首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The mammalian order Xenarthra (armadillos, anteaters and sloths) is one of the four major clades of placentals, but it remains poorly studied from the molecular phylogenetics perspective. We present here a study encompassing most of the order's diversity in order to establish xenarthrans' intra-ordinal relationships, discuss the evolution of their morphological characters, search for their extant sister group and specify the timing of their radiation with special emphasis on the status of the controversial fossil Eurotamandua. Sequences of three genes (nuclear exon 28 of the Von Willebrand factor and mitochondrial 12S and 16S rRNAs) are compared for eight of the 13 living genera. Phylogenetic analyses confirm the order's monophyly and that of its three major lineages: armadillos (Cingulata), anteaters (Vermilingua) and sloths ('Tardigrada', renamed in 'Folivora'), and our results strongly support the grouping of hairy xenarthrans (anteaters and sloths) into Pilosa. Within placentals, Afrotheria might be the first lineage to branch off, followed by Xenarthra. The morphological adaptative convergence between New World xenarthrans and Old World pangolins is confirmed. Molecular datings place the early emergence of armadillos around the Cretaceous/Tertiary boundary, followed by the divergence between anteaters and sloths in the Early Eocene era. These Tertiary dates contradict the concept of a very ancient origin of modern xenarthran lineages. They also question the placement of the purported fossil anteater (Eurotamandua) from the Middle Eocene period of Europe with the Vermilingua and instead suggest the independent and convergent evolution of this enigmatic taxon.  相似文献   

2.
Consensus on placental mammal phylogeny is fairly recent compared to that for vertebrates as a whole. A stable phylogenetic hypothesis enables investigation into the possibility that placental clades differ from one another in terms of their development. Here, we focus on the sequence of skeletal ossification as a possible source of developmental distinctiveness in “northern” (Laurasiatheria and Euarchontoglires) versus “southern” (Afrotheria and Xenarthra) placental clades. We contribute data on cranial and postcranial ossification events during growth in Afrotheria, including elephants, hyraxes, golden moles, tenrecs, sengis, and aardvarks. We use three different techniques to quantify sequence heterochrony: continuous method, sequence‐ANOVA (analysis of variance) and event‐paring/Parsimov. We show that afrotherians significantly differ from other placentals by an early ossification of the orbitosphenoid and caudal vertebrae. Our analysis also suggests that both southern placental groups show a greater degree of developmental variability; however, they rarely seem to vary in the same direction, especially regarding the shifts that differ statistically. The latter observation is inconsistent with the Atlantogenata hypothesis in which afrotherians are considered as the sister clade of xenarthrans. Interestingly, ancestral nodes for Laurasiatheria and Euarchontoglires show very similar trends and our results suggest that developmental homogeneity in some ossification sequences may be restricted to northern placental mammals (Boreoeutheria).  相似文献   

3.
Higher-level relationships within, and the root of Placentalia, remain contentious issues. Resolution of the placental tree is important to the choice of mammalian genome projects and model organisms, as well as for understanding the biogeography of the eutherian radiation. We present phylogenetic analyses of 63 species representing all extant eutherian mammal orders for a new molecular phylogenetic marker, a 1.3kb portion of exon 26 of the apolipoprotein B (APOB) gene. In addition, we analyzed a multigene concatenation that included APOB sequences and a previously published data set (Murphy et al., 2001b) of three mitochondrial and 19 nuclear genes, resulting in an alignment of over 17kb for 42 placentals and two marsupials. Due to computational difficulties, previous maximum likelihood analyses of large, multigene concatenations for placental mammals have used quartet puzzling, less complex models of sequence evolution, or phylogenetic constraints to approximate a full maximum likelihood bootstrap. Here, we utilize a Unix load sharing facility to perform maximum likelihood bootstrap analyses for both the APOB and concatenated data sets with a GTR+Gamma+I model of sequence evolution, tree-bisection and reconnection branch-swapping, and no phylogenetic constraints. Maximum likelihood and Bayesian analyses of both data sets provide support for the superordinal clades Boreoeutheria, Euarchontoglires, Laurasiatheria, Xenarthra, Afrotheria, and Ostentoria (pangolins+carnivores), as well as for the monophyly of the orders Eulipotyphla, Primates, and Rodentia, all of which have recently been questioned. Both data sets recovered an association of Hippopotamidae and Cetacea within Cetartiodactyla, as well as hedgehog and shrew within Eulipotyphla. APOB showed strong support for an association of tarsier and Anthropoidea within Primates. Parsimony, maximum likelihood and Bayesian analyses with both data sets placed Afrotheria at the base of the placental radiation. Statistical tests that employed APOB to examine a priori hypotheses for the root of the placental tree rejected rooting on myomorphs and hedgehog, but did not discriminate between rooting at the base of Afrotheria, at the base of Xenarthra, or between Atlantogenata (Xenarthra+Afrotheria) and Boreoeutheria. An orthologous deletion of 363bp in the aligned APOB sequences proved phylogenetically informative for the grouping of the order Carnivora with the order Pholidota into the superordinal clade Ostentoria. A smaller deletion of 237-246bp was diagnostic of the superordinal clade Afrotheria.  相似文献   

