首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
1. Winged dispersal is vital for aphids as predation pressure and host plant conditions fluctuate. 2. Ant‐tended aphids also need to disperse, but this may represent a cost for the ants, resulting in an evolutionary conflict of interest over aphid dispersal. 3. The combined effects of aphid alarm pheromone, indicating predation risk, and ant attendance on the production of winged aphids were examined in an experiment with Aphis fabae (Homoptera: Aphididae) (Scopoli 1763) aphids and Lasius niger (Formicidae: Formicinae) (Linné, 1758) ants. 4. This study is the first to investigate the joint effects of alarm pheromone and ant attendance, and also the first to detect an influence of alarm pheromone on the production of winged morphs in A. fabae. 5. After a period of 2 weeks, it was found that aphid colonies exposed to intermittent doses of alarm pheromone produced more winged individuals, whereas ant tending had the opposite effect. The effects were additive on a log scale, and ant attendance had a greater proportional influence than exposure to alarm pheromone. A tentative conclusion is that ants have gained the upper hand in an evolutionary conflict about aphid dispersal.  相似文献   

2.
Many aphids are known to engage in a trophic mutualism with ants, whereby the aphids secrete sugary-rich honeydew which is collected by the ants for food, and the ants, in exchange, protect the aphids against natural enemies. Previous results, however, suggest that the production of some of the honeydew sugars, such as the ant-attractant trisaccharide melezitose, may induce an indirect cost to the aphids. This led us to believe that large differences in the nature of the secreted honeydew might exist, due to some clones capitalizing more or less on their mutualistic interaction with ants, or due to some “cheater” clones foregoing the production of particular sugars, instead taking advantage of the ant-attracting effect of other non sugar-deficient clones, co-occurring on the same plant. Here we present data on clonal variation in the composition of honeydew of the black bean aphid Aphis fabae which confirm this prediction. In particular, our results show that there was large interclone variation in the amount of glucose, melezitose and total sugar produced. The variation in the production of melezitose, however, showed particularly large differences, with 54% (7 out of 13) of the clones screened being virtually deficient for the production of this sugar, irrespective of whether the aphid colonies were ant-tended or not. The consequences of this finding in the context of the evolution and maintenance of the ant–aphid mutualism, as well as the adaptive benefits of oligosaccharide synthesis in aphids and other insects are discussed.  相似文献   

3.
Aphid species can be polyphagous, feeding on multiple host plants across genera. As host plant species can have large variation in their phloem composition, this can affect aphid fitness and honeydew composition. Previous research showed significant intraspecific genotype variation in the composition of the honeydew carbohydrates of the black bean aphid Aphis fabae, with the ant attractant trisaccharide melezitose showing especially large variation across different genotypes. In this study, we test if variation in melezitose and carbohydrate composition of aphid honeydew could be linked to the adaptation of specific aphid genotypes to particular host plants. To this end, 4 high and 5 low melezitose secreting genotypes of the black bean aphid Aphis fabae were reared on 4 common host plants: broad bean, goosefoot, beet, and poppy. The carbohydrate composition, and in particular melezitose secretion, showed important aphid genotype and host plant interactions, with some genotypes being high melezitose secreting on 1 host plant but not on another. However, the interaction effects were not paralleled in the fitness measurements, even though there were significant differences in the average fitness across the different host plants. On the whole, this study demonstrates that aphid honeydew composition is influenced by complex herbivore–plant interactions. We discuss the relevance of these findings in the context of ant–aphid mutualisms and adaptive specialization in aphids.  相似文献   

4.
Ant‐hemipteran mutualisms are keystone interactions that can be variously affected by warming: these mutualisms can be strengthened or weakened, or the species can transition to new mutualist partners. We examined the effects of elevated temperatures on an ant‐aphid mutualism in the subalpine zone of the Rocky Mountains in Colorado, USA. In this system, inflorescences of the host plant, Ligusticum porteri Coult. & Rose (Apiaceae), are colonized by the ant‐tended aphid Aphis asclepiadis Fitch or less frequently by the non‐ant tended aphid Cavariella aegopodii (Scopoli) (both Hemiptera: Aphididae). Using an 8‐year observational study, we tested for two key mechanisms by which ant‐hemipteran mutualisms may be altered by climate change: shifts in species identity and phenological mismatch. Whereas the aphid species colonizing the host plant is not changing in response to year‐to‐year variation in temperature, we found evidence that a phenological mismatch between ants and aphids could occur. In warmer years, colonization of host plant inflorescences by ants is decreased, whereas for A. asclepiadis aphids, host plant colonization is mostly responsive to date of snowmelt. We also experimentally established A. asclepiadis colonies on replicate host plants at ambient and elevated temperatures. Ant abundance did not differ between aphid colonies at ambient vs. elevated temperatures, but ants were less likely to engage in tending behaviors on aphid colonies at elevated temperatures. Sugar composition of aphid honeydew was also altered by experimental warming. Despite reduced tending by ants, aphid colonies at elevated temperatures had fewer intraguild predators. Altogether, our results suggest that higher temperatures may disrupt this ant‐aphid mutualism through both phenological mismatch and by altering benefits exchanged in the interaction.  相似文献   

