首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Molecular motion of 1,6-diphenyl-1,3,5-hexatriene embedded in intact guinea pig alveolar macrophage membranes was investigated by using techniques of nanosecond timeresolved fluorescence anisotropy measurements in the temperature range of 0–50 °C, and as a function of benzyl alcohol concentration. It was shown that molecular arrangement and microheterogeneity of the hydrocarbon region surrounding 1,6-diphenyl-1,3,5-hexatriene molecules are dependent on the temperature and benzyl alcohol concentration. The lipid orientation order parameter, Sv, showed a discontinuity in the temperature range 12–40 °C, which may indicate a phase transition. N-Formylmethionylphenylalanine-stimulated production of O2? from macrophages increased with temperature parallel with changes in Sv. Benzyl alcohol decreases the magnitude of the lipid order parameter at all temperatures studied. In the same concentration range of benzyl alcohol, stimulated O2? production by macrophages was inhibited. These data show the complex relationship between lipid integrity in macrophage membranes and a physiological function of these cells. In addition, the results indicate that benzyl alcohol influences the integrity of both the protein and lipid hydrophobic regions of the membrane.  相似文献   

2.
Fasting newborn and growing young rats, though capable of synthesizing liver glycogen when fed, are, unlike adult fasted animals, insensitive to glucocorticoid stimulation of the rate of glucose and lactate incorporation into glycogen. Hormone resistance parallels a decreased liver capability for the synthase b to a conversion reaction up to 2 days after birth, after which the b to a transformation becomes adult type in nature. A comparison of the level of glucose 6-phosphate in liver to the effect of the activator on the synthase activity from newborn rat shows that the enzyme has a greater affinity toward the activator than comparable enzyme from the adult, suggesting the presence of an intermediate metabolite-regulated form of synthase in neonatal liver.  相似文献   

3.
NAD-specific pig heart isocitrate dehydrogenase is composed of three distinct types of subunits: α, β, and γ, which have molecular weights of about 40,000 but differ in amino acid composition and in isoelectric points. When the native enzyme is subjected to polyacrylamide gel electrophoresis under nondenaturing conditions, two major protein bands with Mr values of about 360,000 (band 1) and 100,000 (band 2) and two minor bands (bands 3 and 4) with Mr values of about 40,000 are consistently present. Enzymatic activity, as detected from NADH fluorescence, is distributed throughout the protein-staining region. Analytical isoelectric focusing in urea reveals that band 1 is composed of all three subunits in roughly the normal ratio of 2α:1β:1γ, and is probably an octamer, band 2 of an equal amount of α and β and is probably dimer, while bands 3 and 4 each consist of only the monomeric α subunit. The highest enzymatic specific activity is associated with a region intermediate between octamer and dimer, which includes the 160,000 tetramer. The protein pattern resulting from isoelectric focusing under nondenaturing conditions consists of protein bands comparable in pattern to those in the presence of urea along with bands of intermediate pI values, many of which are associated with enzymatic activity. Analysis of the subunit composition of these bands supports the activity of the α species in isolation and establishes the activity of the separated β component. No activity of the isolated γ subunit species has thus far been demonstrated. However, the highest apparent specific activity is observed when at least two types of subunits are present. These studies indicate that a range of oligomeric species of the enzyme are enzymatically active and that at least three of the four subunit chains comprising the minimum complete enzyme molecule (2α:1β:1γ) possess an active site.  相似文献   

4.
Rabbit skeletal muscle glycogen synthase was phosphorylated by kinase Fa, phosphorylase kinase, and cAMP-independent synthase (casein) kinase-1 to determine the differences among these kinase-catalyzed reactions. The stoichiometry of phosphate incorporation, the extent of inactivation, and the sites of phosphorylation were compared. Synthase (casein) kinase-1 catalyzes the highest level of synthase phosphorylation (4 mol/subunit) and inactivation (reduction of the activity ratio to below 0.05). The sites, defined by characteristic tryptic peptides, phosphorylated by synthase (casein) kinase-1 are distinguishable from those by kinase Fa and phosphorylase kinase. In addition, synthase (casein) kinase-1, unlike kinase Fa, does not activate ATP X Mg2+-dependent protein phosphatase. These results demonstrate that synthase (casein) kinase-1 is a distinct glycogen synthase kinase.  相似文献   

