首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
The effect of glucocorticoids on polyamine metabolism has been elucidated further by measuring putrescine, spermidine, and spermine levels as well as ornithine decarboxylase, S-adenosylmethionine decarboxylase, and N1-acetylspermidine transferase activities in the hippocampus, cerebellar cortex, vermis, and deep nuclei of adrenalectomized rats. At 6 h after corticosterone or dexamethasone administration, the specific activities of ornithine decarboxylase and N1-acetylspermidine transferase showed the greatest increases in all brain tissues examined, and at 12 h, S-adenosylmethionine decarboxylase activity was not increased significantly. The hippocampus and cerebellar regions displayed different responses to corticosterone and dexamethasone, corresponding to the distribution of glucocorticoid and mineralocorticoid receptors. Corticosterone and dexamethasone increased ornithine decarboxylase and N1-acetylspermidine transferase activities in a dose-dependent manner, with dexamethasone being more active than corticosterone in all tissues. However, estradiol, progesterone, testosterone, and aldosterone were only active at doses greater than 5 mg/kg. The great increases in ornithine decarboxylase and N1-acetylspermidine transferase activities were accompanied by a marked increase in putrescine level and a small decrease in spermidine level. Our data confirm that the hippocampus and cerebellum are glucocorticoid target tissues and suggest that the increase in the content of putrescine, following acute treatment with glucocorticoids, is dependent on ornithine decarboxylase as well as N1-acetylspermidine transferase induction.  相似文献   

2.
Treatment of tobacco liquid suspension cultures with methylglyoxal bis(guanylhydrazone) (MGBG) an inhibitor of S-adenosylmethionine decarboxylase, resulted in a dramatic overproduction of a 35-kDa peptide on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Malmberg, R.L., and McIndoo, J. (1983) Nature 305, 623-625). MGBG treatment also resulted in a 20-fold increase in the activity of S-adenosylmethionine decarboxylase. Purification of S-adenosylmethionine decarboxylase from MGBG-treated cultures revealed that the overproduced 35-kDa peptide and S-adenosylmethionine decarboxylase are identical. Precursor incorporation experiments using [3H] methionine and [35S]methionine revealed that MGBG does not induce any increased synthesis of S-adenosylmethionine decarboxylase but rather stabilizes the protein to proteolytic degradation. The half-life of the enzyme activity was increased when MGBG was present in the growth medium. In addition to stabilizing S-adenosylmethionine decarboxylase, MGBG also resulted in the rapid and specific loss of arginine decarboxylase activity with little effect ornithine decarboxylase. The kinetics of this effect suggest that arginine decarboxylase synthesis was rapidly inhibited by MGBG. Exogenously added polyamines had little effect on ornithine decarboxylase, whereas S-adenosylmethionine and arginine decarboxylase activities rapidly diminished with added spermidine or spermine. Finally, inhibition of ornithine decarboxylase was lethal to the cultures, whereas inhibition of arginine decarboxylase was only lethal during initiation of growth in suspension culture.  相似文献   

3.
E. Cohen  H. Kende 《Planta》1986,169(4):498-504
Submergence and treatment with ethylene or gibberellic acid (GA3) stimulates rapid growth in internodes of deepwater rice (Oryza sativa L. cv. Habiganj Aman II). This growth is based on greatly enhanced rate of cell-division activity in the intercalary meristem (IM) and on increased cell elongation. We chose polyamine biosynthesis as a biochemical marker for cell-division activity in the IM of rice stems. Upon submergence of the plant, the activity of S-adenosylmethionine decarboxylase (SAMDC; EC 4.1.1.50) in the IM increased six- to tenfold within 8 h; thereafter, SAMDC activity declined. Arginine decarboxylase (ADC; EC 4.1.1.19) showed a similar but less pronounced increase in activity. The activity of ornithine decarboxylase (ODC; EC 4.1.1.17) in the IM was not affected by submergence. The levels of putrescine and spermidine also rose in the IM of submerged, whole plants while the concentration of spermine remained low. The increase in SAMDC activity was localized in the IM while the activity of ADC rose both in the node and the IM above it. The node also contained low levels of ODC activity which increased slightly following submergence. Increased activities of polyamine-synthesizing enzymes in the nodal region of submerged plants probably resulted from the promotion of adventitious root formation in the node. Treatment of excised rice-stem sections with ethylene or GA3 enhanced the activities of SAMDC and ADC in the IM and inhibited the decline in the levels of putrescine and spermidine. We conclude that SAMDC and perhaps also ADC may serve as biochemical markers for the enhancement of cell-division activity in the IM of deepwater rice.Abbreviations ADC arginine decarboxylase - GA gibberellin - IM intercalary meristem - ODC ornithine decarboxylase - SAM S-adenosylmethionine - SAMDC SAM decarboxylase  相似文献   

