首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Cadmium metabolism by rat liver endothelial and Kupffer cells.   总被引:1,自引:0,他引:1  
The metabolism of cadmium was investigated in Wistar-rat liver non-parenchymal cells. Kupffer and endothelial cells, the major cell populations lining the sinusoidal tracts, were isolated by collagenase dispersion and purified by centrifugal elutriation. At 20 h after subcutaneous injection of the metal salt (1.5 mg of Cd/kg body weight), endothelial cells accumulated 2-fold higher concentrations of Cd than did Kupffer or parenchymal cells. Most of the Cd in non-parenchymal cells was associated with cytosolic metallothionein (MT), the low-Mr heavy-metal-binding protein(s). When MT was quantified in cytosols from cells isolated from control rats by a 203Hg competitive-binding assay, low levels were found to be present in Kupffer, endothelial and parenchymal cells. Cd injection significantly increased MT levels in all three cell types. The induction of MT synthesis was investigated in vitro by using primary monolayer cultures. The incorporation of [35S]cysteine into MT increased 47% over constitutive levels in endothelial-cell cultures after the addition of 0.8 microM-Cd2+ to the medium for 10 h. MT synthesis in Kupffer cells was not observed. The lack of MT synthesis by monolayer cultures of Kupffer cells in vitro was associated with a decreased capacity of these cells to accumulate heavy metals from the extracellular medium. This apparent decreased ability to transport metals did not reflect a general defect in either cellular function or metabolic activity, since isolated Kupffer cells incorporated [3H]leucine into protein at rates comparable with those shown by liver parenchymal cells and readily phagocytosed particles.  相似文献   

2.
The time course of cadmium-metallothionein synthesis was studied in non-parenchymal and parenchymal cells, isolated by a cell-separation technique from the livers of rats after the simultaneous injection of CdCl2 (0.05 mg of Cd/kg) and a 10-fold molar excess of 2,3-dimercaptopropanol. Under these conditions of dosing, in contrast with the injection of CdCl2 alone, both cell types accumulate similar concentrations of Cd and synthesize equivalent concentrations of metallothionein. It is concluded that both cell types have a similar capacity to synthesize the metalloprotein, and that the limiting factor under normal cadmium exposure is the relatively inefficient metal uptake into the non-parenchymal cells.  相似文献   

3.
1. Hepatic uptake of low-density lipoprotein (LDL) in parenchymal cells and non-parenchymal cells was studied in control-fed and cholesterol-fed rabbits after intravenous injection of radioiodinated native LDL (125I-TC-LDL) and methylated LDL (131I-TC-MetLDL). 2. LDL was taken up by rabbit liver parenchymal cells, as well as by endothelial and Kupffer cells. Parenchymal cells, however, were responsible for 92% of the hepatic LDL uptake. 3. Of LDL in the hepatocytes, 89% was taken up via the B,E receptor, whereas 16% and 32% of the uptake of LDL in liver endothelial cells and Kupffer cells, respectively, was B,E receptor-dependent. 4. Cholesterol feeding markedly reduced B,E receptor-mediated uptake of LDL in parenchymal liver cells and in Kupffer cells, to 19% and 29% of controls, respectively. Total uptake of LDL in liver endothelial cells was increased about 2-fold. This increased uptake is probably mediated via the scavenger receptor. The B,E receptor-independent association of LDL with parenchymal cells was not affected by the cholesterol feeding. 5. It is concluded that the B,E receptor is located in parenchymal as well as in the non-parenchymal rabbit liver cells, and that this receptor is down-regulated by cholesterol feeding. Parenchymal cells are the main site of hepatic uptake of LDL, both under normal conditions and when the number of B,E receptors is down-regulated by cholesterol feeding. In addition, LDL is taken up by B,E receptor-independent mechanism(s) in rabbit liver parenchymal, endothelial and Kupffer cells. The non-parenchymal liver cells may play a quantitatively important role when the concentration of circulating LDL is maintained at a high level in plasma, being responsible for 26% of hepatic uptake of LDL in cholesterol-fed rabbits as compared with 8% in control-fed rabbits. The proportion of hepatic LDL uptake in endothelial cells was greater than 5-fold higher in the diet-induced hypercholesterolaemic rabbits than in controls.  相似文献   