5.
There are few longtime studies on the effects on aphids of being tended by ants. The aim of this study is to investigate how the presence of ants influences settling decisions by colonizing aphids and the post‐settlement growth and survival of aphid colonies. We conducted a field experiment using the facultative myrmecophile Aphis fabae and the ant Lasius niger. The experiment relied on natural aphid colonization of potted plants of scentless mayweed Tripleurospermum perforatum placed outdoors. Ants occurred naturally at the field site and had access to half of the pots and were prevented from accessing the remainder. The presence of winged, dispersing aphids, the growth and survival of establishing aphid colonies, and the presence of parasitoids were measured in relation to presence or absence of ants, over a period of five weeks. The presence of ants did not significantly influence the pattern of initial host plant colonization or the initial colony growth, but ant‐tended aphids were subject to higher parasitism by hymenopteran parasitoids. The net result over the experimental period was that the presence of ants decreased aphid colony productivity, measured as the number of winged summer migrants produced from the colonized host plants. This implies that aphids do not always benefit from the presence of ants, but under some conditions rather pay a cost in the form of reduced dispersal.  相似文献   

6.
The aphid–ant mutualistic relationships are not necessarily obligate for neither partners but evidence is that such interactions provide them strong advantages in terms of global fitness. While it is largely assumed that ants actively search for their mutualistic partners namely using volatile cues; whether winged aphids (i.e., aphids’ most mobile form) are able to select ant‐frequented areas had not been investigated so far. Ant‐frequented sites would indeed offer several advantages for these aphids including a lower predation pressure through ant presence and enhanced chances of establishing mutuaslistic interactions with neighbor ant colonies. In the field, aphid colonies are often observed in higher densities around ant nests, which is probably linked to a better survival ensured by ants’ services. Nevertheless, this could also result from a preferential establishment of winged aphids in ant‐frequented areas. We tested this last hypothesis through different ethological assays and show that the facultative myrmecophilous black bean aphid, Aphis fabae L., does not orientate its search for a host plant preferentially toward ant‐frequented plants. However, our results suggest that ants reduce the number of winged aphids leaving the newly colonized plant. Thus, ants involved in facultative myrmecophilous interactions with aphids appear to contribute to structure aphid populations in the field by ensuring a better establishment and survival of newly established colonies rather than by inducing a deliberate plant selection by aphid partners based on the proximity of ant colonies.  相似文献   

7.
Broad bean (Vicia faba), an annual plant bearing extrafloral nectaries (EFN) at the base of the upper leaves, is regularly infested by two aphid species, Aphis fabae and Acyrthosiphon pisum. EFN and A. fabae are commonly attended by the ant, Lasius niger, while Ac. pisum usually remains uninfested. Sugar concentration and sugar composition of extrafloral nectar did not change significantly after aphid infestation. The sugar concentration was significantly higher in EFN (c. 271 µg µl-1) than in the honeydew of A. fabae (37.5 µg µl-1). The presence of small A. fabae colonies had no significant effect on ant attendance of EFN, which remained at the same level as that on plants without A. fabae. Obviously, there was no significant competitive effect between the two sugar sources. We suggest that the high sugar concentration in the extrafloral nectar may outweigh the higher quality (due to the presence of melezitose) and quantity of aphid honeydew. Ants and the presence of EFN influenced aphid colony growth. While A. fabae colonies generally grew better in the presence of ants, Ac. pisum colonies declined on plants with EFN or A. fabae colonies. We conclude that EFN may provide some degree of protection for V. faba against those sucking herbivores that are not able to attract ants.  相似文献   