4.
1. Starvation caused a marked decrease in the activity of ornithine decarboxylase in mammary gland, together with a lesser decrease in the activity of S-adenosylmethionine decarboxylase and a marked fall in milk production. Liver ornithine decarboxylase and S-adenosylmethionine decarboxylase activities were unaffected. 2. Refeeding for 2.5 h was without effect on ornithine decarboxylase in mammary gland, but it returned the S-adenosylmethionine decarboxylase activity in mammary gland to control values and elevated both ornithine decarboxylase and S-adenosylmethionine decarboxylase in liver. 3. Refeeding for 5 h returned the activity of ornithine decarboxylase in mammary gland to fed-state values and resulted in further increases in S-adenosylmethionine decarboxylase in mammary gland and liver and in ornithine decarboxylase in liver. 4. Prolactin deficiency in fed rats resulted in decreased milk production and decreased activity of ornithine decarboxylase in mammary gland. The increase in ornithine decarboxylase activity normally seen after refeeding starved rats for 5 h was completely blocked by prolactin deficiency. 5. In fed rats, injection of streptozotocin 2.5 h before death caused a decrease in the activities of ornithine decarboxylase and S-adenosylmethionine decarboxylase in mammary gland, which could be reversed by simultaneous injection of insulin. Insulin deficiency also prevented the increase in S-adenosylmethionine decarboxylase in liver and mammary gland normally observed after refeeding starved rats for 2.5 h.  相似文献   

5.
For elucidation of polyamine localization and biosynthesis in various cell types of rat retina, the putrescine, spermidine, and spermine contents as well as the ornithine decarboxylase and S-adenosylmethionine decarboxylase activities have been measured in retinal cell layers obtained by the selective cytotoxic action of iodoacetate on photoreceptor cells and of monosodium glutamate on higher-order retinal neurons. A notable depletion only in spermine content was associated with loss of the visual cell layer. Total ornithine decarboxylase and S-adenosylmethionine decarboxylase activities per retina were significantly lower in all chemically fractionated tissue, but loss of the photoreceptor layer produced the greatest decrease. The specific activities of these enzymes did not show marked changes in rat retinas deprived of inner neurons. The data support the suggestions that polyamine synthesis, storage, and catabolism have different distributions in the retinal layers and that the spermine levels and the high value of the spermine/spermidine molar ratio might depend essentially on the proportion of rods to cones.  相似文献   

