首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immunogold labeling on sections of a freeze-substituted tubular myelin-enriched fraction isolated from a bronchoalveolar lavage of rat lung showed that surfactant protein A (SP-A) occurs predominantly at the corners of the tubular myelin lattice. Seventy-nine percent of the gold particles were located within 20 nm from a corner. Extracellular SP-A was detected only in the tubular myelin lattice and not in vesicles or secreted lamellar bodies. Ultra-thin cryosections of rat lung fixed in vivo showed that intracellular SP-A was distributed homogeneously over the stacked membranes of lamellar bodies in alveolar Type II cells. The presence of SP-A at the corners of the tubular myelin lattice suggests an important role of this protein in the formation and/or maintenance of this highly ordered lattice.  相似文献   

2.
The goal of this study was to compare the functions of Clara and type II cells during alveolar clearance and recycling of surfactant protein (SP) A, a secretory product of both cell types. We examined the incorporation of instilled biotinylated SP-A (bSP-A) into rat lung type II and Clara cells as a measure of clearance and recycling of the protein. Ultrastructural localization of bSP-A was accomplished by an electron-microscopic immunogold technique at 7, 30, and 120 min after intratracheal instillation. Localization of bSP-A was quantitatively evaluated within extracellular surfactant components (lipid-rich forms: myelin figures, vesicles, and tubular myelin; and lipid-poor hypophase) and in compartments of type II and Clara cells. bSP-A was incorporated into myelinic and vesicular forms of extracellular surfactant, but tubular myelin and hypophase had little bSP-A. Lamellar bodies of type II cells demonstrated a significant time-dependent increase in their incorporation of bSP-A. There was a concentration of bSP-A in the secretory granules and mitochondria of Clara cells, but no Clara cell compartment showed a pattern of time-dependent change in immunolabeling. Our immunolabeling data demonstrated a time-dependent movement of exogenous SP-A from extracellular components into type II cells and their secretory granules. Clara cells did not demonstrate a time-dependent incorporation of bSP-A into their secretory granules during the period of this study. If Clara cells recycle SP-A, they must reach a steady state very quickly or very slowly.  相似文献   

3.
Lamellar bodies were isolated from dexamethasone and T3-treated explant cultures of human fetal lung, using sucrose density-gradient centrifugation. We examined their content of surfactant apoprotein A (SP-A), and their ability to form surface films and to undergo structural transformation in vitro. SP-A measured by ELISA composed less than 2% of total protein within lamellar bodies; this represented, as a minimum estimate, a 2-12-fold enrichment over homogenate. One- and two-dimensional gel electrophoresis also suggested that SP-A was a minor protein component of lamellar bodies. Adsorption of lamellar bodies to an air/water interface was moderately rapid, but accelerated dramatically upon addition of exogenous SP-A in ratios of 1:2-16 (SP-A:phospholipid, w/w). Similar adsorption patterns were seen for lamellar bodies from fresh adult rat and rabbit lung. Lamellar bodies incubated under conditions that promote formation of tubular myelin underwent structural rearrangement only in the presence of exogenous SP-A, with extensive formation of multilamellate whorls of lipid bilayers (but no classical tubular myelin lattices). We conclude that lamellar bodies are enriched in SP-A, but have insufficient content of SP-A for structural transformation to tubular myelin and rapid surface film formation in vitro.  相似文献   

4.
Rat alveolar Type II cells were immunostained with antibodies directed against chromogranin A (monoclonal, LK2H10) and chromogranins A and B (polyclonal, LKZM1U). The chromogranins or chromogranin-like proteins were identified in cells in lung tissue sections and isolated Type II cells at the light and electron microscopic levels. We used post-embedding immunoelectron microscopy, with immunogold, to detect the proteins' immunoreactivity in osmicated tissues. Gold particles were distributed over the phospholipid lamellae within the lamellar bodies of alveolar Type II cells and over the lattice structure of tubular myelin. Quantitative analysis of gold labeling densities in the various cell compartments indicated that only the latter two structures were specifically labeled. Controls, which included pre-absorption of both anti-chromogranin antibodies with excess chromogranin A or with native surfactant, resulted in a greater than 60% decrease in gold labeling. A possible role of chromogranins or chromogranin-like proteins as Ca2+ binding proteins in alveolar Type II cells is discussed.  相似文献   