4.
Behshad E  Parkin SE  Bollinger JM 《Biochemistry》2004,43(38):12220-12226
Cysteine desulfurases (CDs) are pyridoxal-5'-phosphate (PLP)-dependent enzymes that cleave sulfur from cysteine via an enzyme cysteinyl persulfide intermediate. In vitro studies of these enzymes have generally employed dithiothreitol as a cosubstrate to reductively cleave the persulfide intermediate, and it has been suggested that persulfide cleavage is the rate-limiting step for catalysis. In this study, the kinetics and mechanisms of cleavage of the persulfide intermediate in Slr0387 (CD-0387), a sequence group I (NifS/IscS-like) cysteine desulfurase from Synechocystis sp. PCC 6803, by physiological and nonphysiological reductants have been examined, and the extent to which this step is rate-limiting for catalysis has been determined. The observations that dithiols such as dithiothreitol (DTT) cleave the persulfide with approximately 100-fold greater efficiency than structurally similar monothiols such as 2-mercaptoethanol (2-ME), that cleavage by DTT exhibits saturation kinetics, and that the dependence of the observed first-order rate constant for persulfide cleavage by DTT on the concentration of the dithiol corresponds precisely with that for formation of a complex between DTT and the PLP cofactor of the resting enzyme suggest that persulfide cleavage by dithiols occurs by prior formation of a complex, in which addition of one thiol to the cofactor positions the second thiol for attack. This conclusion and the observation that a second molecule of L-cysteine can bind to the cofactor in the persulfide form of CD-0387 explain why several CDs are subject to potent inhibition by L-cysteine during turnover with DTT: binding of L-cysteine prevents formation of the PLP-DTT adduct and renders the dithiol no better than a monothiol, which must react with the persulfide in bimolecular fashion. Consistent with this rationale, catalysis by CD-0387 with 2-ME as cosubstrate, while less efficient, is not subject to potent inhibition by L-cysteine. The similarity of the maximum rate constant for persulfide cleavage by DTT to k(cat) suggests that persulfide cleavage is, in fact, primarily rate-determining, and this conclusion is confirmed by the observation that k(cat) is approximately 10-fold greater when tris-(2-carboxyethyl)phosphine (TCEP), the most efficient persulfide cleaver identified, is used as the reducing cosubstrate. The faster turnover with TCEP provides a chemical model for activation of CD-0387 and other CDs by the presence of accessory factors that serve as efficient acceptors of the persulfide sulfur.  相似文献   

5.
We investigated the intrahepatic distribution of small unilamellar liposomes injected intravenously into rats at a dose of 0.10 mmol of lipid per kg body weight. Sonicated liposomes consisting of cholesterol/sphingomyelin (1:1), (A); cholesterol/egg phosphatidylcholine (1:1), (B); cholesterol/sphingomyelin/phosphatidylserine (5:4:1), (C) or cholesterol/egg-phosphatidylcholine/phosphatidylserine (5:4:1), (D) were labeled by encapsulation of [3H]inulin. The observed differences in rate of blood elimination and hepatic accumulation (A much less than B approximately equal to C less than D) confirmed earlier observations and reflected the rates of uptake of the four liposome formulations by isolated liver macrophages in monolayer culture. Fractionation of the liver into a parenchymal and a non-parenchymal cell fraction revealed that 80-90% of the slowly clearing type-A liposomes were taken up by the parenchymal cells while of the more rapidly eliminated type-B liposomes even more than 95% was associated with the parenchymal cells. Incorporation of phosphatidylserine into the sphingomyelin-based liposomes caused a significant increase in hepatocyte uptake but a much more substantial increase in non-parenchymal cell uptake, resulting in a major shift of the intrahepatic distribution towards the non-parenchymal cell fraction. For the phosphatidylcholine-based liposomes incorporation of phosphatidylserine did not increase the already high uptake by the parenchymal cells while uptake by the non-parenchymal cells was only moderately elevated; this resulted in only a small shift in distribution towards the non-parenchymal cells. The phosphatidylserine-induced increase in liposome uptake by non-parenchymal liver cells was paralleled by an increase in uptake by the spleen. Fractionation of the non-parenchymal liver cells in a Kupffer cell fraction and an endothelial cell fraction showed that even for the slowly eliminated liposomes of type A endothelial cells do not participate to a measurable extent in the elimination process, thus excluding involvement of fluid-phase pinocytosis in the uptake process.  相似文献   

