首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
We applied artificial neural networks (ANN) for the prediction of targets of immune responses that are useful for study of vaccine formulations against viral infections. Using a novel data representation, we developed a system termed MULTIPRED that can predict peptide binding to multiple related human leukocyte antigens (HLA). This implementation showed high accuracy in the prediction of the promiscuous peptides that bind to five HLA-A2 allelic variants. MULTIPRED is useful for the identification of peptides that bind multiple HLA-A2 variants as a group. By implementing ANN as a classification engine, we enabled both the prediction of peptides binding to multiple individual HLA-A2 molecules and the prediction of promiscuous binders using a single model. The ANN MULTIPRED predicts peptide binding to HLA-A*0205 with excellent accuracy (area under the receiver operating characteristic curve--AROC>0.90), and to HLA-A*0201, HLA-A*0204 and HLA-A*0206 with high accuracy (AROC>0.85). Antigenic regions with high density of binders ("antigenic hot-spots") represent best targets for vaccine design. MULTIPRED not only predicts individual 9-mer binders but also predicts antigenic hot spots. Two HLA-A2 hot-spots in Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) membrane protein were predicted by using MULTIPRED.  相似文献   

2.
BACKGROUND: A variety of methods for prediction of peptide binding to major histocompatibility complex (MHC) have been proposed. These methods are based on binding motifs, binding matrices, hidden Markov models (HMM), or artificial neural networks (ANN). There has been little prior work on the comparative analysis of these methods. MATERIALS AND METHODS: We performed a comparison of the performance of six methods applied to the prediction of two human MHC class I molecules, including binding matrices and motifs, ANNs, and HMMs. RESULTS: The selection of the optimal prediction method depends on the amount of available data (the number of peptides of known binding affinity to the MHC molecule of interest), the biases in the data set and the intended purpose of the prediction (screening of a single protein versus mass screening). When little or no peptide data are available, binding motifs are the most useful alternative to random guessing or use of a complete overlapping set of peptides for selection of candidate binders. As the number of known peptide binders increases, binding matrices and HMM become more useful predictors. ANN and HMM are the predictive methods of choice for MHC alleles with more than 100 known binding peptides. CONCLUSION: The ability of bioinformatic methods to reliably predict MHC binding peptides, and thereby potential T-cell epitopes, has major implications for clinical immunology, particularly in the area of vaccine design.  相似文献   

3.
We used an artificial neural network (ANN) computer model to study peptide binding to the human transporter associated with antigen processing (TAP). After validation, an ANN model of TAP-peptide binding was used to mine a database of HLA-binding peptides to elucidate patterns of TAP binding. The affinity of HLA-binding peptides for TAP was found to differ according to the HLA supertype concerned: HLA-B27, -A3 or -A24 binding peptides had high, whereas HLA-A2, -B7 or -B8 binding peptides had low affinity for TAP. These results support the idea that TAP and particular HLA molecules may have co-evolved for efficient peptide processing and presentation. The strong similarity between the sets of peptides bound by TAP or HLA-B27 suggests functional co-evolution whereas the lack of a relationship between the sets of peptides bound by TAP or HLA-A2 is against these particular molecules having co-evolved. In support of these conclusions, the affinities of HLA-A2 and HLA-B7 binding peptides for TAP show similar distributions to that of randomly generated peptides. On the basis of these results we propose that HLA alleles constitute two separate classes: those that are TAP-efficient for peptide loading (HLA-B27, -A3 and -A24) and those that are TAP-inefficient (HLA-A2, -B7 and -B8). Computer modelling can be used to complement laboratory experiments and thereby speed up knowledge discovery in biology. In particular, we provide evidence that large-scale experiments can be avoided by combining initial experimental data with limited laboratory experiments sufficient to develop and validate appropriate computer models. These models can then be used to perform large-scale simulated experiments the results of which can then be validated by further small-scale laboratory experiments.  相似文献   