6.
鸟氨酸脱羧酶(ODC)和S-甲硫氨酸脱羧酶(AdoMetDC)是多胺体内合成的2个关键酶.研究腺病毒Ad-ODC-AdoMetDCas介导的ODC和AdoMetDC反义RNA对肺癌多胺合成,细胞增殖以及侵袭的抑制作用.用活细胞计数和流式细胞术分别检测Ad-ODCas和Ad-ODC-AdoMetDCas对肺癌A-549细胞增殖的影响,蛋白质印迹和HPLC方法分别检测腺病毒对肺癌A-549细胞中ODC和AdoMetDC蛋白表达以及胞内多胺含量的抑制作用,TUNEL标记检测法观察Ad-ODC-AdoMetDCas对肺癌细胞凋亡的影响,Matrigel侵袭实验分析腺病毒对肺癌A-549细胞侵袭活性的改变,裸鼠皮下移植瘤模型研究Ad-ODC-AdoMetDCas对体内肺癌生长的抑制作用.实验结果显示,Ad-ODC-AdoMetDCas明显抑制肺癌A-549细胞的增殖,导致细胞凋亡,显著降低肺癌A-549细胞的体外侵袭能力,肺癌A-549细胞感染Ad-ODC-AdoMetDCas后细胞内3种多胺含量都明显降低,Ad-ODC-AdoMetDCas对已形成的裸鼠皮下移植瘤具有明显的抑制作用.实验表明,ODC和AdoMetDC双反义腺病毒具有显著抑制肺癌增殖和侵袭的作用,对于肺癌的防治研究具有一定的前景.  相似文献   

7.
鸟氨酸脱羧酶(ODC)和S-甲硫氨酸脱羧酶(AdoMetDC)是多胺体内合成的2个关键酶.研究腺病毒Ad-ODC-AdoMetDCas介导的ODC和AdoMetDC反义RNA对肺癌多胺合成,细胞增殖以及侵袭的抑制作用.用活细胞计数和流式细胞术分别检测Ad-ODCas和Ad-ODC-AdoMetDCas对肺癌A-549细胞增殖的影响,蛋白质印迹和HPLC方法分别检测腺病毒对肺癌A-549细胞中ODC和AdoMetDC蛋白表达以及胞内多胺含量的抑制作用,TUNEL标记检测法观察Ad-ODC-AdoMetDCas对肺癌细胞凋亡的影响,Matrigel侵袭实验分析腺病毒对肺癌A-549细胞侵袭活性的改变,裸鼠皮下移植瘤模型研究Ad-ODC-AdoMetDCas对体内肺癌生长的抑制作用.实验结果显示,Ad-ODC-AdoMetDCas明显抑制肺癌A-549细胞的增殖,导致细胞凋亡,显著降低肺癌A-549细胞的体外侵袭能力,肺癌A-549细胞感染Ad-ODC-AdoMetDCas后细胞内3种多胺含量都明显降低,Ad-ODC-AdoMetDCas对已形成的裸鼠皮下移植瘤具有明显的抑制作用.实验表明,ODC和AdoMetDC双反义腺病毒具有显著抑制肺癌增殖和侵袭的作用,对于肺癌的防治研究具有一定的前景.  相似文献   

8.
Oligodeoxynucleotides 18 nucleotides in length having sequences complementary to regions spanning the initiation codon regions of ornithine decarboyxlase or S-adenosylmethionine decarboxylase mRNAs were tested for their ability to inhibit translation of these mRNAs. In reticulocyte lysates, a strong and dose dependent reduction of ornithine decarboyxlase synthesis in response to mRNA from D-R L1210 cells was brought about by 5-AAAGCT GCTCATGGTTCT-3 which is complementary to the sequence from - 6 to + 12 of the mRNA sequence but there was no inhibition by 5-TGCAGCTTCCATCACCGT-3. Conversely, the latter oligodeoxynucleotide which is complementary to the sequence from – 6 to + 12 of the mRNA of S-adenosyl methionine decarboxylase was a strong inhibitor of the synthesis of this enzyme in response to rat prostate mRNA and the antisense sequence from ornithine decarboxylase had no effect. The translation of ornithine decarboxylase mRNA in a wheat germ system was inhibited by the antisense oligodeoxynucleotide at much lower concentration than those needed in the reticulocyte lysate suggesting that degradation of the hybrid by ribonuclease H may be an important factor in this inhibition. These results indicate that such oligonucleotides may be useful to regulate cellular polyamine levels and as probes to study control of mRNA translation.Abbreviations ODC ornithine decarboxylase - AdoMetDC S-adenosylmethionine decarboxylase - DFMO difluoromethylornithine  相似文献   