6.
Parenchymal and non-parenchymal cells were isolated from the livers of control, starved, Zn2+-injected and Cd2+-injected rats. Parenchymal cells were prepared by differential centrifugation after perfusion of the liver with collagenase. Non-parenchymal cells were separated from parenchymal cells by unit-gravity sedimentation and differential centrifugation. Yields of 2 x 10(8) non-parenchymal cells with greater than 95% viability and less than 0.2% contamination with parenchymal cells were obtained without exposing cells to Pronase. Metallothioneins-I and -II were identified in parenchymal cells and non-parenchymal cells from Zn2+-treated rats. The metallothionein contents of parenchymal cells, non-parenchymal cells and intact liver were quantified by a competitive 203Hg-binding assay. Administration of heavy-metal salts significantly increased the metallothionein content of both cell populations, although the concentration of the protein was approx. 2.5-fold greater in parenchymal cells than in non-parenchymal cells. Overnight starvation increased the metallothionein content of parenchymal cells without altering that of non-parenchymal cells. The potential significance of this differential response by different liver cell types with regard to the influence of Zn2+ on stress-mediated alterations in hepatic metabolism is discussed.  相似文献   

7.
The mechanisms of inhibition of rat brain Na +-K +- ATPase by cadmium chloride (CdCl2) and methylmercuric chloride (CH3HgCl) were studied in vitro by assessing the effects of these heavy metals on this enzyme and associated component parameters. Both the heavy metals significantly inhibited the overall Na +-K + -ATPase in a concentration-dependent manner with an estimated median inhibitory concentration (IC-50) of 3.2 × 10?5M for CdCl2 and 6 × 10?6M for CH3HgCl. Protection of enzyme against heavy metal inhibition by 5 × 10?5M to 1 × 10?4 M dithiothreitol (DTT) and glutathione (GSH) or cysteine (CST) indicates that both monothiols and dithiols have the same ability in regenerating sulfhydryl (–SH) groups or chelating the metals. Inhibition of K+-p-nitrophenyl phosphatase (K+-PNPPase), the component enzyme catalyzing the K+-dependent dephosphorylation in the overall Na +-K +ATPase reaction by these heavy metals, indicates that the mechanism of inhibition involves binding to this phosphatase. Reversal of K+-PNPPase inhibition by DTT, GSH, and CST suggests sulfhydryl groups as binding sites. Binding of 3H-oubain, a cardiac glycocide and inhibitor of both phosphorylation and dephosphorylation, to brain fraction was significantly decreased by CH3HgCl, and this inhibition was reversed by the three thiol compounds, suggesting presence of –SH group(s) in the ouabain receptor site. Cadmium chloride failed to inhibit the binding of this receptor, indicating that the mechanics of inhibition of ATPase by CH3HgCl and CdCl2 are different from each other. The results suggest that the critical conformational property of enzyme common to both kinase (E1) and phosphatase (E2) is susceptible to CH3HgCl whereas only phosphatase is sensitive to CdCl2.  相似文献   

8.
A number of structurally unrelated hypolipidaemic agents and certain phthalate-ester plasticizers induce hepatomegaly and proliferation of peroxisomes in rodent liver, but there is relatively limited data regarding the specific effects of these drugs on liver non-parenchymal cells. In the present study, liver parenchymal, Kupffer and endothelial cells from untreated and fenofibrate-fed rats were isolated and the activities of two enzymes associated with peroxisomes (catalase and the peroxisomal fatty acid beta-oxidation system) as well as cytosolic and microsomal epoxide hydrolase were measured. Microsomal epoxide hydrolase, cytosolic epoxide hydrolase and catalase activities were 7-12-fold higher in parenchymal cells than in Kupffer or endothelial cells from untreated rats; the peroxisomal fatty acid beta-oxidation activity was only detected in parenchymal cells. Fenofibrate increased catalase, cytosolic epoxide hydrolase and peroxisomal fatty acid beta-oxidation activities in parenchymal cells by about 1.5-, 3.5- and 20-fold, respectively. The induction of catalase (2-3-fold) and cytosolic epoxide hydrolase (3-5-fold) was also observed in Kupffer and endothelial cells; furthermore, a low peroxisomal fatty acid beta-oxidation activity was detected in endothelial cells. Morphological examination by electron microscopy showed that peroxisomes were confined to liver parenchymal cells in untreated animals, but could also be observed in endothelial cells after administration of fenofibrate.  相似文献   