5.
J Goris  G Defreyn  W Merlevede 《Biochimie》1977,59(2):171-178
The glycogen pellet of dog liver extracts contains a phosphorylase phosphatase which has characteristics different from those of the phosphatases extracted from the cytosol. The phosphatase associated with glycogen is characterized by a M, of 51,000, a half maximal inhibition at 0.3 mM ATP (Hill coefficient : 2) and a Ki for Mg2+ of 1 mM. Treatment with urea or mercaptoethanol of the phosphatase associated with glycogen does not influence the activity, the Mr or the half maximal inhibition by ATP, but a decrease of the Hill coefficient for ATP is observed. A similar treatment of the phosphatases extracted from the high speed supernatant results in a decrease of the Mr of the spontaneously active form from 215,000 to 43,000, without an effect on the Ki for ATP (7 micronM), but accompanied by an increase in activity. The ATP-Mg dependent form of the phosphatase from the high speed supernatant (Mr : 138,000 ; Ka for ATP in the presence of 0.1 mM Mg2+ : 0.3 micronM), is denatured by urea or mercaptoethanol. The phosphatase associated with particulate glycogen cannot be found in the supernatant, nor the phosphorylase phosphatases present in the supernatant in the glycogen pellet. When all the glycogen is mobilized (starvation, glucagon) the phosphatase specifically associated with glycogen cannot be found as such in the cytosol. No activation of synthase beta can be detected neither with the phosphatases extracted from the cytosol nor with the enzyme released from the glycogen pellet.  相似文献   

6.
Rat liver glycogen synthase bound to the glycogen particle was partially purified by repeated high-speed centrifugation. This synthase preparation was labeled with 32P by incubations with cAMP-dependent protein kinase and cAMP-independent synthase (casein) kinase-1 in the presence of [γ-32P]ATP. The phosphorylated synthase was separated from other proteins in the glycogen pellet by immunoprecipitation with rabbit anti-rat liver glycogen synthase serum. Analysis of the immunoprecipitates by sodium dodecyl sulfate-gel electrophoresis showed that synthase subunits of Mr 85,000 and 80,000 were present in varying proportions. The 32P-labeled synthase in the immunoprecipitate was digested with trypsin, and the resulting peptides were analyzed by isoelectric focusing. Synthase bound to the glycogen particle was phosphorylated by cAMP-dependent protein kinase at more sites and by cAMP-independent synthase (casein) kinase-1 at less sites than when the homogeneous synthase was incubated with these kinases. Phosphorylation of synthase in the glycogen pellet by either cAMP-dependent protein kinase or cAMP-independent synthase (casein) kinase-1 did not cause a significant inactivation as has been observed when the homogeneous synthase was incubated with these kinases. Inactivation of synthase in the glycogen pellet, however, can be achieved by the combination of both kinases. This inactivation appears to result from the phosphorylation of a new site by cAMP-independent synthase (casein) kinase-1 neighboring a site previously phosphorylated by cAMP-dependent protein kinase.  相似文献   

7.
In glycogen particle suspensions prepared from fed rats given either glucagon or glucose in order to increase or decrease the phosphorylase a concentration, respectively, glucose stimulation of synthase phosphatase activity was observed. In preparations from glucagon-treated rats, addition of glucose stimulated synthase and phosphorylase phosphatase simultaneously and not sequentially. Synthase phosphatase stimulation was glucose concentration dependent even when phosphorylase a had been rapidly reduced to a low level. The estimated A0.5 for glucose stimulation of synthase phosphatase activity was 27 mM. An A0.5 for glucose stimulation of phosphorylase phosphatase activity could not be estimated since activity was still increasing with concentrations of glucose as high as 200 mM. In preparations from glucose-treated rats which contain virtually no phosphorylase a, glucose stimulation was still apparent but the A0.5 was increased modestly (36 mM). Stimulation of synthase phosphatase activity was specific for glucose. Several other monosaccharides and the polyhydric alcohol sorbitol were ineffective.  相似文献   