4.
MHCPred 2.0     
The accurate computational prediction of T-cell epitopes can greatly reduce the experimental overhead implicit in candidate epitope identification within genomic sequences. In this article we present MHCPred 2.0, an enhanced version of our online, quantitative T-cell epitope prediction server. The previous version of MHCPred included mostly alleles from the human leukocyte antigen A (HLA-A) locus. In MHCPred 2.0, mouse models are added and computational constraints removed. Currently the server includes 11 human HLA class I, three human HLA class II, and three mouse class I models. Additionally, a binding model for the human transporter associated with antigen processing (TAP) is incorporated into the new MHCPred. A tool for the design of heteroclitic peptides is also included within the server. To refine the veracity of binding affinities prediction, a confidence percentage is also now calculated for each peptide predicted. AVAILABILITY: As previously, MHCPred 2.0 is freely available at the URL http://www.jenner.ac.uk/MHCPred/ CONTACT: Darren R. Flower (darren.flower@jenner.ac.uk).  相似文献   

5.
HLA-A2 is the most frequent HLA molecule in Caucasians with HLA-A*0201 representing the most frequent allele; it was also the first human HLA allele for which peptide binding prediction was developed. The Bioinformatics and Molecular Analysis Section of the National Institutes of Health (BIMAS) and the University of Tübingen (Syfpeithi) provide the most popular prediction algorithms of peptide/MHC interaction on the World Wide Web. To test these predictions, HLA-A*0201-binding nine-amino acid peptides were searched by both algorithms in 19 structural CMV proteins. According to Syfpeithi, the top 2% of predicted peptides should contain the naturally presented epitopes in 80% of predictions (www.syfpeithi.de). Because of the high number of predicted peptides, the analysis was limited to 10 randomly chosen proteins. The top 2% of peptides predicted by both algorithms were synthesized corresponding to 261 peptides in total. PBMC from 10 HLA-A*0201-positive and CMV-seropositive healthy blood donors were tested by ex vivo stimulation with all 261 peptides using crossover peptide pools. IFN-gamma production in T cells measured by CFC was used as readout. However, only one peptide was found to be stimulating in one single donor. As a result of this work, we report a potential new T cell target protein, one previously unknown CD8-T cell-stimulating peptide, and an extensive list of CMV-derived potentially strong HLA-A*0201-binding peptides that are not recognized by T cells of HLA-A*0201-positive CMV-seropositive donors. We conclude that MHC/peptide binding predictions are helpful for locating epitopes in known target proteins but not necessarily for screening epitopes in proteins not known to be T cell targets.  相似文献   

6.
HLA typing demands for peptide-based anti-cancer vaccine   总被引:1,自引:1,他引:0  
  相似文献   

7.
Identification of major histocompatibility complex (MHC)-associated peptides recognized by T-lymphocytes is a crucial prerequisite for the detection and manipulation of specific immune responses in cancer, viral infections, and autoimmune diseases. Unfortunately immunogenic peptides are less abundant species present in highly complex mixtures of MHC-extracted material. Most peptide identification strategies use microcapillary LC coupled to nano-ESI MS/MS in a challenging on-line approach. Alternatively MALDI PSD analysis has been applied for this purpose. We report here on the first off-line combination of nanoscale (nano) LC and MALDI TOF/TOF MS/MS for the identification of naturally processed MHC peptide ligands. These peptides were acid-eluted from human leukocyte antigen (HLA)-A2, HLA-A3, and HLA-B/-C complexes separately isolated from a renal cell carcinoma cell lysate using HLA allele-specific antibodies. After reversed-phase HPLC, peptides were further fractionated via nano-LC. This additional separation step provided a substantial increase in the number of detectable candidate species within the complex peptide pools. MALDI MS/MS analysis on nano-LC-separated material was then sufficiently sensitive to rapidly identify more than 30 novel HLA-presented peptide ligands. Peptide sequences contained perfect anchor amino acid residues described previously for HLA-A2, HLA-A3, and HLA-B7. The most promising candidate for a T-cell epitope is an HLA-B7-binding nonamer peptide derived from the tumor-associated gene NY-BR-16. To demonstrate the sensitivity of our approach we characterized peptides binding to HLA-C molecules that are usually expressed at the cell surface at approximately only 10% the levels of HLA-A or HLA-B. In fact, multiple renal cell carcinoma peptides were identified that contained anchor amino acid residues of HLA-Cw5 and HLA-Cw7. We conclude that the nano-LC MALDI MS/MS approach is a sensitive tool for the rapid and automated identification of MHC-associated tumor peptides.  相似文献   