4.
The 30 living species of armadillos, anteaters, and sloths (Mammalia: Xenarthra) represent one of the three major clades of placentals. Armadillos (Cingulata: Dasypodidae) are the earliest and most speciose xenarthran lineage with 21 described species. The question of their tricky phylogeny was here studied by adding two mitochondrial genes (NADH dehydrogenase subunit 1 [ND1] and 12S ribosomal RNA [12S rRNA]) to the three protein-coding nuclear genes (alpha2B adrenergic receptor [ADRA2B], breast cancer susceptibility exon 11 [BRCA1], and von Willebrand factor exon 28 [VWF]) yielding a total of 6869 aligned nucleotide sites for thirteen xenarthran species. The two mitochondrial genes were characterized by marked excesses of transitions over transversions-with a strong bias toward CT transitions for the 12S rRNA-and exhibited two- to fivefold faster evolutionary rates than the fastest nuclear gene (ADRA2B). Maximum likelihood and Bayesian phylogenetic analyses supported the monophyly of Dasypodinae, Tolypeutinae, and Euphractinae, with the latter two armadillo subfamilies strongly clustering together. Conflicting branching points between individual genes involved relationships within the subfamilies Tolypeutinae and Euphractinae. Owing to a greater number of informative sites, the overall concatenation favored the mitochondrial topology with the classical grouping of Cabassous and Priodontes within Tolypeutinae, and a close relationship between Euphractus and Chaetophractus within Euphractinae. However, low statistical support values associated with almost equal distributions of apomorphies among alternatives suggested that two parallel events of rapid speciation occurred within these two armadillo subfamilies.  相似文献   

5.
Higher-level relationships among placental mammals, as well as the historical biogeography of this group against the backdrop of continental fragmentation and reassembly, remain poorly understood. Here, we analyze two independent molecular data sets that represent all placental orders. The first data set includes six genes (A2AB, IRBP, vWF, 12S rRNA, tRNA valine, 16S rRNA; total = 5.71 kb) for 26 placental taxa and two marsupials; the second data set includes 2.95 kb of exon 11 of the BRCA1 gene for 51 placental taxa and four marsupials. We also analyzed a concatenation of these data sets (8.66 kb) for 26 placentals and one marsupial. Unrooted and rooted analyses were performed with parsimony, distance methods, maximum likelihood, and a Bayesian approach. Unrooted analyses provide convincing support for a fundamental separation of placental orders into groups with southern and northern hemispheric origins according to the current fossil record. On rooted trees, one or both of these groups are monophyletic depending on the position of the root. Maximum likelihood and Bayesian analyses with the BRCA1 and combined 8.66 kb data sets provide strong support for the monophyly of the northern hemisphere group (Boreoeutheria). Boreoeutheria is divided into Laurasiatheria (Carnivora + Cetartiodactyla + Chiroptera + Eulipotyphla + Perissodactyla + Pholidota) and Euarchonta (Dermoptera + Primates + Scandentia) + Glires (Lagomorpha + Rodentia). The southern hemisphere group is either monophyletic or paraphyletic, depending on the method of analysis used. Within this group, Afrotheria (Proboscidea + Sirenia + Hyracoidea + Tubulidentata + Macroscelidea + Afrosoricida) is monophyletic. A unique nine base-pair deletion in exon 11 of the BRCA1 gene also supports Afrotheria monophyly. Given molecular dates that suggest that the southern hemisphere group and Boreoeutheria diverged in the Early Cretaceous, a single trans-hemispheric dispersal event may have been of fundamental importance in the early history of crown-group Eutheria. Parallel adaptive radiations have subsequently occurred in the four major groups: Laurasiatheria, Euarchonta + Glires, Afrotheria, and Xenarthra.  相似文献   