9.
Incorporation of 8 mol% lactosylceramide in small unilamellar vesicles consisting of cholesterol, dimyristoylphosphatidylcholine and phosphatidylserine in a molar ratio of 5:4:1 and containing [3H]inulin as an aqueous-space marker resulted in a 3-fold decreased half-life of the vesicles in blood and a corresponding increase in liver uptake after intracardial injection into rats. The increase in liver uptake was mostly accounted for by an enhanced uptake in the parenchymal cells, while the uptake by the non-parenchymal cells was only slightly increased. The uptake of both the control and the glycolipid-containing vesicles by the non-parenchymal cell fraction could be attributed completely to the Kupffer cells; no radioactivity was found in the endothelial cells. The effect of lactosylceramide on liver uptake and blood disappearance of the liposomes was effectively counteracted by desialylated fetuin, injected shortly before the liposome dose. This observation supports the notion that a galactose-specific receptor is involved in the liver uptake of lactosylceramide liposomes.  相似文献   

10.
Intravenously administered gadolinium chloride caused only a slight decrease in the rate of elimination of small unilamellar liposomes from the blood and had no influence on the total hepatic uptake of these vesicles, but did alter their intrahepatic distribution substantially. Uptake by the non-parenchymal cells was substantially decreased, whereas uptake by the parenchymal cells showed a concomitant increase. Our earlier observations (Roerdink et al. (1981) Biochim. Biophys. Acta 677, 79-89) on the effect of lanthanides on the in vivo distribution of multilamellar liposomes have been extended, in that we demonstrate, in addition to the drop in elimination rate from the blood and in the over-all hepatic uptake, a shift of liposome distribution within the Kupffer cell population. While the larger Kupffer cells, which normally take up a major fraction of an injected liposome dose, were strongly inhibited in liposome uptake, the more numerous small macrophages showed a 3-4-fold increase in uptake.  相似文献   

11.
The polymerized albumin hypothesis was proposed for the mechanism of a hepatitis B virus (HBV) infection of human liver parenchymal cells on the basis that a receptor for polymerized albumin treated with glutaraldehyde was detected on isolated human liver parenchymal cells. However, some controversy exists regarding this hypothesis, because a receptor for formaldehyde-treated bovine serum albumin (f-BSA) has been found on liver non-parenchymal cells. Therefore, we characterized the uptake of polymerized rat serum albumin (p-RSA) and f-BSA by rat liver in vivo, and their bindings to liver cells in vitro. Most p-RSA and f-BSA was taken up by the liver after intravenous administration, and the uptake of p-RSA was inhibited by a 1,000-fold excess of f-BSA. In addition, more than 80% of p-RSA taken up by the liver was found in the non-parenchymal cells, and the remainder was found in the parenchymal cells. P-RSA as well as f-BSA could bind to isolated rat liver parenchymal and non-parenchymal cells. Furthermore, p-RSA and f-BSA could bind to isolated rat liver cell plasma membranes, and these bindings were completely inhibited by 1,000-fold excess of either f-BSA or p-RSA. These results indicate that there is a receptor, which can recognize both p-RSA and f-BSA, on not only rat liver non-parenchymal cells but also the parenchymal cells. It is also indicated that the receptor on the parenchymal cells as well as the non-parenchymal cells is involved in the in vivo uptake of p-RSA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Small unilamellar vesicles consisting of sphingomyelin, cholesterol and phosphatidylserine in a molar ratio of 4:5:1 containing [3H]inulin as a marker of the aqueous space or [Me-14C]choline-labeled sphingomyelin as a marker of the lipid phase were injected intravenously into rats. After separation of the non-parenchymal cells into a Kupffer cell fraction and an endothelial cell fraction by elutriation centrifugation analysis of the radioactivity contents demonstrated that Kupffer cells were actively involved in the uptake of the vesicles whereas endothelial cells did not contribute at all. Uptake by total parenchymal cells was also substantial but, on a per cell base, significantly lower than that by the Kupffer cells. By comparising the fate of the [3H]inulin label and the [14C]sphingomyelin label it was concluded that release of liposomal lipid degradation products especially occurred from Kupffer cells rather than from parenchymal cells. In both cell types, however, substantial proportions of the 14C-label accumulated in the phosphatidylcholine fraction, indicating intracellular degradation of sphingomyelin and subsequent phosphatidylcholine synthesis. Treatment of the animals with the lysosomotropic agent chloroquine prior to liposome injection effectively blocked the conversion of the choline-labeled sphingomyelin into phosphatidylcholine in both cell types. This observation indicates that uptake of the vesicles occurred by way of an endocytic mechanism.  相似文献   