8.
Bordner AJ  Abagyan R 《Proteins》2006,63(3):512-526
Since determining the crystallographic structure of all peptide-MHC complexes is infeasible, an accurate prediction of the conformation is a critical computational problem. These models can be useful for determining binding energetics, predicting the structures of specific ternary complexes with T-cell receptors, and designing new molecules interacting with these complexes. The main difficulties are (1) adequate sampling of the large number of conformational degrees of freedom for the flexible peptide, (2) predicting subtle changes in the MHC interface geometry upon binding, and (3) building models for numerous MHC allotypes without known structures. Whereas previous studies have approached the sampling problem by dividing the conformational variables into different sets and predicting them separately, we have refined the Biased-Probability Monte Carlo docking protocol in internal coordinates to optimize a physical energy function for all peptide variables simultaneously. We also imitated the induced fit by docking into a more permissive smooth grid representation of the MHC followed by refinement and reranking using an all-atom MHC model. Our method was tested by a comparison of the results of cross-docking 14 peptides into HLA-A*0201 and 9 peptides into H-2K(b) as well as docking peptides into homology models for five different HLA allotypes with a comprehensive set of experimental structures. The surprisingly accurate prediction (0.75 A backbone RMSD) for cross-docking of a highly flexible decapeptide, dissimilar to the original bound peptide, as well as docking predictions using homology models for two allotypes with low average backbone RMSDs of less than 1.0 A illustrate the method's effectiveness. Finally, energy terms calculated using the predicted structures were combined with supervised learning on a large data set to classify peptides as either HLA-A*0201 binders or nonbinders. In contrast with sequence-based prediction methods, this model was also able to predict the binding affinity for peptides to a different MHC allotype (H-2K(b)), not used for training, with comparable prediction accuracy.  相似文献   

9.
The ability to define and manipulate the interaction of peptides with MHC molecules has immense immunological utility, with applications in epitope identification, vaccine design, and immunomodulation. However, the methods currently available for prediction of peptide-MHC binding are far from ideal. We recently described the application of a bioinformatic prediction method based on quantitative structure-affinity relationship methods to peptide-MHC binding. In this study we demonstrate the predictivity and utility of this approach. We determined the binding affinities of a set of 90 nonamer peptides for the MHC class I allele HLA-A*0201 using an in-house, FACS-based, MHC stabilization assay, and from these data we derived an additive quantitative structure-affinity relationship model for peptide interaction with the HLA-A*0201 molecule. Using this model we then designed a series of high affinity HLA-A2-binding peptides. Experimental analysis revealed that all these peptides showed high binding affinities to the HLA-A*0201 molecule, significantly higher than the highest previously recorded. In addition, by the use of systematic substitution at principal anchor positions 2 and 9, we showed that high binding peptides are tolerant to a wide range of nonpreferred amino acids. Our results support a model in which the affinity of peptide binding to MHC is determined by the interactions of amino acids at multiple positions with the MHC molecule and may be enhanced by enthalpic cooperativity between these component interactions.  相似文献   

10.
The specificity of peptide binding by human leukocyte antigen (HLA) class I molecules was investigated in a cell-free direct-binding assay. Peptides were assessed for binding to HLA-A2 and HLA-B27 by measuring the formation of heterotrimeric HLA complexes that consisted of iodinated beta 2-microglobulin, HLA heavy chain fragments isolated from the Escherichia coli cytoplasm, and peptide. In this system, no detectable HLA heavy chain-beta 2-microglobulin complexes were formed unless appropriate peptides were intentionally added to the reconstitution solution. Analysis with monoclonal antibodies demonstrated that these heterotrimeric complexes were correctly folded. Five nonhomologous peptides, known to form complexes with HLA-A2 or HLA-B27 from T-cell functional studies, were tested for their capacity to bind to HLA-A2 and HLA-B27 using the reconstitution assay. Four of the peptides bound to the appropriate class I molecule only. One peptide and some (but not all) substitution analogs of it bound to both HLA-A2 and HLA-B27. The effect of peptide length on binding to HLA-B27 was studied, and it was found that the optimal length was 9 or 10 amino acid residues; however, one peptide that bound to HLA-B27 was 15 amino acids long. All peptides that bound to HLA-B27 in the direct-binding assay also competed with antigenic peptides for binding to HLA-B27 on the surface of intact cells, as determined by a standard cytotoxic T-lymphocyte functional assay. Thus, we conclude that HLA-A2 and HLA-B27 bind distinct but partially overlapping sets of peptides and that, at least in vitro, the assembly of HLA heavy chain-beta 2-microglobulin complexes requires specific peptides.  相似文献   