6.
《Journal of morphology》2017,278(5):704-717
The orientation of the semicircular canals of the inner ear in the skull of vertebrates is one of the determinants of the capacity of this system to detect a given rotational movement of the head. Past functional studies on the spatial orientation of the semicircular canals essentially focused on the lateral semicircular canal (LSC), which is supposedly held close to horizontal during rest and/or alert behaviors. However, they generally investigated this feature in only a few and distantly related taxa. Based on 3D‐models reconstructed from µCT‐scans of skulls, we examined the diversity of orientations of the LSC within one of the four major clades of placental mammals, that is, the superorder Xenarthra, with a data set that includes almost all extant genera and two extinct taxa. We observed a wide diversity of LSC orientations relative to the basicranium at both intraspecific and interspecific scales. The estimated phylogenetic imprint on the orientation of the LSC was significant but rather low within the superorder, though some phylogenetic conservatism was detected for armadillos that were characterized by a strongly tilted LSC. A convergence between extant suspensory sloths was also detected, both genera showing a weakly tilted LSC. Our preliminary analysis of usual head posture in extant xenarthrans based on photographs of living animals further revealed that the LSC orientation in armadillos is congruent with a strongly nose‐down head posture. It also portrayed a more complex situation for sloths and anteaters. Finally, we also demonstrate that the conformation of the cranial vault and nuchal crests as well as the orientation of the posterior part of the petrosal may covary with the LSC orientation in Xenarthra. Possible inferences for the head postures of extinct xenarthrans such as giant ground sloths are discussed in the light of these results.  相似文献   

7.
The phylogenetic positions of the 4 clades, Euarchontoglires, Laurasiatheria, Afrotheria, and Xenarthra, have been major issues in the recent discussion of basal relationships among placental mammals. However, despite considerable efforts these relationships, crucial to the understanding of eutherian evolution and biogeography, have remained essentially unresolved. Euarchontoglires and Laurasiatheria are generally joined into a common clade (Boreoeutheria), whereas the position of Afrotheria and Xenarthra relative to Boreoeutheria has been equivocal in spite of the use of comprehensive amounts of nuclear encoded sequences or the application of genome-level characters such as retroposons. The probable reason for this uncertainty is that the divergences took place long time ago and within a narrow temporal window, leaving only short common branches. With the aim of further examining basal eutherian relationships, we have collected conserved protein-coding sequences from 11 placental mammals, a marsupial and a bird, whose nuclear genomes have been largely sequenced. The length of the alignment of homologous sequences representing each individual species is 2,168,859 nt. This number of sites, representing 2840 protein-coding genes, exceeds by a considerable margin that of any previous study. The phylogenetic analysis joined Xenarthra and Afrotheria on a common branch, Atlantogenata. This topology was found to fit the data significantly better than the alternative trees.  相似文献   

8.
Afrotheria is the clade of placental mammals that, together with Xenarthra, Euarchontoglires and Laurasiatheria, represents 1 of the 4 main recognized supraordinal eutherian clades. It reunites 6 orders of African origin: Proboscidea, Sirenia, Hyracoidea, Macroscelidea, Afrosoricida and Tubulidentata. The apparently unlikely relationship among such disparate morphological taxa and their possible basal position at the base of the eutherian phylogenetic tree led to a great deal of attention and research on the group. The use of biomolecular data was pivotal in Afrotheria studies, as they were the basis for the recognition of this clade. Although morphological evidence is still scarce, a plethora of molecular data firmly attests to the phylogenetic relationship among these mammals of African origin. Modern cytogenetic techniques also gave a significant contribution to the study of Afrotheria, revealing chromosome signatures for the group as a whole, as well as for some of its internal relationships. The associations of human chromosomes HSA1/19 and 5/21 were found to be chromosome signatures for the group and provided further support for Afrotheria. Additional chromosome synapomorphies were also identified linking elephants and manatees in Tethytheria (the associations HSA2/3, 3/13, 8/22, 18/19 and the lack of HSA4/8) and elephant shrews with the aardvark (HSA2/8, 3/20 and 10/17). Herein, we review the current knowledge on Afrotheria chromosomes and genome evolution. The already available data on the group suggests that further work on this apparently bizarre assemblage of mammals will provide important data to a better understanding on mammalian genome evolution.  相似文献   