13.
A triantennary galactose-terminated cholesterol derivative, N-(tris(beta-D-galactopyranosyloxymethyl) methyl)-N alpha-(4-(5-cholesten-3 beta-yloxy)succinyl)glycinamide (Tris-Gal-Chol), which dissolves easily in water, was added to human low density lipoproteins (LDL) in varying quantities. Upon addition to LDL, Tris-Gal-Chol was immediately incorporated, and after intravenous injection into rats, the iodine-labeled apolipoprotein B radioactivity was readily associated with the liver. The incorporation of 5 or 13 micrograms of Tris-Gal-Chol into LDL (20 micrograms of protein) stimulates the parenchymal cell association of LDL 6- and 10-fold, respectively, at 10 min after injection. For non-parenchymal cells, the cell association is 60- and 70-fold stimulated, respectively. It can be calculated that non-parenchymal cells (mainly Kupffer cells) are for 80-90% responsible for the increased, galactose-mediated, interaction of Tris-Gal-Chol LDL with the liver. The increased interaction of LDL with the cells upon Tris-Gal-Chol incorporation is followed by degradation of the apolipoprotein B in the lysosomes. Incorporation of Tris-Gal-Chol into unilamellar liposomes (10 mol %) leads to an increased cell association of the enclosed [3H]inulin to parenchymal cells (1.4-fold) and non-parenchymal cells (11.8-fold). It is concluded that Tris-Gal-Chol incorporation into LDL leads to a markedly increased catabolism of LDL by the liver which might be used for lowering serum LDL levels. The possibility of increasing the interaction of LDL or liposomes with specific liver cell types by Tris-Gal-Chol might also have an application for targeting drugs or other compounds of interest to these cells.  相似文献   

14.
Receptor-dependent uptake mechanisms for low-density lipoprotein (LDL) were studied in rabbit liver parenchymal and non-parenchymal cells. Hybridization studies with a cDNA probe revealed that mRNA for the apo (apolipoprotein) B,E receptor was present in endothelial and Kupffer cells as well as in parenchymal cells. By ligand-blotting experiments we showed that apo B,E-receptor protein was present in both parenchymal and non-parenchymal cells. Studies of binding of homologous LDL in cultured rabbit parenchymal cells suggested that about 63% of the specific LDL binding was mediated via the apo B,E receptor. Approx. 47% of the specific LDL binding was dependent on Ca2+, suggesting that specific Ca2+-dependent as well as Ca2+-independent LDL-binding sites exist in liver parenchymal cells. Methylated LDL bound to the parenchymal cells in a saturable manner. Taken together, our results showed that apo B,E receptors are present in rabbit liver endothelial and Kupffer cells as well as in the parenchymal cells, and that an additional saturable binding activity for LDL may exist on rabbit liver parenchymal cells. This binding activity was not inhibited by EGTA or reductive methylation of lysine residues in apo B. LDL degradation in parenchymal cells was mainly mediated via the apo B,E receptor.  相似文献   

15.
Evidence suggesting that vicinal dithiols regulate immune-aggregate-induced vasoconstriction and glycogenolysis in the perfused rat liver was obtained. Phenylarsine oxide (PhAsO) and other tervalent organic arsenicals inhibited in a dose-dependent manner hepatic glycogenolysis, vasoconstriction, Ca2+ mobilization and the stimulated O2 consumption caused by immune-aggregate infusion. Polar tervalent and quinquivalent arsenicals were less effective than hydrophobic arsenicals. Prior infusion of Fc- but not Fab-fragments of IgG prevented partially immune-aggregate-stimulated hepatic metabolism, suggesting that immune aggregates elicit hepatic metabolic responses through Fc gamma receptors. The inhibitory action of PhAsO on immune-aggregate-stimulated hepatic glycogenolysis was unique; inhibition of glycogenolysis was not observed when phenylephrine, isoprenaline or glucagon was used as a stimulant. Although PhAsO might be expected to sequester cellular thiols, no significant change in the oxidation-reduction state of the major cellular thiol, glutathione, was found during PhAsO infusion. In addition, PhAsO exerted its effects without producing changes in hepatic adenine nucleotides and cyclic AMP. Evidence suggesting the involvement of vicinal dithiols was obtained through thiol-competition experiments using mono- and di-thiols. PhAsO inhibition of IgG-aggregate-stimulated hepatic vasoconstriction and glycogenolysis was reversed significantly by infusion of 2,3-dimercaptopropan-1-ol at 3-fold molar excess, whereas 2-mercaptoethanol at 40-fold molar excess was ineffective. The results of the present study provide evidence documenting the participation of vicinal dithiols during the coupling of hepatic immune-aggregate clearance by Kupffer cells with vasoconstriction of the hepatic vasculature (e.g. endothelial cells) and glycogenolysis (e.g. parenchymal cells).  相似文献   