11.
12.
目的 预测与鉴定烟曲霉抗原Asp f16的HLA-A *0201限制性CD8+细胞毒性T细胞(CTL)抗原表位.方法 以国人常见的HLA-A*0201位点为靶点,依据生物信息学软件扫描烟曲霉特异性抗原Asp f16的全部427个氨基酸序列.使用HLA-A *0201转基因小鼠制备骨髓来源的树突状细胞(DC)和CTL.流式细胞仪技术检测DC表面MHC Ⅱ类抗原,CD80,CD86和CD11c的表达来验证其是否成熟.ELISPOT试验检测烟曲霉抗原多肽特异性CTL产生的细胞因子IFN-γ.四聚体(Tetramer)试验证实烟曲霉特异性CTL与抗原肽,HLA-A*0201分子复合体的亲和性.结果 根据与MHC I类分子结合的半衰期评分,选择了3个HLA-A*0201限制性抗原表位.流式细胞仪分析示成熟DC高表达HLA Ⅱ类抗原,CD80,CD86和CD11c.Tetramer试验证实烟曲霉特异性T细胞受体与抗原肽,HLA-A*0201分子复合体的高亲和性.ELISPOT实验结果 表明烟曲霉抗原肽体外可以活化CD8+CTL,被负载了抗原肽的DC刺激活化后可以产生IFN-γ.结论 本研究成功鉴定烟曲霉抗原Asp f16的HLA-A*0201限制性CD8+CTL表位,可作为疫苗设计的候选表位,为进一步研发新型抗烟曲霉疫苗提供参考.  相似文献   

13.
Peptide binding to class I major histocompatibility complex (MHCI) molecules is a key step in the immune response and the structural details of this interaction are of importance in the design of peptide vaccines. Algorithms based on primary sequence have had success in predicting potential antigenic peptides for MHCI, but such algorithms have limited accuracy and provide no structural information. Here, we present an algorithm, PePSSI (peptide-MHC prediction of structure through solvated interfaces), for the prediction of peptide structure when bound to the MHCI molecule, HLA-A2. The algorithm combines sampling of peptide backbone conformations and flexible movement of MHC side chains and is unique among other prediction algorithms in its incorporation of explicit water molecules at the peptide-MHC interface. In an initial test of the algorithm, PePSSI was used to predict the conformation of eight peptides bound to HLA-A2, for which X-ray data are available. Comparison of the predicted and X-ray conformations of these peptides gave RMSD values between 1.301 and 2.475 A. Binding conformations of 266 peptides with known binding affinities for HLA-A2 were then predicted using PePSSI. Structural analyses of these peptide-HLA-A2 conformations showed that peptide binding affinity is positively correlated with the number of peptide-MHC contacts and negatively correlated with the number of interfacial water molecules. These results are consistent with the relatively hydrophobic binding nature of the HLA-A2 peptide binding interface. In summary, PePSSI is capable of rapid and accurate prediction of peptide-MHC binding conformations, which may in turn allow estimation of MHCI-peptide binding affinity.  相似文献   