9.
The activities of ornithine decarboxylase and S-adenosylmethionine decarboxylase, two key enzymes in polyamine metabolism, were determined during the first 10 days of imaginal life in the nervous tissue and the fat body of the adult cricket Acheta domesticus. The kinetic constants of the two enzymes were also determined in both tissues. Both decarboxylases presented a higher activity in fat body than in nervous tissue. In nervous tissue, the activity of the two enzymes peaked at 16 h postemergence, then slowly decreased up to day 3–4. By contrast, the enzymatic activities in fat body, low at emergence, strongly increased on day 2. Thereafter, whereas ornithine decarboxylase activity remained rather high. S-adenosyl-methionine decarboxylase activity dropped back to emergence levels by day 10. These results, examined in light of the temporal alterations of polyamine levels observed in the two tissues, demonstrate synchronous variations between polyamine contents and the enzymes involved in their biosynthesis. © 1993 Wiley-Liss, Inc.  相似文献   

10.
11.
1. The activities of ornithine decarboxylase, S-adenosylmethionine decarboxylase and ornithine-2-oxoglutarate aminotransferase were studied during the first 24 h of conidial germination in Aspergillus nidulans. 2. Increases (over 100-fold) in the activities of ornithine decarboxylase and S-adenosylmethionine decarboxylase occurred during the emergence of the germ-tube and before the doubling of DNA and this was followed by a sharp fall in the activities of both enzymes by 16h. 3. The increase in ornithine decarboxylase could be largely suppressed if 0.6 mM-putrescine was added to the growth medium. 4. Low concentrations of cycloheximide, which delayed germination by 2h, caused a corresponding delay in the changes in ornithine decarboxylase activity. 5. Ornithine-2-oxoglutarate aminotransferase activity increased steadily during the first 24h of germination. 6. Ornithine or arginine in the growth medium induced higher activity of ornithine-2-oxoglutarate aminotransferase, but did not affect ornithine decarboxylase activity. 7. The significance of these enzyme changes during germination is discussed.  相似文献   

12.
The rat pheochromocytoma clone PC12 responds to nerve growth factor through the expression of a number of differentiated neuronal properties. One of the most rapid changes is a large, transient increase in the activity of ornithine decarboxylase. These cells also show an increase in ornithine decarboxylase activity in response to the mitogen, epidermal growth factor, but do not respond morphologically as they do to nerve growth factor. Specific, high-affinity epidermal growth factor receptors are present on the cells. When the cells are differentiated with nerve growth factor, the response to epidermal growth factor is markedly diminished and there is a marked reduction in the binding of epidermal growth factor to the cells.  相似文献   

13.
In liver cells recovering from reversible ischemia the increase in RNA synthesis by isolated nuclei is preceded by activation of ornithine decarboxylase, leading in turn to an increase in putrescine concentration. Treatment of the animals with 1,3-diaminopropane and putrescine prevents ornithine decarboxylase activation but does not hinder the enhancement of RNA synthesis in post-ischemic liver nuclei; therefore, ornithine decarboxylase activation does not seem to be a necessary prerequisite for the increase in RNA synthesis. Hypophysectomy does not prevent the post-ischemic increases of ornithine decarboxylase and RNA synthesis; but pre-treatment of the animals with cycloheximide—which has a dual effect on the activity of ornithine decarboxylase—abolishes the post-ischemic enhancement of RNA synthesis. In contrast with regenerating liver, changes in ornithine decarboxylase activity and putrescine concentrations in reversible ischemia are not associated to changes in S-adenosylmethionine decarboxylase activity and in spermine and spermidine concentrations that seem to be characteristic of tissues where increases in RNA synthesis are followed by DNA synthesis and cell multiplication.  相似文献   

