首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Routine oxygen consumption ( M o 2) was 35% higher in 1 day starved and 21% higher in 4 day starved adult transgenic coho salmon Oncorhynchus kisutch relative to end of migration ocean-ranched coho salmon. Critical swimming speed ( U crit) and M o 2 at U crit ( M o 2max) were significantly lower in 4 day starved transgenic coho salmon (1·25 BL s−1; 8·79 mg O2 kg−1 min−1) compared to ocean-ranched coho salmon (1·60 BL s−1; 9·87 mg O2 kg−1 min−1). Transgenic fish swam energetically less efficiently than ocean-ranched fish, as indicated by a poorer swimming economy at U crit ( M o 2max     ). Although M o 2max was lower in transgenic coho salmon, the excess post-exercise oxygen consumption (EPOC) measured during the first 20 min of recovery was significantly larger in transgenic coho salmon (44·1 mg O2 kg−1) compared with ocean-ranched coho salmon (34·2 mg O2 kg−1), which had a faster rate of recovery.  相似文献   

2.
The effect of feeding level ( F L; 0·5 to 4% dry diet mass per wet fish body mass) and feeding frequency (once every 4 days to twice per day) on postprandial metabolic response was investigated in southern catfish Silurus meridionalis at 27·5° C. The results showed that there was no significant difference in the specific dynamic action (SDA) coefficient among the groups of different feeding levels ( P  > 0·05). The duration increased from 26·0 to 40·0 h and the peak metabolic rate increased from 207·8 to 378·8 mg O2 kg−1 h−1 when the feeding level was increased from 0·5 to 4%. The relationship between the peak metabolic rate ( R P, mg O2 kg−1 h−1) and F L could be described as: R P = 175·4 + 47·3 F L( r 2 = 0·943, n  = 40, P  < 0·001). The relationship between the SDA duration ( D , h) and F L could be described as D =30·97 F L0·248 ( r 2=0·729, n =40, P  < 0·001).  相似文献   

3.
The mean rate of oxygen consumption (routine respiration rate, R R, mg O2 fish−1 h−1), measured for individual or small groups of haddock Melanogrammus aeglefinus (3–12 cm standard length, L S) maintained for 5 days within flow‐through respiratory chambers at four different temperatures, increased with increasing dry mass ( M D). The relationship between R R and M D was allometric ( R R = α  M b ) with b values of 0·631, 0·606, 0·655 and 0·650 at 5·0, 8·0, 12·0 and 15·0° C, respectively. The effect of temperature ( T ) and M D on mean R R was described by     indicating a Q 10 of 2·27 between 5 and 15° C. Juvenile haddock routine metabolic scope, calculated as the ratio of the mean of highest and lowest deciles of R R measured in each chamber, significantly decreased with temperature such that the routine scope at 15° C was half that at 5° C. The cost of feeding ( R SDA) was c . 3% of consumed food energy, a value half that found for larger gadoid juveniles and adults.  相似文献   

4.
Impact of temperature on food intake and growth in juvenile burbot   总被引:4,自引:1,他引:3  
The effect of temperature on food consumption, food conversion and somatic growth was investigated with juvenile burbot Lota lota (age 0 years). Juvenile burbot showed a significant dome shaped relationship between relative daily food consumption ( C R) and temperature ( T ) with C R = − 0·00044 T 2 + 0·01583 T  − 0·06010; ( n  = 90, r 2 = 0·61). Maximum C R was at 17·9° C (95% CL 17·2–18·6° C). The temperature related instantaneous growth rate ( G ) also followed a dome shaped function with G  = − 0·000063 T 2 + 0·002010 T  − 0·007462; ( n  = 95, r 2 = 0·57), with maximum growth rate at 16·0° C (95% CL 15·3–16·6° C). A significant linear relationship was found between the water temperature and the conversion coefficient ( C C) with C C = − 1·63 T  + 59·04; ( n  = 80, r 2 = 0·74). The results indicate that juvenile burbot in large lakes benefit from higher water temperatures in the littoral zone, by increased food uptake and growth, especially during the warm summer months. Because profundal water temperatures do not reflect the optimal temperature for food consumption in large burbot, temperature is unlikely to be the main proximate factor for the obligate littoral‐profundal migration of juvenile burbot observed in many lake populations.  相似文献   

