首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A soluble phosphoinositide-specific phospholipase C (PLC) was purified 58,000-fold from bovine brain. The enzyme, one of six distinct PLC activities detected in brain, accounted for approximately 15% of the soluble phosphatidylinositol-4,5-bisphosphate-phospholipase C (PIP2-PLC) activity in this tissue. The purification scheme included hydrophobic chromatography on phenyl-Sepharose and affinity chromatography on phosphatidylinositol-Sepharose (PI-Sepharose). The enzyme was specifically eluted from the PI-Sepharose with PI, calcium, and detergent. The purified PLC had an estimated molecular weight of 88,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and behaved as a monomeric protein during sedimentation on glycerol gradients. The enzyme required calcium for activity, exhibited a pH optimum of 6.5, and cleaved only phosphoinositides. The rates of PIP2 and phosphatidyl-4-monophosphate hydrolysis exceeded the rate of PI hydrolysis under all conditions tested. These properties are consistent with a potential role for this PLC in the early events involved in cellular calcium mobilization.  相似文献   

2.
牛小脑肌醇磷脂激酶PI(4)K高产率纯化与特征   总被引:1,自引:0,他引:1  
对牛小脑膜区肌醇磷脂激酶进行了11 500倍纯化,过程包括:TritonX-100抽提,硫酸铵沉淀,阳离子交换层析(phosphocellulose),亲和层析(Heparin Sepharose CL-6B)和阴离子交换层析(DEAE10,FPLC)等.纯化程度可达95%以上,对SDS-PAGE电泳结果进行扫描分析测其分子质量为56 ku.纯化的肌醇磷脂激酶的特异活性为450 nmol/mg·min, 动力学性质表现为ATP的表观Km值为7.9×10-7 mol/L,PI的表观Km值为6.6×10-7 mol/L. 腺嘌呤核苷是该酶的有效抑制剂,3.5×10-7 mol/L腺嘌呤核苷可使该酶活力降低约50%,而TritonX-100对该酶活力具有刺激作用,0.5% TritonX-100可使该酶表现为最高活力.  相似文献   

3.
R C Gupta  E G Kranias 《Biochemistry》1989,28(14):5909-5916
A Ca2+-calmodulin-dependent protein kinase was purified to apparent homogeneity from the cytosolic fraction of canine myocardium, with phospholamban as substrate. Purification involved sequential chromatography on DEAE-cellulose, calmodulin-agarose, DEAE-Bio-Gel A, and phosphocellulose. This procedure resulted in a 987-fold purification with a 5.4% yield. The purified enzyme migrated as a single band on native polyacrylamide gels, and it exhibited an apparent molecular weight of 550,000 upon gel filtration. Gel electrophoresis under denaturing conditions revealed a single protein band with Mr 55,000. The purified kinase could be autophosphorylated in a Ca2+-calmodulin-dependent manner, and under optimal conditions, 6 mol of Pi was incorporated per mole of 55,000-dalton subunit. The activity of the enzyme was dependent on Ca2+, calmodulin, and ATP.Mg2+. Other ions which could partially substitute for Ca2+ in the presence of Mg2+ and saturating calmodulin concentrations were Sr2+ greater than Mn2+ greater than Zn2+ greater than Fe2+. The substrate specificity of the purified Ca2+-calmodulin-dependent protein kinase for cardiac proteins was determined by using phospholamban, troponin I, sarcoplasmic reticulum membranes, myofibrils, highly enriched sarcolemma, and mitochondria. The protein kinase could only phosphorylate phospholamban and troponin I either in their purified forms or in sarcoplasmic reticulum membranes and myofibrils, respectively. Exogenous proteins which could also be phosphorylated by the purified protein kinase were skeletal muscle glycogen synthase greater than gizzard myosin light chain greater than brain myelin basic protein greater than casein. However, phospholamban appeared to be phosphorylated with a higher rate as well as affinity than glycogen synthase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
A purification procedure for rat brain phosphatidylinositol synthetase (PI synthetase; CDP-1,2-diacyl-sn-glycerol:myo-inositol 3-phosphatidyltransferase; EC 2.7.8.11) is described. The enzyme was purified 200-250-fold from the homogenate by solubilization with Triton X-100 from microsomal membranes and affinity chromatography on CDP-diacylglycerol-Sepharose. Elution of enzyme activity required the presence of Triton X-100, CDP-diacylglycerol, and either phosphatidylcholine or asolectin. The product that was obtained in 5-10% yield from whole brain and in 70% yield from the microsomal fraction contained three protein bands as determined by sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The final preparation contained levels of CDP-diacylglycerol hydrolase and CDP-diacylglycerol: sn-glycero-3-phosphate 3-phosphatidyltransferase activities that were less than 1% of PI synthetase activity. The purified enzyme displayed a pH optimum of 8.5-9.0, required either Mg2+ or Mn2+ and exhibited a Km of 4.6 mM for myo-inositol.  相似文献   

