphate N-acetylglucosamine in the particulate enzyme preparation from pig aorta. Although this antibiotic also inhibits the incorporation of mannose and glucose into lipid-linked oligosaccharides, these reactions are less sensitive to antibiotic than those involved in the synthesis of lipid-linked monosaccharides. In the presence of tsushimycin, most of the mannose incorporated into lipid-linked oligosaccharides is into one oligosaccharide that has the properties of the heptasaccharide Man5GlcNAc2, whereas in the absence of antibiotic most of the mannose is in larger-sized oligosaccharides. On the other hand, the glucose-labelled lipid-linked oligosaccharides appear to be similar in size in the presence or absence of antibiotic. Tsushimycin also inhibits the formation of lipid-linked monosaccharides by the solubilized enzyme preparation of aorta. Various concentrations of dolichyl phosphate or the detergent, Nonidet P40, had no effect on antibiotic inhibition. Some evidence indicates that tsushimycin binds to the particulate enzyme.  相似文献   

18.
The antibiotics Streptovirudin and 24010 were tested to determine their effects on the formation of lipid-linked saccharide intermediates associated with glycoprotein biosynthesis in mung bean (Vigna radiata) and suspension-cultured soybean cells (Glycine max cv. Mandarin). In vitro both compounds strongly inhibited the transfer of N-acetyl[3H]glucosamine from UDP-N-[3H]acetylglucosamine to N-acetylglucosaminyl-pyrophosphoryl-polyisoprenol and lipid-linked oligosaccharides, although they had no apparent effect on the incorporation of [14C]mannose from GDP-[14C]mannose into mannosyl-phosphoryl-dolichol with a small inhibition into lipid-linked oligosaccharides. In vivo, Streptovirudin and tunicamycin dramatically inhibited the incorporation of N-[14C]acetylglucosamine and [3H]mannose into Pronase-released material (glycoproteins), whereas there was no effect on [3H]leucine incorporation into Pronase-released material (protein). Because the action of Streptovirudin and antibiotic 24010 in plants and other systems is similar to that for tunicamycin, these antibiotics are believed to be closely related. The use of tunicamycin is discussed with respect to its importance in studying glycoprotein biosynthesis and function in animal and plant systems.  相似文献   

19.
Incubation of synthetic dolichyl pyrophosphate tetrasaccharide and GDP-[14C]mannose with calf pancreas microsomes gave three lipid-linked oligosaccharides, which could be extracted with chloroform/methanol (2:1) and separated on silica gel plates. The fastest migrating product was characterized as dolichyl pyrophosphate pentasaccharide based on gel filtration and high pressure liquid chromatography. The formation of the pentasaccharide-lipid was greatly stimulated by addition of synthetic tetrasaccharide-lipid and required the presence of Triton X-100. Dolichyl phosphate mannose could not replace GDP-mannose as a sugar donor. The structure of the pentasaccharide was determined by degradation with endo-beta-N-acetylglucosaminidase D, acetolysis, alpha-D-mannosidase, and concanavalin A-Sepharose chromatography, showing that the following reaction was taking place: alpha-D-Manp-(1 leads to 3)-beta-D-Manp-(1 leads to 4)-beta-D-GlcpNAc-(1 leads to 4)-alpha-D-GlcpNAcPPDol + GDPMan leads to GDP + alpha-D-Manp-(1 leads to 3)-[alpha-D-Manp-(1 leads to 6)]-beta-D-Manp-(1 leads to 4)-beta-D-GlcpNAc-(1 leads to 4)-alpha-D-GlcpNAcPPDol. The mannosyltransferase was partially characterized.  相似文献   

20.
Amphomycin inhibits the incorporation of mannose from GDP-[14C]mannose and GlcNac from UDP-[3H]GlcNAc into lipid-linked saccharides by either a particulate or a solubilized enzyme fraction from pig aorta. The solubilized enzyme was much more sensitive to the antibiotic than was the particulate fraction with 50% inhibition being observed at 8–15 μg of amphomycin. Although the antibiotic inhibited mannose transfer from GDP-[14C]mannose into mannosyl-phosphoryl-dolichol, lipid-linked oligosaccharides and glycoprotein, the synthesis of mannosyl-phosphoryl-dolichol was much more sensitive to amphomycin. Amphomycin also inhibited the incorporation of mannose from GDP-[14C]mannose into mannosyl-phosphoryldecaprenol in particulate extracts of Mycobacterium smegmatis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号