5.
Rodent and primate lung surfactant was studied at the ultrastructural level utilizing procedures that retained most of the carbohydrates and lipids in thin section. The three-dimensional aspect of tubular myelin surfactant was observed to be four, lipid bilayer membranes oriented at right angles so that in cross-section it was square. In longitudinal section it appeared as two parallel lipid bilayers. Inside the tubular myelin was a homogeneous matrix material that completely filled the tubule except for a small, central area. A single multilamellar body, after it expanded and rearranged lamellae to form tubular myelin surfactant, still retained its basic morphology so that it was possible to determine the number and orientation of bodies that comprised a given surfactant area. This enabled quantification of surfactant by serial sectioning. Each transformed multilamellar body was observed to contain from 2 to 13 groups of tubular myelin, oriented at angles within the transformed body. With three-dimensional understanding, many of the areas previously reported to be homogeneous were determined to actually be oblique cross or longitudinal sections through tubular myelin surfactant.Five distinct layers characterized tubular myelin surfactant: (1) Unexpanded layer—up to 63 recently secreted multilamellar bodies. (2) Formation layerp?aired lamellae expanding and rearranging to form tubules. (3) Mature layer—tubular myelin surfactant. (4) Air-surfactant interface layer—usually a single lipid bilayer which was the outermost layer of tubular myelin of from 1 to 12 transformed multilamellar bodies. (5) Degraded surfactant layer—lipid bilayer spheres were formed at the interface and degraded in the alveolar space.  相似文献   

6.
A glycoprotein of Mr 26-36,000 (SP-A) is an abundant phospholipid-associated protein in pulmonary surfactant. SP-A enhances phospholipid reuptake and inhibits secretion by Type II epithelial cells in vitro. We have used two electron microscopic cytochemical methods to demonstrate selective binding and uptake of SP-A by rat pulmonary Type II epithelial cells. Using an immunogold bridging technique, we showed that SP-A binding was selective for Type II cell surfaces. Binding was dose dependent and saturable, reaching maximal binding at approximately 10 ng/ml. On warming to 23 degrees C, SP-A binding sites were clustered in coated pits on the cell surface. To characterize the internalization and intracellular routing of SP-A, we used the biotinyl ligand-avidin-gold technique. Biotinyl SP-A was bound by rat Type II epithelial cells as described above. On warming, biotinyl SP-A was seen in association with coated vesicles and was subsequently located in endosomes and multivesicular bodies. Biotinyl SP-A-gold complexes were seen in close approximation to lamellar bodies 10-60 min after warming. Binding of biotinyl SP-A was inhibited by competition with unlabeled SP-A. These results support the concept that Type II epithelial cells bind and internalize SP-A by receptor-mediated endocytosis. This newly described uptake system may play a role in the recycling of surfactant components or mediate the actions of SP-A on surfactant phospholipid secretion.  相似文献   

7.
We investigated the cellular and subcellular distribution of surfactant protein D (SP-D) by immunogold labeling in lungs of adult rats that had been given bovine serum albumin coupled to 5-nm gold (BSAG) for 2 hr to visualize the endocytotic pathway. Specific gold labeling for SP-D was found in alveolar Type II cells, Clara cells, and alveolar macrophages. In Type II cells abundant labeling was observed in the endoplasmic reticulum, whereas the Golgi complex and multivesicular bodies were labeled to a limited extent only. Lamellar bodies did not seem to contain SP-D. Gold labeling in alveolar macrophages was restricted to structures containing endocytosed BSAG. In Clara cells labeling was found in the endoplasmic reticulum, the Golgi complex, and was most prominent in granules present in the apical domain of the cell. Double labeling experiments with anti-surfactant protein A (SP-A) showed that both SP-A and SP-D were present in the same granules. However, SP-A was distributed throughout the granule contents, whereas SP-D was confined to the periphery of the granule. The Clara cell granules are considered secretory granules and not lysosomes, because they were not labeled for the lysosomal markers cathepsin D and LGP120, and they did not contain endocytosed BSAG.  相似文献   