5.
Hepatic triglyceride lipase (H-TGL) was purified to near homogeneity from heparin-containing rat liver perfusates with the following column chromatography steps: heparin-Sepharose affinity chromatography, anion-exchange chromatography on DEAE-Sephacel, and gel filtration on Ultrogel AcA 34. A final specific activity of 45,000 μmol fatty acid/mg/h was obtained with an overall 31% recovery of catalytic activity. The heparin-Sepharose step resulted in a 20-fold purification, while the DEAE and gel filtration steps led to further purification with complete recovery of activity. An extensive survey of various detergents as potential stabilizers of H-TGL activity led to the selection of Triton N-101 for use in the column buffers of the DEAE and gel filtration steps. Relative to initial H-TGL activity upon dilution in buffer without detergent, recoveries between 90 and 100% were consistently obtained with Triton N-101-containing buffers following a 24-h incubation at 20°C. In contrast after a 24-h incubation at 20°C those control samples lacking detergent were at least 95% inactivated. The highly purified H-TGL exhibited a single major band by sodium dodecyl sulfate-electrophoresis. The use of DEAE chromatography and stabilization of H-TGL with Triton N-101 are the improvements in purification that resulted in an 8-fold enhancement in specific activity relative to the highest previous report of purification from rat liver perfusates.  相似文献   

6.
The enzyme phosphatidylinositol kinase was partially purified from murine livers. The purification scheme involved solubilization of proteins with Triton X-100 and deoxycholate, followed by gel filtration chromatography in ACA 44, affinity chromatography with Blue Sepharose and hydroxylapatite. The purification achieved from membranes was 490 fold. We found that partially purified phosphatidylinositol kinase was unable to catalyze the formation of phosphatidylinositol-4,5-bisphosphate.  相似文献   

7.
Phosphatidylinositol (PI) kinase activity of platelet membranes was solubilized and partially purified by anion-exchange chromatography to measure the initial enzymatic rates. Kinetic studies were performed in the presence of Triton X-100 to obtain mixed micelles. The partially purified enzyme exhibited a Michaelian behaviour towards ATP, with a Km of 58 microM. The enzymatic rates were dependent upon Triton concentrations. Upon increasing its concentration, this detergent exhibited an activating effect followed by an inhibitory one. The optimal micellar Triton concentration was proportionnal to the PI concentration used in the assay. Conversely, the behaviour of the enzyme towards PI was dependent upon the Triton concentration. However, when PI concentration was expressed as its surfacic concentration within the micelles, the activity became independent of the detergent concentration, and a Km value of 0.09 mol/mol was estimated. Therefore, in vitro phosphorylation of phosphatidylinositol by PI kinase is rate-limited by an intramicellar reaction, and provides a study model for the in vivo reaction.  相似文献   