16.
The route of Cd uptake influences the distribution of Cd, other metals, and metallothionein (MT). Although intestinal MT levels related to the tissue mass did not show proximodistal gradients after sc administration of CdCl2, orally administered high doses of CdCl2 increased mucosal MT levels longitudinally from the duodenum to the ileum. The gradient abolished when the mucosal MT level was related to the intestinal length. To further elucidate this finding, three groups of rats were studied: a control group, a group receiving dietary CdCl2, and a group receiving sc injections of CdCl2. The small intestine was removed after a 14-d treatment. Midjejunal segments were mounted in a cryomicrotome and cut transversally into five layers along the villus-crypt axis. Mucosal enzymes were measured to control these sections. Cd was measured by AAS and MT by RIA. Alkaline phosphatase and lactase activities exhibited the typical villus-crypt gradient. Mucosal MT levels paralleled those of Cd. Although Cd and MT concentrations were high at the tip of the villi and low in the crypts after oral administration, sc treatment reversed that profile. A molar Cd-MT ratio of approx 10 or 1 was reached after po or sc treatment, respectively. This demonstrates that only oral Cd may lead to an accumulation of Cd in the mucosal tissue fairly exceeding the binding capacity of small intestinal MT. The results show that different routes of Cd intake lead to a different MT-induction pattern in the intestinal wall and that longitudinal Cd and MT concentration gradients in the small intestine observed after high oral doses are a result of their high levels at the villus tips.  相似文献   

17.
Administration of phorbol 12-myristate 13-acetate (PMA) to rats in vivo resulted in the induction of ornithine decarboxylase activity in the liver which could be blocked by preinjection of indomethacin, a cyclooxygenase inhibitor. In vitro administration of PMA to primary cultures of rat parenchymal cells did not lead to an induction of ornithine decarboxylase activity. It was investigated to what extent non-parenchymal liver cells could play an intermediary role in the expression of the PMA effect on ornithine decarboxylase activity in parenchymal liver cells. Addition of conditioned medium from PMA-activated Kupffer cells to cultured parenchymal cells led to the induction of ornithine decarboxylase activity in parenchymal cells. This effect was not observed with conditioned medium from untreated Kupffer cells or from Kupffer cells treated with PMA plus indomethacin. Conditioned media from PMA-treated or untreated endothelial liver cells were ineffective in the induction of ornithine decarboxylase activity in parenchymal liver cells. Prostaglandin D2, the main eicosanoid produced by Kupffer cells, was able to stimulate the synthesis of ornithine decarboxylase in parenchymal liver cells (up to 40-fold) in a dose-dependent way. Prostaglandin (PG) D2 appeared to be a more potent inducer of ornithine decarboxylase activity in parenchymal cells than PGE1 and PGE2. It is concluded that intercellular communication inside the liver mediated by prostaglandins derived from activated Kupffer cells may form a mechanism to induce synthesis of specific proteins in parenchymal cells.  相似文献   

18.
The effects of cadmium-metallothionein (Cd-MT) on organic ion uptake in renal cortical slices and lipid peroxidation in the kidney were studied in rats. For in vitro studies, slices were prepared from kidneys of control animals and incubated in buffer containing either cadmium chloride (CdCl2) or Cd-MT in equimolar Cd concentrations ranging from 5 × 10?6 to 2 × 10?4 M. Uptake into the slices of the organic anion p-aminohippuric acid (PAH) was found to be inhibited by both forms of Cd in a dose-dependent manner. Although this inhibition was slightly greater in the presence of Cd-MT, accumulation of Cd into the slices was approximately 12 times greater with CdCl2 than Cd-MT. Tetraethylammonium (TEA) uptake was less sensitive to the inhibitory effects of both CdCl2 and Cd-MT, although a dose-dependent inhibition did occur with higher Cd concentrations. To study the in vivo effects of Cd-MT on transport function and lipid peroxidation in the kidney, rats were injected with Cd-MT (0.3 mg Cd per kilogram body weight [bw]) and sacrificed at specific time intervals. Similar to the in vitro studies, PAH uptake into the renal cortical slices was markedly inhibited within 12 hours after Cd-MT injection whereas inhibition of TEA uptake was less and not observed until 48 hours after injection. Only a small increase (1.4-fold) in lipid peroxidation, as measured by generation of malondialdehyde (MDA), in the kidney was detected at four hours postinjection, and no further increase was observed at later time periods. The results suggest that Cd-MT affects the transport of organic anions and cations during its renal uptake but that lipid peroxidation may play only a minor role in Cd-MT-induced renal toxicity.  相似文献   

