首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aphidophagous predators compete for the same prey species. During their foraging activity they frequently encounter heterospecific aphid predators. These situations can lead to intraguild predation and may disrupt biological control efforts against aphids where more than one predator species is present. We investigated the behavior of larvae of the hoverfly Episyrphus balteatus de Geer and its interaction with three other aphid predators: the ladybird Coccinella septempunctata L., the lacewing Chrysoperla carnea Stephens, and the gall midge Aphidoletes aphidimyza (Rondani). Interspecific interactions between predators were examined in arenas of different sizes and in the presence of extraguild prey. The outcome of interactions between E. balteatus larvae and the other predators depended predominantly on the relative body size of the competitors. Relatively large individuals acted as intraguild predators, while relatively smaller individuals became intraguild prey. Eggs and first- as well as second-instar larvae of E. balteatus were highly susceptible to predation by all other predators, whereas pupae of E. balteatus were preyed upon only by the larvae of C. carnea. Interactions between A. aphidimyza and E. balteatus were asymmetric and always favored the latter. Eggs and first- as well as second-instar larvae of E. balteatus sustained intraguild predation irrespective of the size of the arena or the presence of extraguild prey. However, the frequency of predation on third-instar larvae of E. balteatus was significantly reduced. This study indicated that the same species can be both intraguild predator and intraguild prey. It is suggested that combinations of predators must be carefully chosen for success in biological control of aphids.  相似文献   

2.
Finke DL  Denno RF 《Oecologia》2006,149(2):265-275
The ability of predators to elicit a trophic cascade with positive impacts on primary productivity may depend on the complexity of the habitat where the players interact. In structurally-simple habitats, trophic interactions among predators, such as intraguild predation, can diminish the cascading effects of a predator community on herbivore suppression and plant biomass. However, complex habitats may provide a spatial refuge for predators from intraguild predation, enhance the collective ability of multiple predator species to limit herbivore populations, and thus increase the overall strength of a trophic cascade on plant productivity. Using the community of terrestrial arthropods inhabiting Atlantic coastal salt marshes, this study examined the impact of predation by an assemblage of predators containing Pardosa wolf spiders, Grammonota web-building spiders, and Tytthus mirid bugs on herbivore populations (Prokelisia planthoppers) and on the biomass of Spartina cordgrass in simple (thatch-free) and complex (thatch-rich) vegetation. We found that complex-structured habitats enhanced planthopper suppression by the predator assemblage because habitats with thatch provided a refuge for predators from intraguild predation including cannibalism. The ultimate result of reduced antagonistic interactions among predator species and increased prey suppression was enhanced conductance of predator effects through the food web to positively impact primary producers. Behavioral observations in the laboratory confirmed that intraguild predation occurred in the simple, thatch-free habitat, and that the encounter and capture rates of intraguild prey by intraguild predators was diminished in the presence of thatch. On the other hand, there was no effect of thatch on the encounter and capture rates of herbivores by predators. The differential impact of thatch on the susceptibility of intraguild and herbivorous prey resulted in enhanced top-down effects in the thatch-rich habitat. Therefore, changes in habitat complexity can enhance trophic cascades by predator communities and positively impact productivity by moderating negative interactions among predators.  相似文献   

3.
Predator‐prey theory predicts that in the presence of multiple types of predators using a common prey, predator facilitation may result as a consequence of contrasting prey defense mechanisms, where reducing the risk from one predator increases the risk from the other. While predator facilitation is well established in natural predator‐prey systems, little attention has been paid to situations where human hunters compete with natural predators for the same prey. Here, we investigate hunting‐mediated predator facilitation in a hunter‐predator‐prey system. We found that hunter avoidance by roe deer (Capreolus capreolus) exposed them to increase predation risk by Eurasian lynx (Lynx lynx). Lynx responded by increasing their activity and predation on deer, providing evidence that superadditive hunting mortality may be occurring through predator facilitation. Our results reveal a new pathway through which human hunters, in their role as top predators, may affect species interactions at lower trophic levels and thus drive ecosystem processes.  相似文献   

4.
Single trophic‐level studies of the relationship between biodiversity and ecosystem functioning highlight the importance of mechanisms such as resource partitioning, facilitation, and sampling effect. In a multi‐trophic context, trophic interactions such as intraguild predation may also be an important mediator of this relationship. Using a salt‐marsh food web, we investigated the interactive effects of predator species richness (one to three species) and trophic composition (strict predators, intraguild predators, or a mixture of the two) on ecosystem functions such as prey suppression and primary production via trophic cascades. We found that the trophic composition of the predator assemblage determined the impact of increasing predator species richness on the occurrence of trophic cascades. In addition, increasing the proportion of intraguild predator species present diminished herbivore suppression and reduced primary productivity. Therefore, trophic composition of the predator assemblage can play an important role in determining the nature of the relationship between predator diversity and ecosystem function.  相似文献   