8.
D H Walker  N Dougherty  L J Pike 《Biochemistry》1988,27(17):6504-6511
A phosphatidylinositol kinase from A431 cells has been purified to near homogeneity. Purification was achieved through the use of a combination of chromatography steps including affinity elution of the enzyme from a heparin-agarose column with PI. Characterization of the [32P]PIP formed by the purified PI kinase indicates that the enzyme phosphorylates the inositol on the 4-position and is therefore a phosphatidylinositol 4-kinase. The enzyme has a subunit weight of 55,000 as estimated by SDS gel electrophoresis and appears to be active as a monomer. Studies of the hydrodynamic properties of the enzyme indicate that the PI kinase binds substantial amounts of Triton X-100 and is actually present in detergent-containing solutions as a complex with a molecular weight of approximately 120,000. The Km of the enzyme for PI is 16 microM and for ATP is 74 microM. The enzyme is inhibited by adenosine with an IC50 of 100 microM. These properties are essentially identical with those of the membrane-bound PI kinase in A431 cells which is stimulated by EGF. The data therefore suggest that the EGF-stimulated PI kinase is a 55,000-Da monomer.  相似文献   

9.
Nitric oxide (NO) synthase (EC 1.14.23) has been purified to apparent homogeneity from rat macrophages. The purification procedure involves affinity chromatography with adenosine 2',5'-diphosphate-agarose and gel filtration chromatography on a Superose 12 HR 10/30 column. The apparent molecular weight is 300,000 by gel filtration. On polyacrylamide gel electrophoresis in sodium dodecyl sulfate, the enzyme migrates as a single protein band with Mr = 150,000. The purified enzyme is colorless, and an absorption maximum is observed at 280 nm. The half-life of the enzyme activity is 6 h at pH 7.4 and 4 degrees C. The enzyme activity required the presence of NADPH, (6R)-5,6,7,8-tetrahydro-L-biopterin, and dithiothreitol. Although the cerebellar and endothelial enzyme require Ca2+ and calmodulin, these are not required by the macrophage enzyme. The macrophage nitric oxide synthase (an inducible enzyme) seems to be different from the cerebellar and endothelial enzyme (a constitutive enzyme).  相似文献   

10.
Investigation into the phosphatidylinositol kinase activities in bovine brain has revealed the presence of a type I PtdIns kinase activity. This classification is based upon potent inhibition by neutral detergent and the production of a phosphatidylinositol phosphate that can be distinguished from phosphatidyl-inositol-4-phosphate [PtdIns(4)P] by thin-layer chromatography. The enzyme has been substantially purified and the activity is associated with an 85-kDa polypeptide on SDS/polyacrylamide gel electrophoresis. Analysis of the product confirms the identification of the enzyme as a type I PtdIns kinase. The purified kinase has been characterized with respect to substrate dependence (Mg2+, ATP, PtdIns), substrate presentation (pure lipid versus mixed micelle) and specificity [PtdIns versus PtdIns(4)P and phosphatidylinositol 4,5-bisphosphate].  相似文献   

11.
The membrane-bound form of phosphatidylinositol-4-phosphate (PtdInsP) kinase was purified 4,300-fold from human red blood cells to a specific activity of 117 nmol min-1 mg-1. Although this enzyme copurified with red blood cell membranes, it was solubilized by high salt extraction in the absence of detergent indicating that it is a peripheral membrane protein. The major protein seen in the most purified preparation migrated at 53,000 daltons on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The major PtdInsP kinase activity in this preparation was also coincident with this 53,000-dalton band upon renaturation of activity from SDS-PAGE. To test further whether the 53,000-dalton protein contained PtdInsP kinase activity, antibodies were prepared against the gel-purified 53,000-dalton protein. This antiserum was able to precipitate both the 53,000-dalton peptide and PtdInsP kinase activity from red blood cell membranes. The apparent size of the native enzyme in the most purified preparation was determined to be 150,000 +/- 25,000 daltons by gel filtration. This PtdInsP kinase activity was at least 100-fold more active in phosphorylating PtdInsP than phosphatidylinositol and was easily separated from the red cell membrane phosphatidylinositol kinase by salt extraction. Analysis of the reaction product, phosphatidylinositol 4,5-bisphosphate, indicates that the enzyme phosphorylates phosphatidylinositol 4-phosphate specifically at the 5'-hydroxyl of the inositol ring. The apparent Km for ATP was 2 microM, and the concentrations of Mg2+ and Mn2+ giving half-maximal activity were 2 and 0.2 mM, respectively. Mg2+ supported 3-fold higher activity than Mn2+ at optimal concentrations. The enzymatic activity was inhibited by its product, phosphatidylinositol 4,5-bisphosphate and enhanced by phosphatidylserine.  相似文献   