9.
Previous analyses of how mammals vary in their ossification sequences have focused on monotremes, marsupials, and boreoeutherian placentals. Here, we focus on the sequence of cranial and postcranial ossification events during growth in the xenarthran skull and skeleton, including armadillos, anteaters, and sloths. We use two different methods to quantify sequence heterochrony: sequence analysis of variance (ANOVA) and event‐paring/Parsimov. Our results indicate that Parsimov is conservative and does not detect clear heterochronic shifts between xenarthran and boreoeutherian placentals. Sequence‐ANOVA performs better, but both methods exhibit sensitivity to the artifactual accumulation of ties. By controlling for ties and taking into account results that the methods have in common, our analysis suggests that xenarthrans significantly differ from other placentals by a late ossification of the sternum and an early ossification of the phalanges and pubis. We interpret these differences as showing that heterochrony plays a role in the skeletal development of xenarthrans, a change from previous studies that have emphasized the developmental homogeneity of the skeleton across placental mammals.  相似文献   

10.
Vestigial structures occur at both the anatomical and molecular levels, but studies documenting the co-occurrence of morphological degeneration in the fossil record and molecular decay in the genome are rare. Here, we use morphology, the fossil record, and phylogenetics to predict the occurrence of “molecular fossils” of the enamelin (ENAM) gene in four different orders of placental mammals (Tubulidentata, Pholidota, Cetacea, Xenarthra) with toothless and/or enamelless taxa. Our results support the “molecular fossil” hypothesis and demonstrate the occurrence of frameshift mutations and/or stop codons in all toothless and enamelless taxa. We then use a novel method based on selection intensity estimates for codons (ω) to calculate the timing of iterated enamel loss in the fossil record of aardvarks and pangolins, and further show that the molecular evolutionary history of ENAM predicts the occurrence of enamel in basal representatives of Xenarthra (sloths, anteaters, armadillos) even though frameshift mutations are ubiquitous in ENAM sequences of living xenarthrans. The molecular decay of ENAM parallels the morphological degeneration of enamel in the fossil record of placental mammals and provides manifest evidence for the predictive power of Darwin''s theory.  相似文献   