5.
Individual variation in the rate of oxygen consumption by zebrafish embryos   总被引:3,自引:0,他引:3  
A sensitive microsensor‐based method was used to measure oxygen consumption of individual zebrafish Danio rerio embryos at 6 h intervals from 24 to 75 h post‐fertilization. An increase in oxygen consumption rates from 4·54 to 8·29 nmol O2 h−1 was found during this period. At the individual level the differences in oxygen consumption rates caused the total oxygen consumption from 24 to 75 h post‐fertilization to vary between 0·261 and 0·462 μmol O2 per individual with a mean of 0·379 μmol O2 per individual. A separate carbon mass balance study corroborated the mean total oxygen consumption obtained by yielding a respiratory quotient of 0·80 for this period. These results suggest that there is significant intraspecific variation in the metabolic rate of developing zebrafish embryos, which may influence other early life‐history traits such as growth and starvation resistance.  相似文献   

6.
Rates of oxygen consumption for Atlantic salmon Salmo salar embryos approaching hatching were determined. Values were recorded using a 'closed system' experimental set‐up. A magnetic stirrer was used to ensure that zones of oxygen depletion did not develop in the micro‐environment surrounding the respiring eggs. Recorded values of oxygen consumption ranged from 0·0024 to 0·0038 mg O2 egg−1 h−1, with a mean consumption rate of 0·0032 mg O2 egg−1 h−1. The values of oxygen consumption were similar to those reported in other studies using a closed system experimental set‐up, however, they were lower than those reported in a study adopting a flow‐through system. The introduction of clay‐sized sediment to the incubation chamber created a thin film (<1 mm) of sediment on the egg surface, and resulted in reduced rates of oxygen consumption. The additional 0·3 g of clay sediment reduced oxygen consumption by an average of 41% and the addition of a further 0·2 g of clay sediment reduced consumption by an average of 98%. Two explanations for the recorded reduction in consumption were proposed: (i) the creation of a low permeability seal around the eggs restricted the availability of oxygen to the incubating embryos and (ii) the clay‐sized fine sediment physically blocked the micro‐pore canals in the egg membrane, thereby restricting oxygen uptake.  相似文献   

7.
Routine oxygen consumption rates of bonnethead sharks, Sphyrna tiburo , increased from 141·3±29·7 mg O2 kg−1 h−1 during autumn to 218·6±64·2 mg O2 kg−1 h−1 during spring, and 329·7±38·3 mg O2 kg−1 h−1 during summer. The rate of routine oxygen consumption increased over the entire seasonal temperature range (20–30° C) at a Q 10=2·34.  相似文献   

8.
Volatile organic compound (VOC) emissions from tobacco ( Nicotiana tabacum L. var. Bel W3) plants exposed to ozone (O3) were investigated using proton-transfer-reaction mass-spectrometry (PTR-MS) and gas chromatography mass-spectrometry (GC-MS) to find a quantitative reference for plants' responses to O3 stress. O3 exposures to illuminated plants induced post-exposure VOC emission bursts. The lag time for the onset of volatile C6 emissions produced within the octadecanoid pathway was found to be inversely proportional to O3 uptake, or more precisely, to the O3 flux density into the plants. In cases of short O3 pulses of identical duration the total amount of these emitted C6 VOC was related to the O3 flux density into the plants, and not to ozone concentrations or dose–response relationships such as AOT 40 values. Approximately one C6 product was emitted per five O3 molecules taken up by the plant. A threshold flux density of O3 inducing emissions of C6 products was found to be (1.6 ± 0.7) × 10−8 mol m−2 s−1.  相似文献   

9.
Aims:  The objective of this study is to develop kinetic models based on batch experiments describing the growth, CO2 consumption, and H2 production of Anabaena variabilis ATCC 29413-UTM as functions of irradiance and CO2 concentration.
Methods and Results:  A parametric experimental study is performed for irradiances from 1120 to 16100 lux and for initial CO2 mole fractions from 0·03 to 0·20 in argon at pH 7·0 ± 0·4 with nitrate in the medium. Kinetic models are successfully developed based on the Monod model and on a novel scaling analysis employing the CO2 consumption half-time as the time scale.
Conclusions:  Monod models predict the growth, CO2 consumption and O2 production within 30%. Moreover, the CO2 consumption half-time is an appropriate time scale for analysing all experimental data. In addition, the optimum initial CO2 mole fraction is 0·05 for maximum growth and CO2 consumption rates. Finally, the saturation irradiance is determined to be 5170 lux for CO2 consumption and growth whereas, the maximum H2 production rate occurs around 10 000 lux.
Significance and Impact of the Study:  The study presents kinetic models predicting the growth, CO2 consumption and H2 production of A. variabilis . The experimental and scaling analysis methods can be generalized to other micro-organisms.  相似文献   