5.
The role of natural enemy diversity in biological pest control has been debated in many studies, and understanding how interactions amongst predators and parasitoids affect herbivore populations is crucial for pest management. In this study, we assessed the individual and combined use of two species of natural enemies, the parasitoid Aphidius ervi Haliday, and the predatory brown lacewing Micromus variegatus (Fabricius), on their shared prey, the foxglove aphid, Aulacorthum solani (Kaltenbach), on sweet pepper. We hypothesized that the presence of intraguild predation (IGP) and predator facilitation (through induced aphid dropping behaviour) might have both negative and positive effects on aphid control, respectively. Our greenhouse trial showed that overall, the greatest suppression of aphids occurred in the treatment with both the parasitoid and the lacewing. While the combination of lacewings and parasitoids significantly increased aphid control compared to the use of parasitoids alone, the effect was not significantly different to the treatment with only predators, although there was a clear trend of enhanced suppression. Thus, the combined effects of both species of natural enemies were between additive and non‐additive, suggesting that the combination is neither positive nor negative for aphid control. High levels of IGP, as proven in the laboratory, were probably compensated for by the strong aphid suppression provided by the lacewings, whether or not supplemented with some level of predator facilitation. For aphid management over a longer time scale, it might still be useful to combine lacewings and parasitoids to ensure stable and resilient aphid control.  相似文献   

6.
Structural complexity strongly influences the outcome of predator–prey interactions in benthic marine communities affecting both prey concealment and predator hunting efficacy. How habitat structure interacts with species‐specific differences in predatory style and antipredatory strategies may therefore be critical in determining higher trophic functions. We examined the role of structural complexity in mediating predator–prey interactions across several macrophyte habitats along a gradient of structural complexity in three different bioregions: western Mediterranean Sea (WMS), eastern Indian Ocean (EIO) and northern Gulf of Mexico (NGM). Using sea urchins as model prey, we measured survival rates of small (juveniles) and medium (young adults) size classes in different habitat zones: within the macrophyte habitat, along the edge and in bare sandy spaces. At each site we also measured structural variables and predator abundance. Generalised linear models identified biomass and predatory fish abundance as the main determinants of predation intensity but the efficiency of predation was also influenced by urchin size class. Interestingly though, the direction of structure‐mediated effects on predation risk was markedly different between habitats and bioregions. In WMS and NGM, where predation by roving fish was relatively high, structure served as a critical prey refuge, particularly for juvenile urchins. In contrast, in EIO, where roving fish predation was low, predation was generally higher inside structurally complex environments where sea stars were responsible for much of the predation. Larger prey were generally less affected by predation in all habitats, probably due to the absence of large predators. Overall, our results indicate that, while the structural complexity of habitats is critical in mediating predator–prey interactions, the direction of this mediation is strongly influenced by differences in predator composition. Whether the regional pool of predators is dominated by visual roving species or chemotactic benthic predators may determine if structure dampens or enhances the influence of top–down control in marine macrophyte communities.  相似文献   

7.
Theoretical treatments of intraguild predation and its effects on behavioral interactions regard the phenomenon as a size‐structured binary response wherein predation among competitors is completely successful or completely unsuccessful. However, intermediate outcomes occur when individuals escape intraguild (IG) interactions with non‐lethal injuries. While the effects of wounds for prey include compromised mobility and increased predation risk, the consequences of similar injuries among top predators are not well understood, despite the implications for species interactions. Using an amphibian IG predator, Ambystoma opacum (Caudata: Ambystomatidae), we examined associations between non‐lethal injuries and predator body size, foraging strategy, microhabitat selection, and intraspecific agonistic interactions. Wounds were common among IG predators, generally increasing in frequency throughout larval ontogeny. Non‐lethal injuries were associated with differences in predator body size and behavior, with injured predators exhibiting smaller body sizes, increased use of benthic microhabitats, reduced agonistic displays, and increased risk of intraspecific aggression. While such effects were not ultimately associated with reduced foraging success, non‐lethal injury could contribute to niche partitioning between injured and healthy predators via habitat selection, but injured predators likely continue to exert predatory pressure on IG and basal prey populations. Our results indicate that studies of top‐down population regulation should incorporate injury‐related modifications to both prey and predator behavior and size structure.  相似文献   