14.
Japanese encephalitis (JE), a viral disease has seen a drastic and fatal enlargement in the northern states of India in the current decade. The better and exact cure for the disease is still in waiting. For the cause an in silico strategy in the development of the peptide vaccine has been taken here for the study. A computational approach to find out the Major Histocompatibility Complex (MHC) binding peptide has been implemented. The prediction analysis identified MHC class I (using propred I) and MHC class II (using propred) binding peptides at an expectable percent predicted IC (50) threshold values. These predicted Human leukocyte antigen [HLA] allele binding peptides were further analyzed for potential conserved region using an Immune Epitope Database and Analysis Resource (IEDB). This analysis shows that HLA-DRB1*0101, HLA-DRB3*0101, HLA-DRB1*0401, HLA-DRB1*0102 and HLA-DRB1*07:01% of class II (in genotype 2) and HLA-A*0101, HLA-A*02, HLA-A*0301, HLA-A*2402, HLA-B*0702 and HLA-B*4402% of HLA I (in genotype 3) bound peptides are conserved. The predicted peptides MHC class I are ILDSNGDIIGLY, FVMDEAHFTDPA, KTRKILPQIIK, RLMSPNRVPNYNLF, APTRVVAAEMAEAL, YENVFHTLW and MHC class II molecule are TTGVYRIMARGILGT, NYNLFVMDEAHFTDP, AAAIFMTATPPGTTD, GDTTTGVYRIMARGI and FGEVGAVSL found to be top ranking with potential super antigenic property by binding to all HLA. Out of these the predicted peptide FVMDEAHFTDPA for allele HLA-A*02:01 in MHC class I and NYNLFVMDEAHFTDP for allele HLA-DRB3*01:01 in MHC class II was observed to be most potent and can be further proposed as a significant vaccine in the process. The reported results revealed that the immune-informatics techniques implemented in the development of small size peptide is useful in the development of vaccines against the Japanese encephalitis virus (JEV).  相似文献   

15.
 The MAGE gene family of tumour antigens are expressed in a wide variety of human cancers. We have identified 43 nonamer peptide sequences, from MAGE-1, -2 and -3 proteins that contain binding motifs for HLA-A3 MHC class I molecules. The T2 cell line, transfected with the cDNA for the HLA-A3 gene, was used in a MHC class I stabilisation assay performed at 37°C and 26°C. At 37°C, 2 peptides were identified that stabilised HLA-A3 with high affinity (fluorescence ratio, FR >1.5), 4 peptides with low affinity (FR 1.11 – 1.49) and 31 peptides that did not stabilise this HLA haplotype (FR <1.1). At 26°C, 12 peptides were identified that stabilised HLA-A3 with high affinity, 8 peptides with low affinity and 17 peptides that did not stabilise this HLA haplotype. Two peptides stabilised HLA-A3 at both temperatures. Small changes in one to three amino acids at positions distinct from the anchor residues altered peptide affinity. Data were compared to a similar study in which a peptide competition assay was used to investigate MAGE-1 peptide binding to several HLA haplotypes. This study demonstrates that anchor residues do not accurately predict peptide binding to specific HLA haplotypes, changes in one to three amino acids at positions distinct from anchor residues influence peptide binding and alternative methods of determining peptide binding yield different results. We are currently investigating the ability of these peptides to induce antitumour cytotoxic T lymphocyte activity as they may be of potential therapeutic value. Received: 4 January 1996 / Accepted: 20 March 1996  相似文献   

16.
MOTIVATION: Various computational methods have been proposed to tackle the problem of predicting the peptide binding ability for a specific MHC molecule. These methods are based on known binding peptide sequences. However, current available peptide databases do not have very abundant amounts of examples and are highly redundant. Existing studies show that MHC molecules can be classified into supertypes in terms of peptide-binding specificities. Therefore, we first give a method for reducing the redundancy in a given dataset based on information entropy, then present a novel approach for prediction by learning a predictive model from a dataset of binders for not only the molecule of interest but also for other MHC molecules. RESULTS: We experimented on the HLA-A family with the binding nonamers of A1 supertype (HLA-A*0101, A*2601, A*2902, A*3002), A2 supertype (A*0201, A*0202, A*0203, A*0206, A*6802), A3 supertype (A*0301, A*1101, A*3101, A*3301, A*6801) and A24 supertype (A*2301 and A*2402), whose data were collected from six publicly available peptide databases and two private sources. The results show that our approach significantly improves the prediction accuracy of peptides that bind a specific HLA molecule when we combine binding data of HLA molecules in the same supertype. Our approach can thus be used to help find new binders for MHC molecules.  相似文献   