11.
Used as markers of postnatal growth closure sequences of 22 ectocranial sutures and synchondroses were recorded in a sample of 1161 skulls belonging to 38 species from all major placental clades: Afrotheria, Xenarthra, Laurasiatheria and Euarchontoglires (Boreoeutheria). The maximum closure level, which is not significantly correlated to body mass, is higher in Afrotheria and Xenarthra than in Boreoeutheria. Only the basioccipito‐basisphenoid and the basioccipito‐exoccipital synchondroses close in all species sampled, the supraoccipito‐exoccipital and the inter‐parietal sutures do in most species. Parsimov retrieved more heterochronic shifts for Afrotheria and Xenarthra than for Boreoeutheria. The amount of intraspecific variation differs among the species sampled being high among xenarthran species and low among afrotherians. Specimens (162) representing 12 marsupial genera were also analysed. Placentals exhibit a larger number of suture closures than marsupials and in both groups the sutures at the base of the skull are the first to fuse starting with the basioccipito‐exoccipital. J. Morphol. 275:125–140, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
It is essential to test a priori scientific hypotheses with independent data, not least to partly negate factors such as gene-specific base composition biases misleading our models. Seven new gene segments and sequences plus Bayesian likelihood phylogenetic methods were used to compare and test five recent placental phylogenies. These five phylogenies are similar to each other, yet quite different from Fthose of previously proposed trees, and span Waddell et al. [Syst. Biol. 48 (1999) 1] to Murphy et al. [Science 294 (2001b) 2348]. Trees for RAG1, gamma-fibrinogen, ND6, mt-tRNA, mt-RNA, c-MYC, epsilon -globin, and GHR are significantly congruent with the four main groups of mammals common to the five phylogenies, i.e., Afrotheria, Laurasiatheria, Euarchontoglires, Xenarthra plus Boreoeutheria (Laurasiatheria plus Euarchontoglires). Where these five a priori phylogenies differ, remain areas generally hard to resolve with the new sequences. The root remains ambiguous and does not reject a basal Afrotheria (the Exafroplacentalia hypothesis), Afrotheria plus Xenarthra together with basal (Atlantogenata), or Epitheria (Xenarthra basal) convincingly. Good evidence is found that Eulipotyphla is monophyletic and is located at the base of Laurasiatheria. The shrew mole, Uropsilus, is found to cluster consistently with other moles, while Solenodon may be the sister taxa to all other eulipotyphlans. Support is found for a probable sister pairing of just hedgehogs/gymnures and shrews. Relationships within Afrotheria, except the Paenungulata clade, remain hard to resolve, although there is congruent support for Afroinsectiphillia (aardvark, elephant shrews, golden moles, and tenrecs). A first-time use is made of MCMC enacted general time-reversible (GTR) amino acid and codon-based models for general tree selection. Even with ND6, a GTR amino acid model provided resolution of fine features, such as the sister group relationship of walrus to Otatriidae, and with BRCA a more reasonable rooting. An extensive analysis of GHR sequences reveals strong congruence with prior phylogenies, including strong support for Eulipotyphla, and good resolution within Rodentia. A codon model gives a worse likelihood than a nucleotide model and sometimes switches support, e.g., with RAG1+gamma-fibrinogen from a hyrax-sirenian association to support for Tethytheria. An analysis of the concatenated data is in accordance with well-resolved features of the gene trees. Taken all together, this work suggests that we are on the right path finding strong confirmation of prior phylogenies. However, with the use of robust criteria for assessing trees (i.e., not Bayesian posteriors), it is apparent parts of the tree remain hard to resolve. Since our current models are far from fitting the sequence data, we should continue with our exploratory analyses to arrive at a refined set of hypotheses for future testing using more model independent characters (e.g., rare indels, gene rearrangement, and SINE data).  相似文献   

13.
Hill RV 《Journal of morphology》2006,267(12):1441-1460
Reconstruction of soft tissues in fossil vertebrates is an enduring challenge for paleontologists. Because inferences must be based on evidence from hard tissues (typically bones or teeth), even the most complete fossils provide only limited information about certain organ systems. Osteoderms ("dermal armor") are integumentary bones with high fossilization potential that hold information about the anatomy of the skin in many extant and fossil amniotes. Their importance for functional morphology and phylogenetic research has recently been recognized, but studies have focused largely upon reptiles, in which osteoderms are most common. Among mammals, osteoderms occur only in members of the clade Xenarthra, which includes armadillos and their extinct relatives: glyptodonts, pampatheres, and, more distantly, ground sloths. Here, I present new information on the comparative morphology and histology of osteoderms and their associated soft tissues in 11 extant and fossil xenarthrans. Extinct mylodontid sloths possessed simple, isolated ossicles, the presence of which is likely plesiomorphic for Xenarthra. More highly derived osteoderms of glyptodonts, pampatheres, and armadillos feature complex articulations and surface ornamentation. Osteoderms of modern armadillos are physically associated with a variety of soft tissues, including nerve, muscle, gland, and connective tissue. In some cases, similar osteological features may be caused by two or more different tissue types, rendering soft-tissue inferences for fossil osteoderms equivocal. Certain osteological structures, however, are consistently associated with specific soft-tissue complexes and therefore represent a relatively robust foundation upon which to base soft-tissue reconstructions of extinct xenarthrans.  相似文献   

14.