8.
Different functional groups of generalist predators may complement each other in controlling prey populations; but intraguild interactions, common among generalist predators, may also reduce the strength of top–down control. In natural communities greater alterations to ecosystem function are expected if a whole functional group declines in abundance or is lost. Therefore studying functional group diversity is important for predicting effects of predator loss. We studied the top–down impact of web‐building spiders, hunting spiders and ants, which are highly abundant generalist predators in most terrestrial ecosystems, on prey from the herbivore and decomposer system of a grassland food web. The density of the three predator groups was manipulated by continuous removal in a three‐factorial designed field experiment, which was carried out for two years. We found no positive effect of increasing predator functional group richness on prey control. However there was evidence for strong composition effects between the functional groups. The presence of ants in predator assemblages reduced the prey suppression through mostly trait‐mediated intraguild interactions, while hunting and web‐building spiders contributed additively to prey suppression and reduced the density of herbivore and decomposer prey by 50–60%. A trophic cascade on plant biomass triggered by web‐builders and hunting spiders was diminished at levels of higher predator group diversity. In conclusion, our experiments showed that intraguild interactions strongly influence the strength of top–down control by generalist predators. Among spiders there was evidence for a positive relation between functional group richness and prey suppression but the overall outcome strongly depended on the occurrence of interference, driven by trait‐mediated indirect interactions.  相似文献   

9.
Intraguild predation, which is common for generalist predators, is a specific form of omnivory that may suppress the biological control of a pest. The dietary flexibility of a given organism depends on the choice of the C3 (banana crop) and the C4 (weeds) pathways they use and on the trophic level on which they feed. Understanding the conditions in which intraguild predation decreases biological control is a major issue in agroecosystems. We tested whether the contribution of different primary producer pathways in diets of generalist predators mediates the level of intraguild predation. We studied 10 agroecosystems in which banana plants (C3 metabolism) were diversely associated with weeds (C4 metabolism). Diversity in litter macrofauna was relatively low, with a mean between three and eight species per trap. Measurement of stable isotopes showed a significant decrease in the δ15N values of generalist predators when the C4 pathway contributed more than the C3 pathway to their diet. We rejected hypotheses that an increase in the abundance of prey and that a decrease in prey's δ15N values occur when the C4 pathway contributes more than the C3 pathway to their diet. The results are consistent with the diet modification hypothesis, that is, intraguild predation is lower when the C4 (weeds) pathway is preferred to the C3 pathway. Our results suggest that when the C4 pathway of weeds is more exploited by herbivores (or detritivores), generalist predators tend to consume these herbivores and thus neglect the intraguild prey. The diverse C4 plant community probably supports a diverse herbivore community that provides alternative prey. Our results provide evidence that increasing plant diversity in agroecosystems should decrease intraguild predation of generalist predators and should therefore improve pest regulation. In an applied perspective, plant diversity could be increased by establishing a more diverse cover‐crop community.  相似文献   

10.
Environmental heterogeneity can have profound effects on agroecosystem function and it is important for improving ecosystem services such as biological control. Promoting system diversity via non‐crop plants is one method for increasing habitat heterogeneity within farmscapes. Non‐crop plants provide access to refuges and alternative food resources provide multiple benefits to enhance populations of arthropod predators. In this study, we examined the effects of small‐scale spatial structure on life‐stage specific interactions between the native coccinellid, Hippodamia convergensGuérin‐Méneville, and the exotic Harmonia axyridis (Pallas) (both Coleoptera: Coccinellidae), which overlap in spatial distribution in many crop systems. Squash [Cucurbita pepo L. (Cucurbitaceae)] and non‐crop mugwort [Artemisia vulgaris L. (Asteraceae)] plants with and without aphids were used as a model of spatial heterogeneity in micro‐ and mesocosm experiments. In response to factorial treatment combinations, we evaluated oviposition behavior, egg predation, larval survival, and larval predator‐prey and predator‐predator interactions. Adult H. convergens displayed higher foraging activity on aphids when exposed to complex habitats containing a non‐crop plant. In the presence of the exotic coccinellid, H. convergens preferred to deposit eggs on the non‐crop plant. Furthermore, a combination of spatial heterogeneity and prey availability reduced larval intraguild predation and cannibalism, and improved reproductive output of H. convergens by reducing intra‐ and interspecific egg predation. Our results provide evidence that life‐stage‐specific intraguild interactions are mediated by access to non‐crop plants. Thus, the introduction or maintenance of non‐crop plants has the potential to enhance coexistence of multiple natural enemies and improve top‐down control of pests.  相似文献   