8.
Aphids are a worldwide pest and an important model in ecology and evolution. Little is known, however, about the genetic structure of their colonies at a microgeographic level. For example, it remains largely unknown whether most species form monoclonal or polyclonal colonies. Here, we present the first detailed study on levels of clonal mixing in a nonsocial facultative ant mutualist, the black bean aphid Aphis fabae. In contrast to the earlier suggestion that colonies of this species are generally monoclonal, we found that across two subspecies of the black bean aphid, A. fabae cirsiiacanthoidis and A. fabae fabae, 32% and 67% of the aphid colonies were in fact polyclonal, consisting of a mix of up to four different clones, which resulted in an overall average relatedness within colonies of 0.90 and 0.79 in the two subspecies. Data further show that the average relatedness in A. f. cirsiiacanthoidis remained relatively constant throughout the season, which means that clonal erosion due to clonal selection more or less balanced with the influx of new clones from elsewhere. Nevertheless, relatedness tended to decrease over the lifetime of a given colony, implying that clonal mixing primarily resulted from the joining of pre‐existing colonies as opposed to via simultaneous host colonisation by several foundresses. Widespread clonal mixing is argued to affect the ecology and evolution of the aphids in various important ways, for example with respect to the costs and benefits of group living, the evolution of dispersal and the interaction with predators as well as with the ant mutualists.  相似文献   

9.
Mutualisms contribute in fundamental ways to the origin, maintenance and organization of biological diversity. Introduced species commonly participate in mutualisms, but how this phenomenon affects patterns of interactions among native mutualists remains incompletely understood. Here we examine how networks of interactions among aphid‐tending ants, ant‐tended aphids, and aphid‐attacking parasitoid wasps differ between 12 spatially paired riparian study sites with and without the introduced Argentine ant Linepithema humile in southern California. To resolve challenges in species identification, we used DNA barcoding to identify aphids and screen for parasitoid wasps (developing inside their aphid hosts) from 170 aphid aggregations sampled on arroyo willow Salix lasiolepis. Compared to uninvaded sites, invaded sites supported significantly fewer species of aphid‐tending ants and ant‐tended aphids. At invaded sites, for example, we found only two species of ant‐tended aphids, which were exclusively tended by L. humile, whereas at uninvaded sites we found 20 unique ant–aphid interactions involving eight species of ant‐tended aphids and nine species of aphid‐tending ants. Ant–aphid linkage density was thus significantly lower at invaded sites compared to uninvaded sites. We detected aphid parasitoids in 14% (28/198) of all aphid aggregations. Although the level of parasitism did not differ between invaded and uninvaded sites, more species of wasps were detected within uninvaded sites compared to invaded sites. These results provide a striking example of how the assimilation of introduced species into multi‐species mutualisms can reduce interaction diversity with potential consequences for species persistence.  相似文献   

10.
Mutualistic interactions between ant and aphid species have been the subject of considerable historical and contemporary investigations, the primary benefits being cleaning and protection for the aphids and carbohydrate‐rich honeydew for the ants. Questions remained, however, as to the volatile semiochemical factor influencing this relationship. A recent study highlighted the role of bacterial honeydew volatile compounds in ant attraction. Here, ant's ability to distantly discriminate 2 aphid species was investigated based on bacterial honeydew semiochemicals emissions using a two‐way olfactometer. Both the mutualistic aphid Aphis fabae L. and the nonmyrmecophilous aphid Acyrthosiphon pisum Harris were found to be attractive for the ant Lasius niger L. The level of attraction was similar in both assays (control vs. one of the aphid species). However, when given a choice between these 2 aphid species, ants showed a significant preference for Aphis fabae. Honeydew volatiles, mostly from bacterial origins, are known to be a key element in ant attraction. Using the same olfactometry protocol, the relative attractiveness of volatiles emitted by honeydews collected from each aphid species and by bacteria isolated from each honeydew was investigated. Again, ants significantly preferred volatiles released by Aphis fabae honeydew and bacteria. This information suggests that microbial honeydew volatiles enable ants to distantly discriminate aphid species. These results strengthen the interest of studying the occurrence and potential impact of microorganisms in insect symbioses.  相似文献   