17.
A variety of algorithms have been successful in predicting human leukocyte antigen (HLA)-peptide binding for HLA variants for which plentiful experimental binding data exist. Although predicting binding for only the most common HLA variants may provide sufficient population coverage for vaccine design, successful prediction for as many HLA variants as possible is necessary to understand the immune response in transplantation and immunotherapy. However, the high cost of obtaining peptide binding data limits the acquisition of binding data. Therefore, a prediction algorithm, which applies the binding information from well-studied HLA variants to HLA variants, for which no peptide data exist, is necessary. To this end, a modular concept of class I HLA-peptide binding prediction was developed. Accurate predictions were made for several alleles without using experimental peptide binding data specific to those alleles. We include a comparison of module-based prediction and supertype-based prediction. The modular concept increased the number of predictable alleles from 15 to 75 of HLA-A and 12 to 36 of HLA-B proteins. Under the modular concept, binding data of certain HLA alleles can make prediction possible for numerous additional alleles. We report here a ranking of HLA alleles, which have been identified to be the most informative. Modular peptide binding prediction is freely available to researchers on the web at http://www.peptidecheck.org .  相似文献   

18.
Measuring the interaction of class I human leukocyte antigens (HLA) and their peptide epitopes acts as a guide for the development of vaccines, diagnostics, and immune-based therapies. Here, we report the development of a sensitive biochemical assay that relies upon fluorescence polarization to indicate peptide interactions with recombinant soluble HLA proteins. It is a cell- and radioisotope-free assay that has the advantage of allowing the direct, real-time measurement of the ratio between free and bound peptide ligand in solution without separation steps. Peptide/HLA assay parameters were established using several HLA A*0201-specific fluorescein isothiocyanate-labeled peptides. Optimal loading of synthetic peptides into fully assembled soluble HLA-A*0201 complexes was enabled by thermal destabilization at 53 degrees C for 15 min, demonstrating that efficient peptide exchange does not require the removal of endogenous peptides from the reaction environment. An optimal ratio of three beta-2 microglobulin molecules per single HLA heavy chain was determined to maximize peptide binding. Kinetic binding studies indicate that soluble HLA-A*0201/peptide interactions are characterized by a range of moderate k(on) values (1 x 10(4) to 8.7 x 10(4) M(-1) s(-1)) and slow k(off) values (1.9 x 10(-4) to 4.3 x 10(-4) s(-1)), consistent with parameters for native HLA molecules. Testing of the A*0201-specific peptides with 48 additional class I molecules demonstrates that the unique peptide binding behavior of individual HLA molecules is maintained in the assay. This assay therefore represents a versatile tool for characterizing the binding of peptide epitopes during the development of class I HLA-based vaccines and immune therapies.  相似文献   

19.
The current challenge in synthetic vaccine design is the development of a methodology to identify and test short antigen peptides as potential T-cell epitopes. Recently, we described a HLA-peptide binding model (using structural properties) capable of predicting peptides binding to any HLA allele. Consequently, we have developed a web server named T-EPITOPE DESIGNER to facilitate HLA-peptide binding prediction. The prediction server is based on a model that defines peptide binding pockets using information gleaned from X-ray crystal structures of HLA-peptide complexes, followed by the estimation of peptide binding to binding pockets. Thus, the prediction server enables the calculation of peptide binding to HLA alleles. This model is superior to many existing methods because of its potential application to any given HLA allele whose sequence is clearly defined. The web server finds potential application in T cell epitope vaccine design. AVAILABILITY: http://www.bioinformation.net/ted/  相似文献   

20.
TAP is responsible for the transit of peptides from the cytosol to the lumen of the endoplasmic reticulum. In an immunological context, this event is followed by the binding of peptides to MHC molecules before export to the cell surface and recognition by T cells. Because TAP transport precedes MHC binding, TAP preferences may make a significant contribution to epitope selection. To assess the impact of this preselection, we have developed a scoring function for TAP affinity prediction using the additive method, have used it to analyze and extend the TAP binding motif, and have evaluated how well this model acts as a preselection step in predicting MHC binding peptides. To distinguish between MHC alleles that are exclusively dependent on TAP and those exhibiting only a partial dependence on TAP, two sets of MHC binding peptides were examined: HLA-A*0201 was selected as a representative of partially TAP-dependent HLA alleles, and HLA-A*0301 represented fully TAP-dependent HLA alleles. TAP preselection has a greater impact on TAP-dependent alleles than on TAP-independent alleles. The reduction in the number of nonbinders varied from 10% (TAP-independent) to 33% (TAP-dependent), suggesting that TAP preselection is an important component in the successful in silico prediction of T cell epitopes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号