8.
A five-month-old Japanese boy was found to have marked glycogen accumulation only in the heart. A survey of enzymes revealed normal activities of phosphorylase, cyclic AMP-dependent protein kinase, acid maltase and amylo-1,6-glucosidase. However, the heart had capacity of activating neither rabbit muscle phosphorylase b nor endogenous phosphorylase b, which was converted to active form only when supplemented rabbit muscle phosphorylase kinase. In contrast to the heart, activities of phosphorylase kinase were found within normal levels in other organ tissues so far tested. These findings indicate that the present case of the cardiac glycogenosis is caused by deficiency of cardiac phosphorylase kinase.  相似文献   

9.
Rabbit antibody to rat liver glycogen synthase has been used to identify a product of Mr 77,000 - 80,000 from in vitro translation of rat liver mRNA. A comparison of various protease inhibitors on the relative molecular weight of rat liver glycogen synthase suggest that higher molecular weight enzyme forms could arise from incomplete hydrolysis of glycogen before enzyme isolation and enzyme subunit Mr determinations.  相似文献   

10.
Pyridoxine kinase purified from sheep liver was found to consist of a single polypeptide chain with a molecular weight of 60,000 as determined by gel filtration, sedimentation equilibrium ultracentrifugation, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isoelectric pH of the enzyme was 5.1, and the pH optimum was between 5.5 and 6.0. The enzyme required divalent cations for activity. At cation concentrations of 80 μm, the enzyme activity with each cation was in the order of Zn2+ > Mn2+ > Mg2+. At cation concentrations of 400 μm, the enzyme activity with each cation was in the order of Mn2+ > Zn2+ > Mg2+. Excess free divalent cation inhibited the enzyme. Pyridoxine kinase also required monovalent cations. The enzyme activation was greatest with K+, then Rb+ and NH4+, whereas the enzyme had very little activity with Na+, Li+, or Cs+. Na+ did not interfere with the activation by K+. The activation of the kinase by K+, NH4+, and Rb+ followed Michaelis-Menten kinetics, and the apparent Km values for the cations were 8.9, 3.7, and 5.3 mm, respectively. Increasing the potassium concentration lowered the apparent Km value of the enzyme for pyridoxine and had little or no effect on the Km for ZnATP2? or the V of the kinase-catalyzed reaction.  相似文献   

11.
Glycogen synthase from skeletal muscle was phosphorylated by a Ca2+, calmodulin-dependent protein kinase from brain, with concomitant inactivation. About 0.7 mol phosphate/mol subunit was sufficient for a maximal inactivation of glycogen synthase. Further phosphorylation of the enzyme had no effect on the activity. The concentrations required to give half-maximal phosphorylation and inactivation of glycogen synthase were 1.1 and 0.5 microM for Ca2+, and 22 and 11 nM for calmodulin, respectively. The molar ratio of the subunit of the protein kinase to calmodulin was 2-3:1 for half-maximal phosphorylation and inactivation of glycogen synthase. The Km values for glycogen synthase and ATP were 3.6 and 114 microM, respectively, for phosphorylation. Phosphate was incorporated into sites Ia, Ib, and 2 on glycogen synthase, and site 2 was the most rapidly phosphorylated. These results indicate that the brain Ca2+, calmodulin-dependent protein kinase is probably involved in glycogen metabolism in the brain as a glycogen synthase kinase.  相似文献   