11.
The importance of natural enemies as the foundation of integrated pest management (IPM) is widely accepted, but few studies conduct the manipulative field experiments necessary to directly quantify their impact on pest populations in this context. This is particularly true for predators. Studying arthropod predator–prey interactions is inherently difficult: prey items are often completely consumed, individual predator–prey interactions are ephemeral (rendering their detection difficult) and the typically fluid or soft‐bodied meals cannot be easily identified visually within predator guts. Serological techniques have long been used in arthropod predator gut‐contents analysis, and current enzyme linked immunosorbent assays (ELISA) are highly specific and sensitive. Recently, polymerase chain reaction (PCR) methods for gut‐contents analysis have developed rapidly and they now dominate the diagnostic methods used for gut‐contents analysis in field‐based research. This work has identified trophic linkages within food webs, determined predator diet breadth and preference, demonstrated the importance of cannibalism and intraguild predation within and between certain taxa, and confirmed the benefits (predator persistence) and potential disadvantages (reduced feeding on pest species) of the availability of alternative nonpest prey. Despite considerable efforts to calibrate gut‐contents assays, these methods remain qualitative. Available techniques for predator gut‐contents analysis can provide rapid, accurate, cost‐effective identification of predation events. As such, they perfectly compliment the ecological methods developed to directly assess predator impacts on prey populations but which are imperfect at identifying the key predators. These diagnostic methods for gut‐contents analysis are underexploited in agricultural research and they are almost never applied in unison with the critical field experiments to measure predator impact. This paper stresses the need for a combined approach and suggests a framework that would make this possible, so that appropriate natural enemies can be targeted in conservation biological control.  相似文献   

12.
13.
Primary succession on bare ground surrounded by intact ecosystems is, during its first stages, characterized by predator‐dominated arthropod communities. However, little is known on what prey sustains these predators at the start of succession and which factors drive the structure of these food webs. As prey availability can be extremely patchy and episodic in pioneer stages, trophic networks might be highly variable. Moreover, the importance of allochthonous versus autochthonous food sources for these pioneer predators is mostly unknown. To answer these questions, the gut content of 1,832 arthropod predators, including four species of carabid beetles, two lycosid and several linyphiid spider species caught in early and late pioneer stages of three glacier forelands, was screened molecularly to track intraguild and extraguild trophic interactions among all major prey groups occurring in these systems. Two‐thirds of the 2,310 identified food detections were collembolans and intraguild prey, while one‐third were allochthonous flying insects. Predator identity and not successional stage or valley had by far the strongest impact on the trophic interaction patterns. Still, the variability of prey spectra increased significantly from early to late pioneer stage, as did the niche width of the predators. As such the structure of pioneer arthropod food webs in recently deglaciated Alpine habitats seems to be driven foremost by predator identity while site and early successional effects contribute to a lesser extent to food web variability. Our findings also suggest that in these pioneer sites, predatory arthropods depend less on allochthonous aeolian prey but are mainly sustained by prey of local production.  相似文献   

14.
1. In order to understand the relative importance of prey quality and mobility in indirect interactions among alternative prey that are mediated by a shared natural enemy, the nutritional quality of two common prey for a generalist insect predator along with the predator's relative preference for these prey was determined. 2. Eggs of the corn earworm Helicoverpa zea (Lepidoptera: Noctuidae) were nutritionally superior to pea aphids Acyrthosiphum pisum (Homoptera: Aphididae) as prey for big‐eyed bugs Geocoris punctipes (Heteroptera: Geocoridae). Big‐eyed bugs survived four times as long when fed corn earworm eggs than when fed pea aphids. Furthermore, only big‐eyed bugs fed corn earworm eggs completed development and reached adulthood. 3. In two separate choice experiments, however, big‐eyed bugs consistently attacked the nutritionally inferior prey, pea aphids, more frequently than the nutritionally superior prey, corn earworm eggs. 4. Prey mobility, not prey nutritional quality, seems to be the most important criterion used by big‐eyed bugs to select prey. Big‐eyed bugs attacked mobile aphids preferentially when given a choice between mobile and immobilised aphids. 5. Prey behaviour also mediated indirect interactions between these two prey species. The presence of mobile pea aphids as alternative prey benefited corn earworms indirectly by reducing the consumption of corn earworm eggs by big‐eyed bugs. The presence of immobilised pea aphids, however, did not benefit corn earworms indirectly because the consumption of corn earworm eggs by big‐eyed bugs was not reduced when they were present. 6. These results suggest that the prey preferences of generalist insect predators mediate indirect interactions among prey species and ultimately affect the population dynamics of the predator and prey species. Understanding the prey preferences of generalist insect predators is essential to predict accurately the efficacy of these insects as biological control agents.  相似文献   