8.
The adsorptive properties of phospholipids of pulmonary surfactant are markedly influenced by the presence of three related proteins (26-38 KD, reduced) found in purified surfactant. Whether these proteins are pre-assembled with lipids before secretion is uncertain but would be expected for a lipoprotein secretion. We performed indirect immunocytochemistry on frozen thin sections of rat lung to identify cells and intracellular organelles that contain these proteins. The three proteins, purified from lavaged surfactant, were used to generate antisera in rabbits. Immunoblotting of rat surfactant showed that the IgG reacted with the three proteins and a 55-60 KD band which may be a polymer of the lower MW species. Specific gold labeling occurred over alveolar type II cells, bronchiolar Clara cells, alveolar macrophages, and tubular myelin. In type II cells labeling occurred in synthetic organelles and lamellar bodies, which contain surfactant lipids. Lamellar body labeling was increased fivefold by pre-treating tissue sections with a detergent. Multivesicular bodies and some small apical vesicles in type II cells were also labeled. Secondary lysosomes of alveolar macrophages were immunoreactive. Labeling in Clara cells exceeded that of type II cells, with prominent labeling in secretory granules, Golgi apparatus, and endoplasmic reticulum. These observations clarify the organelles and pathways utilized in the elaboration of surfactant. After synthesis, the proteins move, probably via multivesicular bodies, to lamellar bodies. Both lipids and proteins are present in tubular myelin. Immunologically identical or closely similar proteins are synthesized by Clara cells and secreted from granules which appear not to contain lipid. The role of these proteins in bronchiolar function is unknown.  相似文献   

9.
The effects of systematically administered puromycin on the fine structure of the lung were studied. The effects varied depending on the duration of exposure and the time interval between the last injection and sacrifice. After short term exposure most surfactant had separated from the epithelial surface and profound alterations in the tubular myelin structure were seen. After moderate duration of exposure a previously undescribed multilamellar lining layer was observed which was often detached from the alveolar epithelium. Six hours after the last injection the regular tubular myelin pattern reappeared. Puromycin treatment results in inhibition of various proteins synthesized by type II epithelial cells. Inhibition of synthesis of some proteins, most probably that of glycoprotein A, causes a primary effect on the structure of surfactant. The loss of at least some of the cytoskeletal proteins in Type II epithelial cells apparently results in interference with exocytosis of lamellar body contents.  相似文献   

10.

Background

Declining levels of surfactant protein A (SP-A) after lung transplantation are suggested to indicate progression of ischemia/reperfusion (IR) injury. We hypothesized that the previously described preservation-dependent improvement of alveolar surfactant integrity after IR was associated with alterations in intraalveolar SP-A levels.

Methods

Using immuno electron microscopy and design-based stereology, amount and distribution of SP-A, and of intracellular surfactant phospholipids (lamellar bodies) as well as infiltration by polymorphonuclear leukocytes (PMNs) and alveolar macrophages were evaluated in rat lungs after IR and preservation with EuroCollins or Celsior.

Results

After IR, labelling of tubular myelin for intraalveolar SP-A was significantly increased. In lungs preserved with EuroCollins, the total amount of intracellular surfactant phospholipid was reduced, and infiltration by PMNs and alveolar macrophages was significantly increased. With Celsior no changes in infiltration or intracellular surfactant phospholipid amount occurred. Here, an increase in the number of lamellar bodies per cell was associated with a shift towards smaller lamellar bodies. This accounts for preservation-dependent changes in the balance between surfactant phospholipid secretion and synthesis as well as in inflammatory cell infiltration.

Conclusion

We suggest that enhanced release of surfactant phospholipids and SP-A represents an early protective response that compensates in part for the inactivation of intraalveolar surfactant in the early phase of IR injury. This beneficial effect can be supported by adequate lung preservation, as e.g. with Celsior, maintaining surfactant integrity and reducing inflammation, either directly (via antioxidants) or indirectly (via improved surfactant integrity).  相似文献   