11.
Most studies aiming to determine the beneficial effect of ants on plants simply consider the effects of the presence or exclusion of ants on plant yield. This approach is often inadequate, however, as ants interact with both non-tended herbivores and tended Homoptera. Moreover, the interaction with these groups of organisms is dependent on ant density, and these functional relationships are likely to be non-linear. A model is presented here that segregates plant herbivores into two categories depending on the sign of their numerical response to ants (myrmecophiles increase with ants, non-tended herbivores decline). The changes in these two components of herbivores with increasing ant density and the resulting implications for ant-plant mutualisms are considered. It emerges that a wide range of ant densities needs to be considered as the interaction sign (mutualism or parasitism) and strength is likely to change with ant density. The model is used to interpret the results of an experimental study that varied levels of Aphis fabae infestation and Lasius niger ant attendance on Vicia faba bean plants. Increasing ant density consistently reduced plant fitness and thus, in this location, the interaction between the ants and the plant can be considered parasitic. In the Vicia faba system, these costs of ants are unlikely to be offset by other beneficial agents (e.g., parasitoids), which also visit extrafloral nectaries.  相似文献   

12.
Abstract. The ratio of the concentration of honeydew total amino acids to total sugars in the honeydew of eight species of aphids, all feeding on tansy, Tanacetum vulgare (L.), was determined and correlated with honeydew production and ant‐attendance. The honeydew of the five ant‐attended aphid species [Metopeurum fuscoviride (Stroyan), Trama troglodytes (v. Hayd), Aphis vandergooti (Börner), Brachycardus cardui (L.), Aphis fabae (Scopoli)] was rich in total amino acids, ranging from 12.9 to 20.8 nmol µL?1 compared with the unattended aphid Macrosiphoniella tanacetaria (Kalt.) with only 3 nmol µL?1. Asparagine, glutamine, glutamic acid and serine (all nonessential amino acids) were the predominant amino acids in the honeydew of all species. The total concentration of amino acids in the phloem sap of tansy was much higher (78.7 nmol µL?1) then in the honeydew samples, and the predominant amino acids were glutamate (34.3%) and threonine (17.7%). A somewhat unexpected result was the finding that those aphid species with the highest total amino acid concentration in the honeydew always had the highest concentration of sugars. The lowest amino acid–sugar combined value was 104–28.8 nmol µL?1 in the non ant‐attended species M. tanacetaria, and the highest value was an average of 270–89.9 nmol µL?1 for the three most intensely attended aphid species M. fuscoviride, A. vandergooti and T. troglodytes. There is no evidence that any single amino acid or group of amino acids in the honeydew acted as an attractant for ant‐attendance in these eight aphid species. The richness of the honeydew (rate of secretion × total concentration of sugars), along with the presence of the attractant sugar melezitose, comprised the critical factors determining the extent of ant‐attendance of the aphids feeding on T. vulgare. The high total amino acid concentration in sugar‐rich honeydews can be explained by the high flow‐through of nutrients in aphids that are particularly well attended by ants.  相似文献   

13.
Aphid–ant associations are often described as mutually beneficial interactions in which honeydew is traded for protection from predators and parasitoids. The aim of the present study was to determine parasitization avoidance in ant‐tended aphid colonies. Field experiments were carried out on two host plants: hoary cress Lepidium draba (Brassicaceae) and Canadian teasel Cirsium arvense (Asteraceae). Lepidium was host to Acyrthosiphon gossypii (Aphididae) tended by the ant Lasius turcicus (Formicidae) and attacked by two parasitoids, Trioxys asiaticus (Braconidae) and Lysiphlebus fabarum (Braconidae). Cirsium was host to Brachycaudus cardui tended by Crematogaster sordidula and attacked by L. fabarum and Aphidius colemani (Braconidae). The per capita population growth rate of A. gossypii was significantly higher in the presence of ants, while B. cardui was negatively affected, albeit non‐significantly. The parasitism rate of A. gossypii decreased significantly when tended by Lasius turcicus, but the presence of Crematogaster sordidula in colonies of B. cardui significantly increased parasitism. Our results indicate that the effects of ant attendance vary between different aphid–ant interactions. Moreover, parasitoids can benefit from the presence of ants under some conditions.  相似文献   

14.
The defensive effects of ants against aphid predators have been well documented in the mutualistic relationship of aphids and their attending ants. However, it is not clear whether ant attendance has any direct effect on the aphids' growth and reproduction. Through field experiments, this study evaluates the benefits and, in particular, the costs of ant attendance to aphid colonies, focusing on the drepanosiphid aphid Tuberculatus quercicola which is associated with the Daimyo oak, Quercus dentata , and which is always attended by the red wood ant Formica yessensis . Ant attendance was clearly beneficial to the aphid; the exclusion of ants led to a significant increase in the extinction rate of aphid colonies. However, MANOVA and randomized block ANOVA indicated that in colonies continuously attended by ants, aphids had significantly smaller body size and produced a smaller number of embryos than in colonies isolated from ants when they were reared under homogeneous host conditions free from natural enemies. Thus, ant attendance had a negative influence on the growth and reproduction of the aphids, even though it contributed to the greater longevity of the aphid colonies. We hypothesize that ant-attended aphids are under intense selective pressures that act against aphid clones which fail to attract many ants, so that aphids have developed an adaptive mechanism to allocate a larger fraction of resources to the honeydew when they are requested to do so by the ants in order to ensure the ants' consistent visitation.  相似文献   