10.
Endurance swimming of European eel   总被引:2,自引:0,他引:2  
A long‐term swim trial was performed with five female silver eels Anguilla anguilla of 0·8–1·0 kg ( c . 80 cm total length, L T) swimming at 0·5 body lengths (BL) s−1, corresponding to the mean swimming speed during spawning migration. The design of the Blazka‐type swim tunnel was significantly improved, and for the first time the flow pattern of a swim tunnel for fish was evaluated with the Laser‐Doppler method. The velocity profile over three different cross‐sections was determined. It was observed that 80% of the water velocity drop‐off occurred over a boundary layer of 20 mm. Therefore, swim velocity errors were negligible as the eels always swam outside this layer. The fish were able to swim continuously day and night during a period of 3 months in the swim tunnel through which fresh water at 19° C was passed. The oxygen consumption rates remained stable at 36·9 ± 2·9 mg O2 kg−1 h−1 over the 3 months swimming period for all tested eels. The mean cost of transportation was 28·2 mg O2 kg−1 km−1. From the total energy consumption the calculated decline in fat content was 30%. When extrapolating to 6000 km this would have been 60%, leaving only 40% of the total energy reserves for reproduction after arriving at the spawning site. Therefore low cost of transport combined with high fat content are crucial for the capacity of the eel to cross the Atlantic Ocean and reproduce.  相似文献   

11.
Oxygen consumption rates during embryonic and the first 38 days of larval development of the striped mullet were measured at 24° C by differential respirometry. Measurements were obtained at the blastula, gastrula and four embryonic stages, and at the yolk-sac, preflexion, flexion and post-flexion larval stages.
Oxygen uptake rates of eggs increased linearly from 0.024 μl O2 per egg h-1 (0·323 μl O2 mg-1 dry wt h-1) by blastulae to 0·177 μlO2 per egg h-1 (2·516 μlO2mg 1dry wth-1) by embryos prior to hatching. Respiration rates did not vary significantly among four salinities (20,25, 30, 35%0).
Larval oxygen consumption increased in a curvilinear manner from 0·243 μl O2 per larva h-1 shortly after hatching to 18·880 μl O2 per larva h-1 on day 38. Oxygen consumption varied in direct proportion to dry weight. Mass-specific oxygen consumption rates of preflexion, flexion, and postflexion larvae did not change with age (10·838 μl O2 mg 1dry wt h-1).
Larval oxygen consumption rates did not vary significantly among salinities 10–35%. Acute temperature increases elicited significant increases in oxygen consumption, these being relatively greater in yolk-sac larvae ( Q10 = 2·75) than in postflexion larvae ( Q10 = 1·40).  相似文献   

12.
Novel field measurements of critical swimming speed ( U crit) and oxygen uptake (  M o2) in three species of adult Pacific salmon Oncorhynchus spp. up to 3·5 kg in body mass were made using two newly designed, mobile Brett-type swim tunnel respirometers sited at a number of field locations in British Columbia, Canada. Measurements of U crit, which ranged from 1· 68 to 2·17 body lengths s−1, and maximum M o2, which ranged from 8·74 to 12·63 mg O2 kg−1 min−1 depending on the species and field location, were judged to be of similar quality when compared with available data for laboratory-based studies. Therefore high quality respirometry studies were possible in the field using adult wild swimming salmonids. In addition, the recovery of wild adult Pacific salmon from the exhaustive U crit swim test was sufficiently rapid that swimming performance could be repeated with <1 h of recovery time between the termination of the initial swim test and the start of the second test. Moreover, this repeat swimming performance was possible without routine M o2 being reestablished. This result suggests that wild adult salmon are capable of carrying a moderate excess post-exercise oxygen consumption without adversely affecting U crit, maximum M o2 or swimming economy. Such capabilities may be extremely important for timely migratory passages when salmonids face repetitive hydraulic challenges on their upstream migration.  相似文献   