11.
Alveolar macrophages (AM) which are separated into four fractionated subpopulations (I, II, III and IV), represented differential immunohistochemical staining with antibody against pulmonary surfactant protein A (SP-A). In light microscopy, the least dense AM (fraction I) were intensely stained with antibody to SP-A in numerous granules of the cytoplasm, whereas the most dense cells (fraction IV) showed immuno-reactivity with the antibody in several granules distributed in the spreading and elongating cytosol. By Western blot analysis, antibody to SP-A recognized a triplet of nature molecules of SP-A in AM lysate. However, the antigen of the AM lysate almost disappeared when the cells were cultured for more than two days, which indicate that AM do not synthesize SP-A and have digested intracellular SP-A during the cultivation. Immunoelectron microscopically, AM of fraction IV sometimes had very large vacuoles including lamellar body-like structures, probably pulmonary surfactant immediately after taken up from the alveolar lumen by them, which were heavily deposited with gold particles indicating antigenic site of SP-A. Whereas cells of fraction I contained numerous cytoplasmic vacuoles that were frequently labelled with the immuno-gold particles and were not associated with lamellar body-like structures, which may indicate that the materials in the vacuoles are digesting. The results of this experiments suggest that pulmonary surfactant, layered on the alveolar epithelium, is in part taken up by higher dense AM and is digested during a process of their maturation in the direction of lower dense cells, which undergo an important role of metabolism of pulmonary surfactant by AM subpopulations.  相似文献   

12.
Electron microscopical examination of gas gland cells of the physostome European eel (Anguilla anguilla) and of the physoclist perch (Perca fluviatilis) revealed the presence of significant numbers of lamellar bodies, which are known to be involved in surfactant secretion. In the perch, in which the gas gland is a compact structure and gas gland cells are connected to the swim bladder lumen via small canals, lamellar bodies were also found in flattened cells forming the swim bladder epithelium. Flat epithelial cells are absent in the eel swim bladder, in which the whole epithelium consists of cuboidal gas gland cells. In both species, Western blot analysis using specific antibodies to human surfactant protein A (SP-A) showed a cross-reaction with swim bladder tissue homogenate proteins of approximately 65 kDa and in the eel occasionally of approximately 120 kDa, probably representing SP-A-like proteins in a dimeric and a tetrameric state. An additional band was observed at approximately 45 kDa. Western blots using antibodies to rat SP-D again resulted in a single band at approximately 45 kDa in both species, suggesting that there might be a cross-reaction of the antibody to human SP-A with an SP-D-like protein of the swim bladder tissue. To localize the surfactant protein, eel gas gland cells were cultured on permeable supports. Under these conditions, the gas gland cells regain their characteristic polarity. Electron microscopy confirmed the presence of lamellar bodies in cultured cells, and occasionally, exocytotic events were observed. Immunohistochemical staining using an antibody to human SP-A demonstrated the presence of surfactant protein only in luminal membranes and in adjacent lateral membranes. Only occasionally, evidence was found for the presence of surfactant protein in lamellar bodies.  相似文献   

13.
Members of the ATP binding cassette (ABC) protein superfamily actively transport a wide range of substrates across cell and intracellular membranes. Mutations in ABCA3, a member of the ABCA subfamily with unknown function, lead to fatal respiratory distress syndrome (RDS) in the newborn. Using cultured human lung cells, we found that recombinant wild-type hABCA3 localized to membranes of both lysosomes and lamellar bodies, which are the intracellular storage organelles for surfactant. In contrast, hABCA3 with mutations linked to RDS failed to target to lysosomes and remained in the endoplasmic reticulum as unprocessed forms. Treatment of those cells with the chemical chaperone sodium 4-phenylbutyrate could partially restore trafficking of mutant ABCA3 to lamellar body-like structures. Expression of recombinant ABCA3 in non-lung human embryonic kidney 293 cells induced formation of lamellar body-like vesicles that contained lipids. Small interfering RNA knockdown of endogenous hABCA3 in differentiating human fetal lung alveolar type II cells resulted in abnormal, lamellar bodies comparable with those observed in vivo with mutant ABCA3. Silencing of ABCA3 expression also reduced vesicular uptake of surfactant lipids phosphatidylcholine, sphingomyelin, and cholesterol but not phosphatidylethanolamine. We conclude that ABCA3 is required for lysosomal loading of phosphatidylcholine and conversion of lysosomes to lamellar body-like structures.  相似文献   