12.
Purification of (Ca2+-Mg2+)-ATPase from rat liver plasma membranes   总被引:1,自引:0,他引:1  
The Ca2+-stimulated, Mg2+-dependent ATPase from rat liver plasma membranes was solubilized using the detergent polyoxyethylene 9 lauryl ether and purified by column chromatography using Polybuffer Exchanger 94, concanavalin A-Sepharose 4B, and Sephadex G-200. The molecular weight of the enzyme, estimated by gel filtration in the presence of the detergent on a Sephadex G-200 column, was 200,000 +/- 15,000. The enzyme was purified at least 300-fold from rat liver plasma membranes and had a specific activity of 19.7 mumol/mg/min. Polyacrylamide gel electrophoresis under nondenaturing conditions of the purified enzyme indicated that the enzymatic activity correlated with the major protein band. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis, one major band in the molecular weight range of 70,000 +/- 5,000 was seen. The isoelectric point of the purified enzyme was 6.9 +/- 0.2 as determined by analytical isoelectric focusing. The enzyme was activated by Ca2+ with an apparent half-saturation constant of 87 +/- 2 nM for Ca2+. Calmodulin and trifluoperazine at the concentration of 1 microgram/ml and 100 microM, respectively, had no effect on the enzymatic activity.  相似文献   

13.
Triton X-100 extracts of purified rat brain synaptosomes exhibited marked phosphorylation of an endogenous Mr 87,000 polypeptide following chromatography on DEAE-cellulose. The protein kinase catalyzing this reaction was insensitive to cyclic AMP, Ca2+, calmodulin, and phorbol esters. However, phosphatidylinositol 4-phosphate (PIP) proved to be a potent inhibitor of the Mr 87,000 polypeptide phosphorylation at submicromolar concentrations, whereas phosphatidylinositol, phosphatidylserine, and phosphatidylglycerol were less potent inhibitors. Unsaturated fatty acids could also mimic the effects of PIP at levels above 4 micrograms/ml. The inhibitory effect of PIP largely reflected a profound increase in the apparent Km for Mg2+ such that increasing Mg2+ levels could partially offset the action of PIP. The PIP-sensitive protein kinase was enriched in hypotonic lysates of synaptosomes from which it was partially purified by DEAE-cellulose, hydroxylapatite, and gel permeation chromatography. This purification separated the enzyme from its Mr 87,000 substrate; however, the presence of this polypeptide in heat-inactivated alkali extracts of rat brain provided an exogenous source of substrate which could be used to assay enzyme activity. The relevance of these data to a possible role for PIP and Mg2+ in cellular signaling is discussed.  相似文献   

14.
A membrane-bound phosphatidylinositol 4-kinase (PtdIns kinase) has been purified to apparent homogeneity from human erythrocytes. Enzyme activity was solubilized from urea-KCl-stripped, inside-out membrane vesicles by 3% Triton X-100. Purification to apparent homogeneity was accomplished by cation-exchange chromatography on phosphocellulose, followed by heparin-acrylamide chromatography. This resulted in a nearly 3900-fold purification of PtdIns kinase activity to a specific activity of 44 nmol min-1 mg-1. The purified enzyme has an Mr of 59,000 on silver-stained SDS-PAGE; however, many preparations also contain 54 kDa and 50 kDa proteins which are related to the 59 kDa protein and have PtdIns kinase activity. Kinetic analysis of the PtdIns kinase indicate apparent Km values of 40 and 35 microM for phosphatidylinositol and ATP, respectively. The purified enzyme has been reconstituted into phospholipid liposomes and shown to phosphorylate phosphatidylinositol.  相似文献   

15.
Cytosolic thymidine kinase (EC 2.7.1.21) has been purified 5200-fold to apparent homogeneity from normal human placenta. The purification includes sequential affinity chromatography on blue-Sepharose and a thymidine column. The molecular weight of the enzyme determined by gel filtration and sucrose density ultracentrifugation is 92,000. The subunit molecular weight is 44,000, suggesting that the enzyme is a dimer in its native state. With isoelectric focusing, placental thymidine kinase demonstrated a single form with an isoelectric point of 9.1. The final purified enzyme preparation exhibits no immunological cross-reactivity with human mitochondrial thymidine kinase.  相似文献   