13.
Aquatic and aerial respiration of the amphibious fishes Lipophrys pholis and Periophthalmus barbarus were examined using a newly designed flow-through respirometer system. The system allowed long-term measurements of oxygen consumption and carbon dioxide release during periods of aquatic and aerial respiration. The M o 2 of L. pholis , measured at 15° C, was 2·1 μmol O2 g–1 h–1 during aquatic and 1·99 μmol O2 g–1 h–1 during aerial exposure. The corresponding values of the M co2 were 1.67 and 1.59 μmol O2 g–1 h–1 respectively, giving an aquatic respiratory exchange ratio (RER) of 0·80 and an aerial RER of 0·79. The M o2 of P. barbarus , measured at 28°C, was 4·05 μmol O2 g–1 h–1 during aquatic and 3·44 μmol O2 g–1 h–1 during aerial exposure. The corresponding values of the Mco2 were 3·29 μmol CO2 g–1 h–1 and 2·63 μmol CO2 g–1 h–1 respectively, giving an aquatic RER of 0·81 and an aerial RER of 0·77. While exposed to air for at least 10 h, both species showed no decrease in metabolic rate or carbon dioxide release. The RER of these fishes equalled their respiratory quotient. After re-immersion an increased oxygen consumption, due to the payment of an oxygen debt, could not be detected.  相似文献   

14.
Routine oxygen consumption rates of young spotted seatrout Cynoscion nebulosus (Sciaenidae) were measured over a range of temperatures (24, 28, 30 and 32° C) and salinities (5, 10, 20, 35 and 45). Larvae and juveniles, 4·1–39·5 mm standard length ( L S), ranging several orders of magnitude in dry body mass were used to estimate the mass–metabolism relationship. Oxygen consumption (μl O2 larva−1 h−1) scaled isometrically with body mass for larvae <5·8 mm L S(phase I, slope = 1·04) and allometrically thereafter (phase II, slope = 0·78). The inflection in the mass–metabolism relationship coincided with the formation of the hypural plate and an increase in the relative tail size of larvae. Salinity did not have a significant effect on routine metabolism during phase I. Temperature and salinity significantly affected routine metabolism during phase II of the mass–metabolism relationship. The effect of salinity was temperature dependent, and was significant only at 30° C. Response surfaces describing the environmental influences on routine metabolism were developed to provide a bioenergetic basis for modelling environmental constraints on growth.  相似文献   

15.
Inter‐individual differences in rates of routine (non‐feeding) metabolism and growth were evaluated in young‐of‐the‐year (YOY) juvenile Atlantic cod Gadus morhua . Rates of O2 consumption, CO2 production and ammonia (TAN) excretion were measured in 64, 25–43 mm standard length ( L S) YOY growing at different rates (0·27–0·47 mm day−1) in a common rearing tank. Parameter rates ( y ) increased allometrically ( y = a·Mb ) with increasing body mass ( M ) with b ‐values for O2 production, CO2 consumption and TAN excretion equal to 0·81, 0·89 and 0·56, respectively. In some cases, residuals from these regressions were significantly negatively correlated to fish growth rate. In no cases did residuals of parameter rates increase with increasing growth rate. These data suggest that, during unfed periods, relatively fast‐growing fish were more metabolically efficient than slower‐growing fish from the same cohort. The fish condition factor, derived from     , also significantly decreased with increasing growth rate. Results indicated differences in both the rates of routine energy loss and the patterns of growth allocation among YOY Atlantic cod. Since these physiological attributes were positively correlated with growth rate, they may be indicative of 'survivors' in field populations.  相似文献   

16.
A comparative study of blood oxygen binding and carrying capacities of turbot Scophthalmus maximus and sea bass Dicentrarchus labrax , two fish species differing in their demand for oxygen, was carried out under three levels of chronic hypoxia ( P o 2 = 93, 65 and 40 mmHg) for 40 days. Blood O2 affinity in normoxia was moderately high in both species ( P 50 was c . 12–13 mmHg at pH 7·7). The Bohr factor was significantly lower in turbot (−0·52) than in sea bass (−0·85). In both species, blood O2 affinity was not significantly affected by oxygen depletion whatever its level and duration. In turbot, however, P 50 appeared to slightly decrease at the two more severe levels of hypoxia. In both species, blood O2 carrying capacity was not affected by hypoxia and remained twice as high in sea bass than in turbot.  相似文献   