14.
The kinetics of inactivation of adenosylmethionine decarboxylase of rat liver and of baby hamster kidney cells (BHK21/C31) by 1-aminooxy-3-aminopropane was studied. The apparent dissociation constants (Ki) for the hepatic and BHK21/C13 enzymes were 1.5 and 2.0 mM and the times of half-inactivation at infinite concentration of the inhibitor (tau 1/2) were 1.2 and 3.8 min, respectively. Treatment of BHK21/C13 with 0.5 mM 1-aminooxy-3-aminopropane prevented cell growth and depleted the cells of putrescine and spermidine within 1 day. The depletion of spermidine resulted in increased activity of S-adenosylmethionine decarboxylase which was due, at least partly, to the increase in the half-life of the enzyme activity. Because spermine levels were not significantly affected, it appears that spermidine is the principal feedback regulator of S-adenosylmethionine decarboxylase. So, 1-aminooxy-3-aminopropane is a very weak inhibitor of S-adenosylmethionine decarboxylase and the cellular effects can be correlated primarily with its inhibitory effects on ornithine decarboxylase and spermidine synthase. In cell-free systems, however, 1-aminooxy-3-aminopropane is likely to find use in unraveling the reaction mechanism of S-adenosylmethionine decarboxylase.  相似文献   

15.
Polyamine metabolism and cancer   总被引:7,自引:0,他引:7  
Polyamines are aliphatic cations present in all cells. In normal cells, polyamine levels are intricately controlled by biosynthetic and catabolic enzymes. The biosynthetic enzymes are ornithine decarboxylase, S-adenosylmethionine decarboxylase, spermidine synthase, and spermine synthase. The catabolic enzymes include spermidine/spermine acetyltransferase, flavin containing polyamine oxidase, copper containing diamine oxidase, and possibly other amine oxidases. Multiple abnormalities in the control of polyamine metabolism and uptake might be responsible for increased levels of polyamines in cancer cells as compared to that of normal cells. This review is designed to look at the current research in polyamine biosynthesis, catabolism, and transport pathways, enumerate the functions of polyamines, and assess the potential for using polyamine metabolism or function as targets for cancer therapy.  相似文献   

16.
The biogenic amines spermine, spermidine, and putrescine are essential factors of cell growth and differentiation. To inhibit pyridoxal-5"-phosphate dependent ornithine decarboxylase and pyruvate dependent S-adenosylmethionine decarboxylase, key enzymes of polyamine biosynthesis, a system of substrate-like O-substituted hydroxylamines is suggested. The best of these compounds were active at nanomolar concentrations. High potency and specificity of this type of inhibitors are discussed in terms of structural similarity of E–I and E–S complexes.  相似文献   

17.
Adjustment of polyamine contents in Escherichia coli.   总被引:7,自引:2,他引:5       下载免费PDF全文
Adjustment of polyamine contents in Escherichia coli was studied with strains of Escherichia coli producing normal (DR112) and excessive amounts of ornithine decarboxylase [DR112(pODC)] or S-adenosylmethionine decarboxylase [DR112(pSAMDC)]. Although DR112(pODC) produced approximately 70 times more ornithine decarboxylase than DR112 did, the amounts of polyamines in the cells of both strains did not change significantly. The amounts of polyamines in DR112(pODC) were adjusted by excretion of excessive amounts of putrescine to the medium. When ornithine was deficient in cells, polyamine contents in DR112(pODC) were much higher than those in DR112, although polyamine contents were low in both strains. This indicates that large amounts of ornithine decarboxylase increased the utilization of ornithine for putrescine synthesis. During ornithine deficiency, strain DR112 produced 3.4 times more ornithine decarboxylase. Strain DR112(pSAMDC) produced seven times more S-adenosylmethionine decarboxylase than DR112 did. In DR112(pSAMDC) an increase (40%) in spermidine content, a decrease (35%) in putrescine content, and no significant excretion of putrescine and spermidine were observed. The amount of ornithine decarboxylase in DR112(pSAMDC) was approximately 30% less than that in DR112. In addition, S-adenosylmethionine decarboxylase activity was strongly inhibited by spermidine. A possible regulatory mechanism to maintain polyamine contents in Escherichia coli is discussed based on the results.  相似文献   