14.
ABCA3 is highly expressed at the membrane of lamellar bodies in alveolar type II cells, in which pulmonary surfactant is stored. ABCA3 gene mutations cause fatal surfactant deficiency in newborns. We established HEK293 cells stably expressing human ABCA3 and analyzed the function. Exogenously expressed ABCA3 is glycosylated and localized at the intracellular vesicle membrane. ABCA3 is efficiently photoaffinity labeled by 8-azido-[alpha(32)P]ATP, but not by 8-azido-[gamma(32)P]ATP, when the membrane fraction is incubated in the presence of orthovanadate. Photoaffinity labeling of ABCA3 shows unique metal ion-dependence and is largely reduced by membrane pretreatment with 5% methyl-beta-cyclodextrin, which depletes cholesterol. Electron micrographs show that HEK293/hABCA3 cells contain multivesicular, lamellar body-like structures, which do not exist in HEK293 host cells. Some fuzzy components such as lipids accumulate in the vesicles. These results suggest that ABCA3 shows ATPase activity, which is induced by lipids, and may be involved in the biogenesis of lamellar body-like structures.  相似文献   

15.
Surfactant protein A (SP-A) is the most abundant of the surfactant-associated proteins. SP-A is involved in the formation of tubular myelin, the modulation of the surface tension-reducing properties of surfactant phospholipids, the metabolism of surfactant phospholipids, and local pulmonary host defense. We hypothesized that elimination of SP-A would alter the regulation of SP-B gene expression and the formation of tubular myelin. Midtrimester human fetal lung explants were cultured for 3-5 days in the presence or absence of an antisense 18-mer phosphorothioate oligonucleotide (ON) complementary to SP-A mRNA. After 3 days in culture, SP-A mRNA was undetectable in antisense ON-treated explants. After 5 days in culture, levels of SP-A protein were also decreased by antisense treatment. SP-B mRNA levels were not affected by the antisense SP-A ON treatment. However, there was decreased tubular myelin formation in the antisense SP-A ON-treated tissue. We conclude that selective elimination of SP-A mRNA and protein results in a decrease in tubular myelin formation in human fetal lung without affecting SP-B mRNA. We speculate that SP-A is critical to the formation of tubular myelin during human lung development and that the regulation of SP-B gene expression is independent of SP-A gene expression.  相似文献   

16.
Surfactant secretion by lung type II cells occurs when lamellar bodies (LBs) fuse with the plasma membrane and surfactant is released into the alveolar lumen. Surfactant protein A (SP-A) blocks secretagogue-stimulated phospholipid (PL) release, even in the presence of surfactant-like lipid. The mechanism of action is not clear. We have shown previously that an antibody to LB membranes (MAb 3C9) can be used to measure LB membrane trafficking. Although the ATP-stimulated secretion of PL was blocked by SP-A, the cell association of iodinated MAb 3C9 was not altered, indicating no effect on LB movement. FM1-43 is a hydrophobic dye used to monitor the formation of fusion pores. After secretagogue exposure, the threefold enhancement of the number of FM1-43 fluorescent LBs (per 100 cells) was not altered by the presence of SP-A. Finally, there was no evidence of a large PL pool retained on the cell surface through interaction with SP-A. Thus SP-A exposure does not affect these stages in the surfactant secretory pathway of type II cells.  相似文献   

17.
Surfactant protein A (SP-A) is an abundant protein found in pulmonary surfactant which has been reported to have multiple functions. In this review, we focus on the structural importance of each domain of SP-A in the functions of protein oligomerization, the structural organization of lipids and the surface-active properties of surfactant, with an emphasis on ultrastructural analyses. The N-terminal domain of SP-A is required for disulfide-dependent protein oligomerization, and for binding and aggregation of phospholipids, but there is no evidence that this domain directly interacts with lipid membranes. The collagen-like domain is important for the stability and oligomerization of SP-A. It also contributes shape and dimension to the molecule, and appears to determine membrane spacing in lipid aggregates such as common myelin and tubular myelin. The neck domain of SP-A is primarily involved in protein trimerization, which is critical for many protein functions, but it does not appear to be directly involved in lipid interactions. The globular C-terminal domain of SP-A clearly plays a central role in lipid binding, and in more complex functions such as the formation and/or stabilization of curved membranes. In recent work, we have determined that the maintenance of low surface tension of surfactant in the presence of serum protein inhibitors requires cooperative interactions between the C-terminal and N-terminal domains of the molecule. This effect of SP-A requires a high degree of oligomeric assembly of the protein, and may be mediated by the activity of the protein to alter the form or physical state of surfactant lipid aggregates.  相似文献   