12.
1-Phenoxy-2-propanone, 1-chloro-3-phenoxy-2-propanone, and 1-fluoro-3-phenoxy-2-propanone are competitive acetylcholinesterase inhibitors with KI values of 30, 0.85, and 2.2 μM, respectively, compared to 2 mM for 4-phenyl-2-butanone. The substituent effect on inhibition suggests that these compounds bind by formation of a tetrahedral adduct and are transition state analogs.Other evidence supports this conclusion: N-benzyl-2-chloroacetamide and 1-phenoxy-2-propanol are poor inhibitors (KI = 11 and >10 mM); 1-phenoxy-2-propanone and 1-chloro-3-phenoxy-2-propanone have KI values 330 and 140 times smaller than Km for corresponding substrates; and 1-chloro-3-phenoxy-2-propanone protects the enzyme against irreversible inhibition by CH3SO2F.  相似文献   

13.
Hepatocytes isolated from normal and cholestatic rats responded to adrenergic agonists and antagonists in a quite different manner. Much greater activation of glycogen phosphorylase was caused by phenylephrine, an alpha-agonist, than by isoproterenol, a beta-agonist, in normal rat hepatocytes, and vice versa in the cholestatic rat cells. Epinephrine activation of phosphorylase was antagonized more efficiently by phenoxybenzamine, an alpha-antagonist, than by propranolol, a beta-antagonist, in normal rats, whereas it was antagonized totally by propranolol but only partially by phenoxybenzamine in cholestatic rat hepatocytes. The number of alpha-adrenergic receptors, measured by [3H]prazosin binding to membranes, as well as alpha-receptor-mediated increases in 32Pi incorporation into phosphatidylinositol and in 45Ca efflux, were reduced in hepatocytes after induction of cholestasis. The reduction of these parameters of alpha-receptor-linked functions was associated with the reciprocal increase in the number of beta-receptors and enhancement of beta-receptor-mediated accumulation of cyclic AMP in cholestatic rat hepatocytes. The affinity of epinephrine for beta-receptors was higher in cholestatic rat cells than in normal rat cells; this difference in affinity was abolished by the addition of guanylylimidodiphosphate, indicating that induction of cholestasis rendered hepatic beta-receptors more tightly coupled to the GTP-binding protein. Thus, the cascade reactions arising from beta-receptors are predominant over those from alpha-receptors, eventually leading to glycogen breakdown in cholestatic rat hepatocytes, principally because of not only the elevated beta to alpha ratio of the membrane receptor density but also the tight coupling of beta-receptors to the adenylate cyclase system via the guanine nucleotide regulatory protein.  相似文献   

14.
Tubulin was shown to be an endogenous substrate of the calmodulin-dependent protein kinase (kinase II), which is involved in the activation of tryptophan 5-monooxygenase [T. Yamauchi and H. Fujisawa (1983) Eur. J. Biochem.132, 15–21]. Serine and threonine were identified as the phosphate acceptor amino acids of tubulin. The Vmax of the phosphorylation of tubulin and the apparent Km value for tubulin of calmodulin-dependent protein kinase II were 89 nmol phosphate transferred min?1 mg kinase II?1 and 1.7 μm, respectively. The maximum 32P incorporation into tubulin was 0.18 mol Pi/mol α-tubulin and 0.13 mol Pi/mol β-tubulin. The phosphorylation of tubulin was decreased by the denaturation of tubulin. The phosphorylation of tubulin by kinase II did not affect the assembly of microtubules.  相似文献   