16.
A membrane-bound phosphatidylinositol (PI) kinase was purified from rat brain. The enzyme was solubilized with Triton X-100 from salt-washed membrane and purified 11,183-fold, with a final specific activity of 150 nmol/min/mg of protein. Purification steps included several chromatography using Q-Sepharose Fast Flow, cellulose phosphate, Toyopearl HW 55 and Affi-Gel Blue. The purified PI kinase had an estimated molecular weight of 80,000 by gel filtration and 76,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified kinase phosphorylated only PI and did not phosphorylate phosphatidylinositol 4-phosphate or diacylglycerol. Km values for PI and ATP were found to be 115 and 150 microM, respectively. The enzyme required Mg2+ (5-20 mM) or Mn2+ (1-2 mM) for activity, was stimulated by 0.1-1.0% (w/v) Triton X-100, and completely inhibited by 0.05% sodium dodecyl sulfate. The enzyme activity showed a broad pH optimum at around 7.4. The enzyme utilized ATP and not GTP as phosphate donor. Nucleoside triphosphates other than ATP and diphosphates significantly inhibited the kinase activity. However, inhibitory effects of adenosine, cAMP, and quercetin were weak.  相似文献   

17.
7 alpha-Hydroxy-4-cholesten-3-one 12 alpha-monooxygenase was purified from liver microsomes of phenobarbital-treated rabbits. The purification was carried out by solubilization of microsomes by cholate, fractionation with polyethylene glycol, affinity chromatography on cholate-Sepharose 4B column, hydroxylapatite column chromatography, chromatography on DEAE-Sepharose CL-6B column, and a second hydroxylapatite column chromatography. The purified preparation gave a single major band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and contained 9.0 nmol of cytochrome P-450/mg of protein, which corresponded to 5.3-fold purification from microsomes on the basis of specific heme content. The specific activity of the enzyme expressed as enzyme activity per mg of enzyme protein was increased 315-fold from microsomes. The molecular weight of the enzyme was estimated to be 56,000 from calibrated polyacrylamide gel electrophoresis. The enzyme-pH curve gave a peak at pH 7.0. The Michaelis constant for 7 alpha-hydroxy-4-cholesten-3-one was 27 microM. Absorption spectra of the oxidized form of the enzyme showed a Soret band at 418 nm. 7 alpha-Hydroxy-4-cholesten-3-one 12 alpha-monooxygenase activity was reconstituted from the purified cytochrome P-450, NADPH-cytochrome P-450 reductase, dilauroylglyceryl-3-phosphorylcholine, and NADPH. The purified enzyme was free from steroid 25-hydroxylase activity and that of 26- or 27-hydroxylase but revealed some activity for benzphetamine N-demethylation. The enzyme activity was not inhibited by metapyrone, aminoglutethimide, and KCN, but was seriously inhibited by nonionic detergents such as Emulgen 913. The enzyme was labile under low buffer concentrations but was stabilized at least for 4 weeks under higher buffer concentration such as 300 mM phosphate buffer.  相似文献   