Background  

Extant placental mammals are divided into four major clades (Laurasiatheria, Supraprimates, Xenarthra and Afrotheria). Given that Afrotheria is generally thought to root the eutherian tree in phylogenetic analysis of large nuclear gene data sets, the study of the organization of the genomes of afrotherian species provides new insights into the dynamics of mammalian chromosomal evolution. Here we test if there are chromosomal bands with a high tendency to break and reorganize in Afrotheria, and by analyzing the expression of aphidicolin-induced common fragile sites in three afrotherian species, whether these are coincidental with recognized evolutionary breakpoints.  相似文献   

15.
Armadillos, anteaters, and sloths (Order Xenarthra) comprise 1 of the 4 major clades of placental mammals. Isolated in South America from the other continental landmasses, xenarthrans diverged over a period of about 65 Myr, leaving more than 200 extinct genera and only 31 living species. The presence of both ancestral and highly derived anatomical features has made morphoanatomical analyses of the xenarthran evolutionary history difficult, and previous molecular analyses failed to resolve the relationships within armadillo subfamilies. We investigated the presence/absence patterns of retroposons from approximately 7,400 genomic loci, identifying 35 phylogenetically informative elements and an additional 39 informative rare genomic changes (RGCs). DAS-short interspersed elements (SINEs), previously described only in the Dasypus novemcinctus genome, were found in all living armadillo genera, including the previously unsampled Chlamyphorus, but were noticeably absent in sloths. The presence/absence patterns of the phylogenetically informative retroposed elements and other RGCs were then compared with data from the DNA sequences of the more than 12-kb flanking regions of these retroposons. Together, these data provide the first fully resolved genus tree of xenarthrans. Interestingly, multiple evidence supports the grouping of Chaetophractus and Zaedyus as a sister group to Euphractus within Euphractinae, an association that was not previously demonstrated. Also, flanking sequence analyses favor a close phylogenetic relationship between Cabassous and Tolypeutes within Tolypeutinae. Finally, the phylogenetic position of the subfamily Chlamyphorinae is resolved by the noncoding sequence data set as the sister group of Tolypeutinae. The data provide a stable phylogenetic framework for further evolutionary investigations of xenarthrans and important information for defining conservation priorities to save the diversity of one of the most curious groups of mammals.  相似文献   

16.
The presence of osteoderms in the skin of some extinct sloths and in cingulates (armadillos, pampatheres, and glyptodonts) has often been considered a pleisomorphic character of the Xenarthra. While osteoderms are known from the earliest cingulates, they are absent in most sloths including the two extant taxa and only appear late in their fossil record. Osteoderms are currently only reported from five genera of mylodonts and two megatheres, out of the over 100 currently recognized genera of sloths. Consequently, rather than a plesiomorphic character of the Xenarthra, which has been secondarily lost in sloths, it is more likely that osteoderms in sloths are the result of parallel evolution to the cingulates that independently evolved in one, possibly two different sloth clades.  相似文献   

17.
The Xenarthra represents an enigmatic clade of placental mammals that includes living tree sloths, armadillos, and their extinct relatives, yet certain aspects of the biology of this group remains poorly understood. Here, we use scanning electron microscopy to test the hypothesis that orthodentine microwear patterns in extant xenarthrans are significantly different among different dietary groups. In a blind analysis, microwear patterns were quantified at a magnification of 500× by two independent observers for extant species from four dietary groups (carnivore–omnivores, folivores, frugivore–folivores, and insectivores). Independent observers recovered the same relative between‐group differences in microwear patterns. Insectivores and folivores have a significantly lower numbers of scratches and greater scar widths than frugivore–folivores and carnivore–omnivores, yet we were neither able to statistically distinguish insectivores from folivores, nor differentiate frugivore–folivores from carnivore–omnivores. Nevertheless, a clear distinction exists between taxa from the same trophic level and habitat, which suggests that orthodentine microwear reflects niche partitioning and habitat more than diet among related forms. We suggest that bite force and chewing mechanics have a strong influence on the formation of orthodentine microwear, which may explain some of the observed overlap between distinct groups (e.g. frugivore–folivores versus carnivore–omnivores). This study serves as a positive step forwards in our understanding of the ecological role of living xenarthrans, and serves as a foundation for using orthodentine microwear to reconstruct palaeoecology in extinct ground sloths, glyptodonts, and pampatheres. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