18.
Pulmonary surfactant isolated from gene-targeted surfactant protein A null mice (SP-A(-/-)) is deficient in the surfactant aggregate tubular myelin and has surface tension-lowering activity that is easily inhibited by serum proteins in vitro. To further elucidate the role of SP-A and its collagen-like region in surfactant function, we used the human SP-C promoter to drive expression of rat SP-A (rSPA) or SP-A containing a deletion of the collagen-like domain (DeltaG8-P80) in the Clara cells and alveolar type II cells of SP-A(-/-) mice. The level of the SP-A in the alveolar wash of the SP-A(-/-,rSP-A) and SP-A(-/-,DeltaG8-P80) mice was 6.1-and 1.3-fold higher, respectively, than in the wild type controls. Tissue levels of saturated phosphatidylcholine were slightly reduced in the SP-A(-/-,rSP-A) mice compared with SP-A(-/-) littermates. Tubular myelin was present in the large surfactant aggregates isolated from the SP-A(-/-,rSP-A) lines but not in the SP-A(-/-,DeltaG8-P80) mice or SP-A(-/-) controls. The equilibrium and minimum surface tensions of surfactant from the SP-A(-/-,rSP-A) mice were similar to SP-A(-/-) controls, but both were markedly elevated in the SP-A(-/-,DeltaG8-P80) mice. There was no defect in the surface tension-lowering activity of surfactant from SP-A(+/+,DeltaG8-P80) mice, indicating that the inhibitory effect of DeltaG8-P80 on surface activity can be overcome by wild type levels of mouse SP-A. The surface activity of surfactant isolated from the SP-A(-/-,rSP-A) but not the SP-A(-/-,DeltaG8-P80) mice was more resistant than SP-A(-/-) littermate control animals to inhibition by serum proteins in vitro. Pressure volume relationships of lungs from the SP-A(-/-), SP-A(-/-,rSP-A), and SP-A(-/-,DeltaG8-P80) lines were very similar. These data indicate that expression of SP-A in the pulmonary epithelium of SP-A(-/-) animals restores tubular myelin formation and resistance of isolated surfactant to protein inhibition by a mechanism that is dependent on the collagen-like region.  相似文献   

19.
Alveolar type II cells secrete, internalize, and recycle pulmonary surfactant, a lipid and protein complex that increases alveolar compliance and participates in pulmonary host defense. Surfactant protein (SP) D, a collagenous C-type lectin, has recently been described as a modulator of surfactant homeostasis. Mice lacking SP-D accumulate surfactant in their alveoli and type II cell lamellar bodies, organelles adapted for recycling and secretion of surfactant. The goal of current study was to characterize the interaction of SP-D with rat type II cells. Type II cells bound SP-D in a concentration-, time-, temperature-, and calcium-dependent manner. However, SP-D binding did not alter type II cell surfactant lipid uptake. Type II cells internalized SP-D into lamellar bodies and degraded a fraction of the SP-D pool. Our results also indicated that SP-D binding sites on type II cells may differ from those on alveolar macrophages. We conclude that, in vitro, type II cells bind and recycle SP-D to lamellar bodies, but SP-D may not directly modulate surfactant uptake by type II cells.  相似文献   

20.
Regulation of surfactant secretion   总被引:4,自引:0,他引:4  
Lung surfactant is synthesized in the alveolar type II cell. Its lipids and hydrophobic proteins (SP-B and SP-C) are stored in lamellar bodies and secreted by regulated exocytosis. In contrast, the hydrophilic proteins (SP-A and SP-D) appear to be secreted independently of lamellar bodies. Regulation of surfactant secretion is mediated by at least three distinct signaling mechanisms: activation of adenylate cyclase with formation of cAMP and activation of cAMP-dependent protein kinase; activation of protein kinase C; and a Ca(2+)-regulated mechanism that likely results in the activation of Ca(2+)-calmodulin-dependent protein kinase. These signaling mechanisms are activated by a variety of agonists, some of which may have a physiological role. ATP is one such agent and it activates all three signaling mechanisms. There is increasing information on the identity of several of the signaling proteins involved in surfactant secretion although others remain to be established. In particular the identity of the phospholipase C, protein kinase C and phospholipase D isomers expressed in the type II cell and/or involved in surfactant secretion has been established. Distal steps in the secretory pathway beyond protein kinase activation as well as the physiological regulation of surfactant secretion, are major issues that need to be addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号