18.
Sugar beet cells grown in batch suspension culture have been used to study the regulation of polyamine levels during the transition from a quiescent to a proliferating state. The quiescent state was achieved by maintenance of the phytohormone autonomous cells in the stationary phase of the batch culture cycle. After subculture into fresh medium there was an increase in DNA synthesis which was accompanied by a dramatic increase in cellular polyamine levels. The levels of both free and bound cellular putrescine and spermidine within the cells reached a peak before the onset of the first synchronous division. The levels of putrescine, spermidine and to some extent spermine in the culture medium also increased dramatically shortly after subculture. The increase in polyamines was preceded by a rapid but transient increase in omithine decarboxylase (EC 4.1.1.17) and S -adenosylmethionine decarboxylase (EC 4.1.1.50). Arginine decarboxylase (EC 4.1.1.19) and S -adenosylmethionine synthetase (EC 2.5.1.6) activity did not show the same pattern of cell division-related variation. Inhibition of S -adenosylmethionine biosynthesis with methylglyoxal bis-(guanylhydra-zone) (MGBG) reduced cell division in the suspension culture. Inhibitors of ornithine decarboxylase and arginine decarboxylase individually had little effect on cell division, but in combination led to a reduction in cell division. Addition of polyamines and their precursors to cells in the stationary phase of a batch culture cycle led to the induction of expression of a mitotic cyclin sequence ( Bvcycll ).  相似文献   

19.
A previous study has shown that the activity of ornithine decarboxylase in cultured Nb2 node rat lymphoma cells falls to undetectable levels when cells become quiescent following incubation in lactogen (prolactin)-deficient medium. In the present study, it was found that addition of extracts of the lactogen-deprived, quiescent cells to extracts of log-phase cells markedly reduced the ornithine decarboxylase activity of the latter, the inhibitory activity being proportional to the amount of quiescent cell extract added. Evidence is presented that the ornithine decarboxylase-inhibitory activity in the quiescent cell extracts is due to an antizyme-like, polypeptide factor with an Mr of approx. 28,000. The activity of the inhibitor appears to be directed rather specifically against ornithine decarboxylase, since the activities of S-adenosylmethionine decarboxylase, thymidine kinase and uridine kinase were not affected. The Nb2 cell ornithine decarboxylase inhibitor may have an important role in modulating the cellular levels of ornithine decarboxylase as they change in response to the withdrawal and restoration of extracellular mitogenic lactogens.  相似文献   

20.
Sugar beet cells grown in batch suspension culture have been used to study the regulation of polyamine levels during the transition from a quiescent to a proliferating state. The quiescent state was achieved by maintenance of the phytohormone autonomous cells in the stationary phase of the batch culture cycle. After subculture into fresh medium there was an increase in DNA synthesis which was accompanied by a dramatic increase in cellular polyamine levels. The levels of both free and bound cellular putrescine and spermidine within the cells reached a peak before the onset of the first synchronous division. The levels of putrescine, spermidine and to some extent spermine in the culture medium also increased dramatically shortly after subculture. The increase in polyamines was preceded by a rapid but transient increase in omithine decarboxylase (EC 4.1.1.17) and S -adenosylmethionine decarboxylase (EC 4.1.1.50). Arginine decarboxylase (EC 4.1.1.19) and S -adenosylmethionine synthetase (EC 2.5.1.6) activity did not show the same pattern of cell division-related variation. Inhibition of S -adenosylmethionine biosynthesis with methylglyoxal bis-(guanylhydra-zone) (MGBG) reduced cell division in the suspension culture. Inhibitors of ornithine decarboxylase and arginine decarboxylase individually had little effect on cell division, but in combination led to a reduction in cell division. Addition of polyamines and their precursors to cells in the stationary phase of a batch culture cycle led to the induction of expression of a mitotic cyclin sequence ( BvcycII ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号