15.
Honeydew is the keystone on which ant–aphid mutualism is built. The present study investigates how each sugar identified in Aphis fabae Scopoli honeydew acts upon the feeding and the laying of a recruitment trail by scouts of the aphid‐tending ant Lasius niger Linnaeus, and thus may enhance collective exploitation by the ant mutualists. The feeding preferences shown by L. niger for honeydew sugars are: melezitose = sucrose = raffinose > glucose = fructose > maltose = trehalose = melibiose = xylose. Although feeding is a prerequisite to the launching of trail recruitment, the reverse is not necessarily true: not all ingested sugar solutions elicit a trail‐laying behaviour among fed scouts. Trail mark laying is only triggered by raffinose, sucrose or melezitose, with the latter sugar being specific to honeydew. By comparing gustatory and recruitment responses of ant foragers to sugar food sources, the present study clarifies the role of honeydew composition both as a source of energy and as a mediator in ant–aphid interactions. Lasius niger feeding preferences can be related to the physiological suitability of each sugar (i.e. their detection by gustatory receptors as well as their ability to be digested and converted into energy). Regarding recruitment, the aphid‐synthesized oligosaccharide (melezitose) could be used by ant scouts as a cue indicative of a long‐lasting productive resource that is worthy of collective exploitation and defence against competitors or aphid predators.  相似文献   

16.
Although species interactions are often proposed to be stronger at lower latitudes and elevations, few studies have evaluated the mechanisms driving such patterns. In this study, we assessed whether, and by which mechanisms, abiotic changes associated with elevation altered the outcome of an ant–aphid protection mutualism. To do so, we characterized the multi‐trophic interactions among the ant Formica podzolica, the aphid Aphis varians, and aphid natural enemies occurring on the plant Chamerion angustifolium within replicate high and low elevation valleys. Low (versus high) elevation sites had longer summers (snowmelt 13 days earlier) and were on average 1.1°C warmer and 41% drier throughout the year. At low elevations, individual ant colonies consumed approximately double the volume of carbohydrate baits, likely due to a higher foraging tempo, and possibly due to a greater demand for sugar‐ versus protein‐rich resources (as indicated by stable isotope analysis). Wild aphid colonies at low elevations were visited by 1.4‐fold more natural enemies (controlling for variation in aphid abundance), while experimental aphid colonies on potted plants were tended 52% more frequently by ants. As a result, ants increased aphid colony survival by 66% at low elevations but had no detectable effect at high elevations; at low (versus high) elevations aphid colonies without ants had lower survival, demonstrating stronger predator effects, while aphid colonies with ants had higher survival, demonstrating even stronger ant benefits. Analyses for the effects of mean summer temperature yielded qualitatively identical results to those based on elevation. Collectively, these findings support predictions for a greater sensitivity of higher trophic levels to warming and demonstrate how species interactions can vary across environmental gradients due to simultaneous changes in species traits and abundances across multiple trophic levels.  相似文献   

17.

—In 2015–2017, attendance of 15 invasive and 22 native species of herbaceous plants by ants was studied in 6 habitats in the environs of Kyiv (Ukraine). Altogether, 14 ant species were found, of which 12 were recorded on invasive plants and 9 on native plants; 8 aphid species were found on 8 invasive plant species. Five invasive plant species (Asclepias syriaca, Heracleum mantegazzianum, Oenothera biennis, Onopordum acanthium, and Amaranthus retroflexus) were found to be attractive to ants, with over a half of all the ant workers in all the habitats being recorded on them; besides, numerous colonies of 7 aphid species were also found on these plants. These invasive plants positively affect the structure of ant assemblages since the aphid colonies provide ants with food resource. The remaining 10 invasive plant species, including 5 transformer species, were poorly visited by ants and housed no aphid colonies, with the exception of Conyza canadensis on which the non-myrmecophilous aphid Uroleucon erigeronense (Thomas, 1878) was found. Two thirds of invasive plant species had a negative effect on the structure of ant assemblages because they replaced the native plants and thus reduced the trophic resources of aphids.