15.
The dephosphorylation of phosphorylase kinase by four rabbit skeletal muscle protein phosphatases was studied. The four enzymes used were preparations of protein phosphatases C-I, C-II, H-I, and H-II. Phosphatases C-I, C-II, and H-II were obtained as homogeneous preparations using procedures previously developed. Phosphatase H-I was purified 644-fold from rabbit skeletal muscle for the purposes of this study, and was the major phosphorylase phosphatase activity in the tissue extract. Phosphatases C-I and H-I were relatively specific for removal of the beta subunit phosphate of phosphorylase kinase, this occurring at rates approximately 100 times more rapidly than the removal of the alpha subunit phosphate. In contrast, phosphatases C-II and H-II readily dephosphorylated both the alpha and beta subunits, although the alpha subunit phosphate release occurred at rates about twice that of the beta subunit phosphate. These studies show that skeletal muscle contains two phosphatases capable of acting on phosphorylase kinase, and that these have different specificities as represented by phosphatases H-I and C-I on the one hand, and phosphatases C-II and H-II on the other hand. These studies also provided unequivocal evidence that dephosphorylation of the beta subunit of phosphorylase kinase is solely involved in the inactivation of the cAMP-dependent protein kinase-activated enzyme. When autophosphorylated phosphorylase kinase was used as the substrate, the four phosphatases displayed similar general specificities as they did toward the cAMP-dependent protein kinase-activated enzyme. With none of the phosphatases examined was there any evidence that alpha subunit phosphorylation affected the rate of beta subunit dephosphorylation.  相似文献   

16.
Lysosomal glucocerebrosidase of human tissues is reversibly inactivated by extraction with sodium cholate and n-butanol. Enzyme activity can be restored in the glucocerebrosidase assay by the incorporation of small amounts of phosphatidylserine (1 μg/ assay) and a heat-stable factor obtained from the spleen of patients with Gaucher's disease. In the present report, we show that two heat-stable, low-molecular-weight, acidic, calcium-binding proteins, namely calmodulin and parvalbumin, are relatively potent activators of human liver glucocerebrosidase. A third structurally related, calcium-binding protein, troponin-C, does not stimulate glucocerebrosidase significantly. Removal of calcium from these proteins by treatment with 5 mm ethylene glycol bis(β-aminoethylether)-N,N′-tetraacetic acid greatly decreases the quantity of material needed to stimulate enzyme activity. Parvalbumin stimulation of glucocerebrosidase activity is dependent on the presence of phosphatidylserine whereas the ability of calmodulin to activate the enzyme is not dependent on the acidic phospholipid. In terms of the level of glucocerebrosidase activity they support and under optimal conditions, parvalbumin and calmodulin are about 50 and 30%, respectively, as effective as the heat-stable factor from Gaucher spleen. On the other hand, on a molar basis, it takes about 35 times more parvalbumin than calmodulin to achieve maximum stimulation of glucocerebrosidase activity.  相似文献   

17.
A method is described which separates the various phosphorylation sites in glycogen synthase based on reverse phase high-performance liquid chromatography (HPLC) of tryptic 32P-peptides. Using this method we studied the phosphorylation site specificities of the kinases which act on glycogen synthase. The cAMP-dependent protein kinase phosphorylated sites 1a, 1b, and 2, whereas casein kinase II phosphorylated only site 5. Two calcium, calmodulin-dependent kinases, phosphorylase kinase and liver calmodulin-dependent synthase kinase, both phosphorylated site 2, and the latter enzyme also phosphorylated site 1b. A cAMP-independent kinase (kinase 4) purified from liver also specifically phosphorylated site 2. Synthase kinase 3 catalyzed the phosphorylation of only site 3. This HPLC method was also used to establish that all of these sites were subject to phosphorylation in vivo.  相似文献   