15.
Most forest ecosystems contain a diverse community of top‐level predators. How these predator species interact, and how their interactions influence their spatial distribution is still poorly understood. Here we studied interactions among top predators in a guild of diurnal forest raptors in order to test the hypothesis that predation among competing predators (intraguild predation) significantly affects the spatial distribution of predator species, causing subordinate species to nest farther away from the dominant ones. The study analyzed a guild in southwestern Europe comprising three raptor species. For 8 years we studied the spatial distribution of used nests, breeding phenology, intraguild predation, territory occupancy, and nest‐builder species and subsequent nest‐user species. The subordinate species (sparrowhawk Accipiter nisus) nested farther away from the dominant species (goshawk A. gentilis), which preyed on sparrowhawks but not on buzzards Buteo buteo, and closer to buzzards, with which sparrowhawks do not share many common prey. This presumably reflects an effort to seek protection from goshawks. This potential positive effect of buzzards on sparrowhawks may be reciprocal, because buzzards benefit from old sparrowhawk nests, which buzzards used as a base for their nests, and from used sparrowhawk nests, from which buzzards stole prey. Buzzards occasionally occupied old goshawk nests. These results support our initial hypothesis that interspecific interactions within the raptor guild influence the spatial distribution of predator species in forest ecosystems, with intraguild predation as a key driver. We discuss several mechanisms that may promote the coexistence of subordinate and dominant predators and the spatial assembly of this raptor guild: spatial refuges, different breeding phenology, spatial avoidance, low territory occupancy between neighboring nesting territories, nest concealment and protection, and diet segregation.  相似文献   

16.
1. Interference between predator species frequently decreases predation rates, lowering the risk of predation for shared prey. However, such interference can also occur between conspecific predators. 2. Therefore, to understand the importance of predator biodiversity and the degree that predator species can be considered functionally interchangeable, we determined the degree of additivity and redundancy of predators in multiple- and single-species combinations. 3. We show that interference between two invasive species of predatory crabs, Carcinus maenas and Hemigrapsus sanguineus, reduced the risk of predation for shared amphipod prey, and had redundant per capita effects in most multiple- and single-species predator combinations. 4. However, when predator combinations with the potential for intraguild predation were examined, predator interference increased and predator redundancy decreased. 5. Our study indicates that trophic structure is important in determining how the effects of predator species combine and demonstrates the utility of determining the redundancy, as well as the additivity, of multiple predator species.  相似文献   

17.
1. For predators, prey selection should maximise nutrition and minimise fitness costs. In the present study, it was investigated whether a generalist predator [Chrysoperla carnea (Stephens) lacewing larvae] rejected harmful, chemically‐defended prey [Brevicoryne brassicae (Linnaeus) aphids] when non‐defended prey [Myzus persicae (Sulzer) aphids] were available. 2. It was tested: (i) whether consuming different prey species affects predator mortality; (ii) whether naïve predators reject chemically‐defended prey while foraging when non‐defended prey are available; (iii) whether the relative abundance of each prey affects the predator's prey choice; and (iv) whether predators learn to avoid consuming chemically‐defended prey after exposure to both prey species. 3. Consumption of B. brassicae yielded greater C. carnea mortality than M. persicae consumption, but naïve C. carnea did not reject B. brassicae in favour of M. persicae during foraging. When presented at unequal abundances, naïve predators generally consumed each aphid species according to their initial relative abundance, although, predation of non‐defended prey was less than expected when defended prey were initially more abundant, indicating a high consumption of B. brassicae impeded M. persicae consumption. With experience, C. carnea maintained predation of both aphid species but consumed more M. persicae than B. brassicae, indicating a change in behaviour. 4. Although prey choice by C. carnea may change with experience of available prey, prey chemical defences do not appear to influence prey choice by naïve predators. This inability to avoid harmful prey could facilitate wider, indirect interactions. Myzus persicae may benefit where high consumption of B. brassicae hinders predators in the short term, and in the long term, increases predator mortality.  相似文献   