17.
Atlantic salmon Salmo salar with amoebic gill disease (AGD) were exposed to a graded hypoxia (135–40 mmHg water P O2) and blood samples analysed for respiratory gases and pH at 119, 79·5 and 40 mmHg water P O2. There were no differences in the rate of oxygen uptake between infected and control fish. However, arterial P O2, and pH were significantly lower in the infected fish whereas P CO2 was significantly higher in infected fish compared with controls prior to hypoxia and at 119 mmHg water P O2. At 79·5 and 40 mmHg water P O2 saturation, there were no significant differences in blood P O2 or pH although blood P CO2 was elevated in AGD affected fish at 50% hypoxia (79·5 mmHg water P O2). The elevated levels of P CO2 in fish affected by AGD resulted in a persistent respiratory acidosis even during hypoxic challenge. These data suggest that even though the fish were severely affected by AGD, the presence of AGD while impairing gas transfer under normoxic conditions, did not contribute to respiratory failure during hypoxia.  相似文献   

18.
Rhinelepis strigosa did not surface for air breathing in normoxic or moderate hypoxic water. This species initiated air breathing when the P io2 in the water reached 22 ± 1 mmHg. Once begun, the air-breathing frequency increased with decreasing P io2. Aquatic oxygen consumption was 21·0 ± 1·9ml O2 kg−1h−1 in normoxic water, and was almost constant during progressive hypoxia until the P io2 reached 23·9 mmHg, considered the critical oxygen tension (Pco2). Gill ventilation increased until close to the P co2 (7·9-fold) as a consequence of a greater increase in ventilatory volume than in breathing frequency. Gill oxygen extraction was 42 ± 5% and decreased with hypoxia, but under severe hypoxia returned to values characteristic of normoxic. The critical threshold for air breathing was coincident with the Pco2 during aquatic respiration. This suggests that the air-breathing response is evoked by the aquatic oxygen tension at which the respiratory mechanisms fail to compensate for environmental hypoxia, and the gill O2 uptake becomes insufficient to meet O2 requirements.  相似文献   

19.
A significantly higher concentration of testicular spermatozoa was obtained from freshwater Oreochromis mossambicus (9·9×109 spermatozoa ml−1) than seawater O. mossambicus (4·6×109 spermatozoa ml−1). The mean osmolality of the urine of freshwater fish (78·5 mOsmol kg−1) was significantly different from that of seawater fish (304·8 mOsmol kg−1). The mean length of the mid-piece of the spermatozoa together with the tail was more variable in freshwater O. mossambicus (8·80±0·23μm) than in seawater specimens (8·27±0·18 μm). Stripped sperm of freshwater O. mossambicus was highly contaminated by urine which was a good activator of sperm motility in O. mossambicus held in both fresh and sea water. The osmolality for initiation of motility in freshwater O. mossambicus spermatozoa was from 0 to 333 mOsmol kg−1 while for seawater O. mossambicus spermatozoa it was from 0 to 1022 mOsmol kg−1. The optimum osmolality for motility was from 70 to 333 mOsmol kg−1 for freshwater O. mossambicus spermatozoa and from 333 to 645 mOsmol kg−1 for seawater fish. In freshwater O. mossambicus spermatozoa, the presence of 20 mM CaCl2 increased the permissive osmolality of NaCl from 184 to 645 mOsmol kg−1. For seawater O. mossambicus spermatozoa, solutions of NaCl devoid of CaCl2 were unable initiate motility, but the addition of 1·5 to 30 mM CaCl2 to the NaCl solution (0–934 mOsmol kg1) had a full motility initiating effect.  相似文献   

20.
Cells of the green alga Selenastrum minutum display a high capacity for extra-mitochondrial O2 consumption in the presence of effectors such as salicylhydroxamic acid and/or NADH. We provide evidence that this O2 consumption is mediated by extracellular peroxidase. Peroxidase capacity, measured as the potential for stimulation of O2 consumption by a combination of salicylhydroxamic acid and NADH, changed over a 10-day time course. Maximal stimulation of O2 consumption occurred at day three, at which point the capacity for peroxidase-mediated O2 consumption was three-to four-fold higher than that of the control O2 consumption rate. Peroxidase-mediated O2 consumption was sensitive to inhibition by 50 m M ascorbate and by cyanide. Cyanide titration curves indicated that O2 consumption by peroxidase was much more sensitive to inhibition by cyanide than was O2 consumption by cytochrome oxidase (I50 < 1.6 μ M and I50= 18.3 μ M cyanide, respectively). By using evidence from a combination of cyanide titration curves and ascorbate inhibition, we concluded that despite a large capacity for peroxidase-mediated O2 consumption, peroxidase did not measurably contribute to control rates of O2 consumption. In the absence of effectors, O2 consumption was mediated primarily by cytochrome oxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号