18.
When membrane-bound human liver alkaline phosphatase was treated with a phosphatidylinositol (PI) phospholipase C obtained from Bacillus cereus, or with the proteases ficin and bromelain, the enzyme released was dimeric. Butanol extraction of the plasma membranes at pH 7.6 yielded a water-soluble, aggregated form that PI phospholipase C could also convert to dimers. When the membrane-bound enzyme was solubilized with a non-ionic detergent (Nonidet P-40), it had the Mr of a tetramer; this, too, was convertible to dimers with PI phospholipase C or a protease. Butanol extraction of whole liver tissue at pH 6.6 and subsequent purification yielded a dimeric enzyme on electrophoresis under nondenaturing conditions, whereas butanol extraction at pH values of 7.6 or above and subsequent purification by immunoaffinity chromatography yielded an enzyme with a native Mr twice that of the dimeric form. This high molecular weight form showed a single Coomassie-stained band (Mr = 83,000) on electrophoresis under denaturing conditions in sodium dodecyl sulfate, as did its PI phospholipase C cleaved product; this Mr was the same as that obtained with the enzyme purified from whole liver using butanol extraction at pH 6.6. These results are highly suggestive of the presence of a butanol-activated endogenous enzyme activity (possibly a phospholipase) that is optimally active at an acidic pH. Inhibition of this activity by maintaining an alkaline pH during extraction and purification results in a tetrameric enzyme. Alkaline phosphatase, whether released by phosphatidylinositol (PI) phospholipase C or protease treatment of intact plasma membranes, or purified in a dimeric form, would not adsorb to a hydrophobic medium. PI phospholipase C treatment of alkaline phosphatase solubilized from plasma membranes by either detergent or butanol at pH 7.6 yielded a dimeric enzyme that did not absorb to the hydrophobic medium, whereas the untreated preparations did. This adsorbed activity was readily released by detergent. Likewise, alkaline phosphatase solubilized from plasma membranes by butanol extraction at pH 7.6 would incorporate into phosphatidylcholine liposomes, whereas the enzyme released from the membranes by PI phospholipase C would not incorporate. The dimeric enzyme purified from a butanol extract of whole liver tissue carried out at pH 6.6 did not incorporate. We conclude that PI phospholipase C converts a hydrophobic tetramer of alkaline phosphatase into hydrophilic dimers through removal of the 1,2-diacylglycerol moiety of phosphatidylinositol. Based on these and others' findings, we devised a model of alkaline phosphatase's conversion into its various forms.  相似文献   

19.
Phosphatidylinositol kinase was solubilized and purified from porcine liver microsomes to apparent homogeneity. The purification procedure includes: solubilization of microsomes by 2% Triton X-100, ammonium sulfate precipitation (20-35% saturation), Reactive blue agarose chromatography, DEAE-Sephacel chromatography and two consecutive hydroxyapatite chromatographies. A total of 4900-fold purification with 8% recovery of enzyme activity was achieved. The molecular weight of the enzyme as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 55000. The enzyme is stimulated in a decreasing order by Mg2+, Fe2+, Mn2+, Fe3+ and Co2+. Ca2+ inhibited Mg2+-stimulated activity with an I50 of 0.4 mM. Apparent Km values for phosphatidylinositol and ATP are 120 and 60 microM, respectively. The enzyme is inhibited by adenosine (I50 = 70 microM), ADP (I50 = 120 microM) and quercetin (I50 = 100 microM). The enzyme is also sensitive to sulfhydryl inhibitors. Using the purified enzyme as an immunogen, we have successfully prepared antibodies for phosphatidylinositol kinase in rabbits. The antibodies appear to recognize an antigen of Mr 55000 on SDS-polyacrylamide gel electrophoresis from various porcine tissues in Western blot analysis.  相似文献   

20.
1. A variety of detergents were used to solubilize 5'-nucleotidase from rat liver plasma membranes. 2. The zwitterionic detergent Sulphobetaine 14 gave optimal solubilization by the criteria of release into a high-speed-centrifugation supernatant and the formation of the smallest and least polydisperse active enzyme observed on polyacrylamide-gel electrophoresis. 3. The Sulphobetaine 14-solubilized enzyme from rat liver was purified by using the conventional techniques of ion-exchange chromatography and gel filtration, or by an immunoaffinity step with a monoclonal antibody immunoadsorbent. 4. 5'-Nucleotidase was purified at least 12 000-fold relative to liver homogenate by the immunoaffinity purification scheme and had a specific activity in the range 285-340 mumol/min per mg of protein. The yield was in the range 9-16%. 5. The purified enzyme shows a major polypeptide band of apparent Mr 70 000 on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and a minor band of apparent Mr 38 000. 6. A rational approach to the general problem of the purification of minor intrinsic membrane proteins is discussed, with the use of polyacrylamide-gel electrophoresis to determine the most appropriate detergent and monoclonal antibodies in subsequent immunoaffinity purification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号