18.
1. Although theory suggests that intraguild predation destabilises food webs and may result in exclusion of species, empirical observations of food webs reveal that it is a common interaction. It has been proposed that habitat structure reduces the interaction strength of intraguild predation, thus facilitating the coexistence of species. 2. This was tested using acarodomatia, tiny structures on plant leaves, and predatory mites, which usually reside in these domatia. Sweet pepper plants (Capsicum annuum L.) were used, which possess domatia consisting of tufts of hair, and coffee plants (Coffea arabica L.) with pit‐shaped domatia. 3. On sweet pepper, the predatory mites Neoseiulus cucumeris Oudemans and Iphiseius degenerans Berl. feed on each other's juveniles. Larvae of each of the species were therefore used as intraguild prey with adult females of the other species as intraguild predators. On coffee, a similar set‐up was used, with larvae and adult females of Amblyseius herbicolus Chant and Iphiseiodes zuluagai Denmark & Muma as intraguild prey and intraguild predators, respectively. 4. Domatia on detached, isolated sweet pepper and coffee leaves were either closed with glue or left open, after which larvae and adult predators were released. As a control, larvae were released on leaves with open or closed domatia without an adult predator. 5. Survival of larvae was high in the absence of the adult (intraguild) predator. In the presence of the intraguild predator, survival was significantly higher on leaves with open domatia than on leaves with closed domatia. 6. This shows that even such tiny structures as plant domatia may significantly affect the interaction strength of intraguild predation.  相似文献   

19.
Greater biodiversity among aphid predators sometimes leads to greater predator reproductive success. This could occur if cannibalism of predator eggs is consistently stronger than intraguild predation, such that diversity dilutes cannibalism risk when total predator densities remain constant across diversity levels. We compared the frequency of cannibalism versus intraguild predation by adult predators of four species [the lady beetles Coccinella septempunctata L. and Hippodamia convergens Guerin-Meneville, and the predatory bugs Geocoris bullatus (Say) and Nabis alternatus Parshley] on the eggs of three predator species (all of these predators but Nabis). For both coccinellid species, egg predation averaged across all intraguild predators was less frequent than cannibalism. In contrast, Geocoris eggs were generally more likely to be consumed by intraguild predators than by conspecifics. Closer inspection of the data revealed that Geocoris consistently consumed fewer eggs than the other species, regardless of egg species. Indeed, for lady beetle eggs it was relatively infrequent egg predation by Geocoris that brought down the average across all heterospecific predators, masking the fact that adults of the two lady beetles were no more likely to act as egg cannibals than as intraguild predators. Nabis ate eggs of the two beetles at approximately equal rates, but rarely ate Geocoris eggs. Female predators generally consumed more eggs than did males, but this did not alter any of the patterns described above. Altogether, our results suggest that species-specific differences in egg predation rates determined the relative intensity of egg intraguild-predation versus cannibalism, rather than any more general trend for egg cannibalism to always exceed intraguild predation.  相似文献   

20.
The soybean aphid, Aphis glycines Matsumura, has become a principal arthropod pest of soybean in the U.S. since its first detection in 2000. This species threatens soybean production through direct feeding damage and virus transmission. A diverse guild of insect predators feeds on soybean aphid in Michigan including the exotic coccinellid Harmonia axyridis, the native gall midge Aphidoletes aphidimyza and the native lacewing Chrysoperla carnea. In addition to feeding on A. glycines some members of this guild may also engage in intraguild predation. These interactions may produce positive, negative, or neutral impacts on A. glycines biological control. We explored the impact of intraguild predation on soybean aphid population dynamics by comparing aphid populations in microcosms with either A. aphidimyza larvae or C. carnea larvae alone, with both a H. axyridis adult and either A. aphidimyza or C. carnea larvae, and without predators. When H. axyridis was present with larval A. aphidimyza or C. carnea, the lady beetle acted as an intraguild predator. However, intraguild feeding did not result in a release of aphid populations compared with microcosms containing only the intraguild and aphid prey. A similar result was found in field cages. Cages allowing large predators had reduced numbers of A. aphidimyza and C. carnea larvae but also significantly fewer aphids compared with predator exclusion cages. Thus, in both lab and field studies the direct impact of H. axyridis on A. glycines overcame its negative impact as an intraguild predator. Together, these studies indicate that while the exotic H. axyridis does act as an intraguild predator and may contribute to local declines in A. aphidimyza and C. carnea, it is also currently important in overall biological control of A. glycines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号