  相似文献   

18.
1. The aphids Dysaphis plantaginea Passerini, Aphis spp. (Aphis pomi De Geer and Aphis spiraecola Patch), and Eriosoma lanigerum Hausmann are commonly found together in apple orchards. Ants establish a mutualistic relationship with the myrmecophilous aphids D. plantaginea and Aphis spp. but not with E. lanigerum. 2. Field surveys and one experiment manipulating the presence of ants and the aphid species were conducted to test the hypothesis that ants play a role in structuring the community of these aphids on apple. 3. Ants tended D. plantaginea and Aphis spp. but not E. lanigerum colonies. In the field, D. plantaginea performed better in the presence of ants while no effect was observed in Aphis spp. Contrarily, populations of Aphis spp. in the manipulative experiment performed better in the presence of ants while no differences were observed for D. plantaginea. Such differences between field and manipulative conditions could be related to thermal tolerance, phenology, and life cycles. In contrast, populations of E. lanigerum were reduced in the presence of ants. 4. Ants also had a significant negative effect on the abundance of natural enemies, which could partially explain the benefits to the tended aphids. However, while ants did not provide a benefit to Aphis spp. when it was reared alone, in the presence of other species ant attendance increased Aphis abundance by 256% and simultaneously reduced E. lanigerum abundance by 63%. Therefore, ants benefited Aphis by reducing competition with other aphid species, which involves a different mechanism, explaining the benefit of ant attendance. Considering all the aphid species together, ants had a net positive effect on aphid abundance, which was consequently considered harmful for the plant. 5. Our results highlighted the role that ants play in structuring apple aphid communities and give support to the observed pattern that ants can benefit tended aphids while simultaneously reducing the abundance of untended herbivores.  相似文献   

19.
While many studies have demonstrated that ants provide beneficial services to aphids, Bristow (Ant-plant interactions, Oxford University Press, Oxford, 104–119, 1991) first questioned why so few aphid species are ant-attended. Phylogenetic trees have demonstrated multiple gains and loss of ant-attendance in the course of aphid-ant interactions, implying that mutualisms easily form and dissolve. Several studies have reported the factors that influence the formation and maintenance of aphid-ant interactions. Examples include the physiological costs of ant attendance, competition for mutualistic ants, ant predation on aphids, the influence of host plants, and parasitoid wasps. Recent physiological techniques have also revealed the chemical component of aphid-ant mutualisms. The honeydew of ant-attended aphids contains melezitose (a trisaccharide), which has an important role in aphid-ant interactions. Studies of cuticular hydrocarbons on aphids and ants have clarified the underlying mechanisms of ant predation on aphids. Attending ants also reduce aphid dispersal ability, causing the formation of fragmented aphid populations with low genetic diversity in each population. The reduced aphid dispersal could be partly explained by higher wing loading and reduction of flight apparatus due to ant attendance. Whether ant attendance is associated with the range of host plants of aphids or genetic variation in microorganism in aphids remain to be explored.  相似文献   

20.
1. In ant–hemipteran mutualisms, ants receive carbohydrates in the form of honeydew, while hemipterans receive protection from natural enemies. In the absence of natural enemies, however, the direct effects of tending are generally less well known. We hypothesised that with increasing tending intensity (ant to aphid ratio), aphid performance would increase initially, then decrease at high tending levels due to the metabolic cost of producing high quality honeydew. 2. We tested our hypothesis in a greenhouse experiment by manipulating Argentine ant (Linepithema humile Mayr) colony size while holding constant the initial size of aphid (Chaitophorus populicola Thomas) aggregations. The two parameters associated with survival, aphid survivorship to maturity and longevity, declined with increasing tending intensity, whereas per capita birth rate and time to first reproduction showed no relationship to attendance. The intrinsic rate of increase declined only at relatively high tending levels, suggesting a nonlinearity in the effect of tending intensity. 3. Tending intensity measured in the experiment was similar to that observed in free‐living aggregations of C. populicola. Furthermore, the per capita recruitment rate of ants to free‐living aphid aggregations was negatively density‐dependent, indicating that small aggregations tend to experience the highest levels of tending intensity. This finding suggests that the aphid's intrinsic rate of increase may be positively density‐dependent, mediated by the aphid's mutualistic interaction with the ant. 4. In the Argentine ant–C. populicola interaction, experimental manipulation of colony size revealed a direct cost of ant attendance that was conditional upon tending intensity. Experiments that manipulate only ant presence or absence may yield an incomplete understanding of the mutualistic interaction if underlying nonlinearities exist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号