18.
Using the set of all vertebrate mtDNA protein sequences published as of May 1998, plus unpublished examples for elephant and birds, we examined divergence times in Placentalia and Aves. Using a parsimony-based test, we identified a subset of slower evolutionary rate placental sequences that do not appear to violate the clock assumption. Analyzing just these sequences decreases support for Marsupionta and the carnivore + perissodactyl group but increases support for armadillo diverging earlier than rabbit (which may represent the whole Glires group). A major theme of the paper is to use more comprehensive estimates of divergence time standard error (SE). From the well-studied horse/rhino split, estimated to be 55 million years before present (mybp), the splitting time within carnivores is confidently shown to be older than 50 million years. Some of our estimates of divergence times within placentals are relatively old, at up to 169 million years, but are within 2 SE of other published estimates. The whale/cow split at 65 mybp may be older than commonly assumed. All the sampled splits between the main groups of fereuungulates (the clade of carnivores, cetartiodactyls, perissodactyls, and pholidotes) seem to be distinctly before the Cretaceous/Tertiary boundary. Analyses suggest a close relationship between elephants (representing Afrotheria) and armadillos (Xenarthra), and our timing of this splitting is coincident with the opening of the South Atlantic, a major vicariant event. Recalibrating with this event (at 100 mybp), we obtain younger estimates for the earliest splits among placentals. Divergence times within birds are also assessed by using previously unpublished sequences. We fail to reject a clock for all bird taxa available. Unfortunately, available deep calibration points for birds are questionable, so a new calibration based on the age of the Anseriform stem lineage is estimated. The divergence time of rhea and ostrich may be much more recent than commonly assumed, while that of passerines may be older. Our major concern is the rooting point of the bird subtree, as the nearest outgroup (alligator) is very distant.  相似文献   

19.
Molecular phylogenetic analyses suggest an emerging phylogeny for the extant Placentalia (eutherian) that radically departs from morphologically based constructions of the past. Placental mammals are partitioned into four supraordinal clades: Afrotheria, Xenarthra, Laurasiatheria, and Euarchontoglires. Afrotheria form an endemic African clade that includes elephant shrews, golden moles, tenrecs, aardvarks, hyraxes, elephants, dugongs, and manatees. Datamining databases of genome size (GS) shows that till today just one afrotherian GS has been evaluated, that of the aardvark Orycteropus afer. We show that the GSs of six selected representatives across the Afrotheria supraordinal group are among the highest for the extant Placentalia, providing a novel genomic signature of this enigmatic group. The mean GS value of Afrotheria, 5.3 ± 0.7 pg, is the highest reported for the extant Placentalia. This should assist in planning new genome sequencing initiatives. [Reviewing Editor: Dmitri Petrov]  相似文献   

20.
Cao Y  Fujiwara M  Nikaido M  Okada N  Hasegawa M 《Gene》2000,259(1-2):149-158
Extensive phylogenetic analyses of the updated sequence data of mammalian mitochondrial genomes were carried out using the maximum likelihood method in order to resolve deep branchings in eutherian evolution. The divergence times in the mammalian tree were estimated by a relaxed molecular clock of the mitochondrial proteins calibrated with multiple references. A Chiroptera/Eulipotyphla (i.e. bat/mole) clade and a close relationship of this clade to Fereuungulata (Carnivora+Perissodactyla+Cetartiodactyla) were reconfirmed with high statistical significance. However, a support for a monophyly of Fereuungulata relative to the Chiroptera/Eulipotyphla clade was fragile, and we suggest that the three branchings among Carnivora, Perissodactyla, Cetartiodactyla and Chiroptera/Eulipotyphla occurred successively in a short time period, estimated to be approximately 77Myr BP. The Chiroptera/Eulipotyphla divergence was estimated to roughly coincide with the Cretaceous-Tertiary boundary (65Myr BP). The monophyly of Rodentia, the Lagomorpha/Rodentia clade (traditionally called Glires), and the Afrotheria/Xenarthra clade were preferred over alternative relationships, but the supports of these clades were not strong enough to exclude other possibilities. Although several super-order taxa of eutherians were strongly supported by the analyses of the mitochondrial genome data, the branching order in the deepest part of the eutherian tree remained ambiguous from the data presently available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号