19.
A cell isolation technique has been used to study the uptake and subsequent loss of beryllium (Be) by rat liver after intravenous administration of non-lethal doses of either particulate beryllium phosphate or the more hepatotoxic soluble BeSO4. It has been shown that beryllium phosphate is removed from the blood predominantly by the non-parenchymal (sinusoidal) cells of the liver and to a lesser extent more slowly by the parenchymal cells. After 24 h when the parenchymal cells have reached maximal Be content there has been a 50% loss of Be from the non-parenchymal cells and a similar loss from whole liver which is reflected in an increased level of Be in the blood. The Be count of non-parenchymal cells subsequently decreases much more slowly in a manner similar to that of the parenchymal cells, both being only halved during the following week. Within 24–48 h some redistribution of Be to the spleen occurs and it is suggested that this in part may be the result of Kupffer cell death. In splenectomized animals a high proportion of this redistributed Be appears to be retaken up by the liver mainly by the parenchymal cell population. After administration of BeSO4, which is known to form beryllium phosphate in plasma, a greater proportion of the Be is taken up slowly by the parenchymal cells and no redistribution of Be to the spleen is observed. It is suggested that this behaviour is related primarily to the smaller size and nature of the beryllium phosphate particles formed in plasma under these conditions. The rate of loss of Be from both the parenchymal and non-parenchymal cells is similar to that measured in beryllium phosphate treated animals. It has been estimated that liver cell death is produced when the cell content exceeds 2–3 nmol Be/106 cells although parenchymal cells appear to be more sensitive to Be derived from BeSO4 than preformed beryllium phosphate.  相似文献   

20.
In order to assess the relative importance of the receptor for low-density lipoprotein (LDL) (apo-B,E receptor) in the various liver cell types for the catabolism of lipoproteins in vivo, human LDL was labelled with [14C]sucrose. Up to 4.5h after intravenous injection, [14C]sucrose becomes associated with liver almost linearly with time. During this time the liver is responsible for 70-80% of the removal of LDL from blood. A comparison of the uptake of [14C]sucrose-labelled LDL and reductive-methylated [14C]sucrose-labelled LDL ([14C]sucrose-labelled Me-LDL) by the liver shows that methylation leads to a 65% decrease of the LDL uptake. This indicated that 65% of the LDL uptake by liver is mediated by a specific apo-B,E receptor. Parenchymal and non-parenchymal liver cells were isolated at various times after intravenous injection of [14C]sucrose-labelled LDL and [14C]sucrose-labelled Me-LDL. Non-parenchymal liver cells accumulate at least 60 times as much [14C]sucrose-labelled LDL than do parenchymal cells accumulate at least 60 times as much [14C]sucrose-labelled LDL than do parenchymal cells when expressed per mg of cell protein. This factor is independent of the time after injection of LDL. Taking into account the relative protein contribution of the various liver cell types to the total liver, it can be calculated that non-parenchymal cells are responsible for 71% of the total liver uptake of [14C]sucrose-labelled LDL. A comparison of the cellular uptake of [14C]sucrose-labelled LDL and [14C]sucrose-labelled Me-LDL after 4.5h circulation indicates that 79% of the uptake of LDL by non-parenchymal cells is receptor-dependent. With parenchymal cells no significant difference in uptake between [14C]sucrose-labelled LDL and [14C]sucrose-labelled Me-LDL was found. A further separation of the nonparenchymal cells into Kupffer and endothelial cells by centrifugal elutriation shows that within the non-parenchymal-cell preparation solely the Kupffer cells are responsible for the receptor-dependent uptake of LDL. It is concluded that in rats the Kupffer cell is the main cell type responsible for the receptor-dependent catabolism of lipoproteins containing only apolipoprotein B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号