18.
A mutationally altered, l-leucine-resistant form of α-isopropylmalate synthase, the first committed enzyme in leucine biosynthesis, has been purified to near homogeneity. Comparison of the feedback-resistant enzyme with its wild-type parent shows the following: Both enzymes are very similar with respect to substrate specificity and maximal activity, but the feedback-resistant enzyme has a greater affinity for one of the substrates, α-ketoisovalerate. The feedback-resistant enzyme is about three orders of magnitude less sensitive to l-leucine than wild-type enzyme. By contrast, it is slightly more sensitive to l-isoleucine, the only other naturally occurring amino acid known to inhibit α-isopropylmalate synthase. Results of chemical densensitization experiments suggest that the leucine, isoleucine, and active sites are distinct. The kinetic pattern of leucine inhibition at pH 7.0 shows that leucine is a noncompetitive inhibitor with respect to both substrates with wild-type enzyme, whereas the weak inhibition by leucine of the feedback-resistant enzyme is of a competitive type. Intersubunit cross-linking of the feedback-resistant enzyme followed by gel electrophoresis in sodium dodecyl sulfate reveals the presence of monomers, dimers, and tetramers with molecular weights of approximately 52,000, 110,000, and 200,000, respectively. Very similar results had been obtained with wild-type enzyme. Sedimentation equilibrium analyses indicate that both enzymes exist as associating-dissociating systems that can be adequately described by either a monomer-tetramer or a monomer-dimer-tetramer equilibrium. With the feedback-resistant enzyme, the equilibrium constant for the monomer-tetramer equilibrium. K4 = [A4][A]4, is 1 × 1019m?3, compared with 9 × 1016m?3 for wild-type enzyme. This suggests a stronger tendency of the subunits of the feedback-resistant enzyme to aggregate, a conclusion supported by gel filtration experiments. These results, together with previous observations that wild-type enzyme is dissociated by leucine whereas the feedback-resistant enzyme is not, suggest that efficient inhibition of α-isopropylmalate synthase by leucine may be coupled to a relatively loose arrangement of subunits within the oligomeric structure of the enzyme.  相似文献   

19.
Bovine heart phosphorylase kinase has been isolated by a procedure involving precipitation with polyethylene glycol, DEAE-Sephacel chromatography and calmodulin-Sepharose affinity chromatography. The isolated enzyme had a specific activity of 8.3 IU/mg of protein at pH 8.2 at 30 degrees C in the presence of 1% glycogen. The native enzyme had a sedimentation coefficient of 23 S and the Mr of the alpha', beta, gamma, and delta subunits, were 140,000, 130,000, 46,000, and 18,000, respectively. Activation of the phosphorylase kinase by the catalytic subunit of bovine heart cAMP-dependent protein kinase increases the pH 6.8/8.2 activity ratio from 0.01 to 0.32-0.38. Glycogen (1%) decreased the Km of the activated phosphorylase kinase at pH 6.8 for phosphorylase b from 5.5 to 1.25 mg/ml. Trypsin treatment increased the pH 6.8 activity but decreased the pH 8.2 activity. During this process the alpha' subunit was converted to a Mr 110,000 polypeptide and the enzyme activity was converted essentially to a 5.9 S species having an apparent Mr of 100,000 as determined by gel filtration. On extended trypsin treatment only one major polypeptide corresponding to the beta subunit remained. The same polypeptide was present in the active fractions following gel filtration of the trypsinized kinase.  相似文献   

20.
The liberation of free fluoride ion from fluoroacetate (FAc) proceeds as an enzyme-catalyzed dehalogenation reaction in the soluble fractions of several organs of the CFW Swiss mouse. Liver contained the highest FAc defluorinating activity. The enzyme activity in other organs decreased in the order kidney greater than lung greater than heart greater than testes. No activity was detected in the brain. Experiments were designed to characterize and identify the enzyme species responsible for FAc metabolism in liver. Enzyme activity was dependent on the concentration of glutathione (GSH) in the assay mixture, with maximal activity occurring above 5 mM. The dehalogenation of FAc had an apparent Km of 7.0 mM when measured in the presence of a saturating concentration of GSH. An increase in the pH of the assay mixture enhanced fluoride release in both phosphate and borate buffer. The defluorination activity was reduced to negligible levels when stored for 24 h at 4 degrees C. The addition of either GSH, dithiothreitol, or 2-mercaptoethanol increased stability, with the latter providing protection for greater than 150 h at a concentration of 15 mM. DEAE anion-exchange chromatography separated the defluorinating activity from 90% of the soluble GSH S-transferase activity measured with 1-chloro-2,4-dinitrobenzene. FAc defluorination activity did not bind to a GSH affinity column which selectively separates it from a group of anionic GSH S-transferases. The GSH-dependent enzyme which dehalogenates FAc has unique properties and can be separated from the liver GSH S-transferases previously described in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号