首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
2.
3.
4.
5.
6.
7.
Carbon storage regulator (CsrA) is a eubacterial RNA-binding protein that acts as a global regulator of many functionally diverse chromosomal genes. Here, we reveal that CsrA represses expression from an extrachromosomal element of Escherichia coli, the lysis gene (cel) of the ColE7 operon (cea-cei-cel). This operon and colicin expression are activated upon SOS response. Disruption of csrA caused ∼5-fold increase of the lysis protein. Gel mobility shift assays established that both the single-stranded loop of the T1 stem–loop distal to cei, and the putative CsrA binding site overlapping the Shine–Dalgarno sequence (SD) of the cel gene are important for CsrA binding. Substitution mutations at SD relieved CsrA-dependent repression of the cel gene in vivo. Steady-state levels and half-life of the cel mRNA were not affected by CsrA, implying that regulation is mediated at the translational level. Levels of CsrB and CsrC sRNAs, which bind to and antagonize CsrA, were drastically reduced upon induction of the SOS response, while the CsrA protein itself remained unaffected. Thus, CsrA is a trans-acting modulator that downregulates the expression of lysis protein, which may confer a survival advantage on colicinogenic E. coli under environment stress conditions.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
Production of a polysaccharide matrix is a hallmark of bacterial biofilms, but the composition of matrix polysaccharides and their functions are not widely understood. Previous studies of the regulation of Escherichia coli biofilm formation suggested the involvement of an unknown adhesin. We now establish that the pgaABCD (formerly ycdSRQP) locus affects biofilm development by promoting abiotic surface binding and intercellular adhesion. All of the pga genes are required for optimal biofilm formation under a variety of growth conditions. A pga-dependent cell-bound polysaccharide was isolated and determined by nuclear magnetic resonance analyses to consist of unbranched beta-1,6-N-acetyl-D-glucosamine, a polymer previously unknown from the gram-negative bacteria but involved in adhesion by staphylococci. The pga genes are predicted to encode envelope proteins involved in synthesis, translocation, and possibly surface docking of this polysaccharide. As predicted, if poly-beta-1,6-GlcNAc (PGA) mediates cohesion, metaperiodate caused biofilm dispersal and the release of intact cells, whereas treatment with protease or other lytic enzymes had no effect. The pgaABCD operon exhibits features of a horizontally transferred locus and is present in a variety of eubacteria. Therefore, we propose that PGA serves as an adhesin that stabilizes biofilms of E. coli and other bacteria.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号