首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 519 毫秒
1.
Summary The distribution and cellular localization of leu-enkephalin in the gut and pancreas was studied by immunohistochemistry using two different antisera, one specifically directed against leu-enkephalin and the other cross reacting with met-enkephalin. The results were identical with both antisera. In all species examined, enkephalin-immunoreactive material was found in nerves of the smooth muscle, particularly numerous in the myenteric plexus. Here, immunoreactive nerve cell bodies were observed occasionally. In addition, enkephalin-immunoreactive material was demonstrated in gut endocrine cells of chicken, mouse, rat, pig and monkey but not of guinea pig, cat and man. Enkephalin cells were detected also in the exocrine parenchyma of the porcine pancreas. They were rare in the gut of mouse, rat and monkey but numerous in the antrum and duodenum of pig where they were identified as 5-hydroxytryptamine-storing enterochromaffin cells. The enkephalin-containing cells of the porcine antrum and duodenum were defined ultrastructurally by the consecutive semithin/ultrathin section technique. The ultrastructural features were typical of enterochromaffin cells, the most characteristic ones being the irregular shape and high electron density of the cytoplasmic granules. The immunoreactive material was confined to the cytoplasmic granules.  相似文献   

2.
Bipolarity of duodenal enterochromaffin cells in the rat   总被引:11,自引:0,他引:11  
Summary Enterochromaffin cells of the rat duodenum have been studied immunocytochemically by use of a specific antiserum to serotonin. At the light-microscopic level serotonin immunoreactivity was observed in enterochromaffin cells located in the epithelium of the duodenal mucosa. Most of the serotonin-immunoreactive material was localized to the basal portion of the enterochromaffin cells, but small amounts of immunoreactive material were regularly observed in the apical portion. At the electron-microscopic level serotonin immunoreactivity in enterochromaffin cells was found to be concentrated over the dense cores of the cytoplasmic granules. The majority of these granules was located in the basal cytoplasm of the enterochromaffin cells, but serotonin-immunoreactive granules were also observed in the apical cytoplasm immediately beneath the microvilli. These observations indicate that duodenal enterochromaffin cells are bipolar and that they secrete serotonin both basally, to the circulation, and apically, to the gut lumen. Rat duodenal enterochromaffin cells thus appear to have an exocrine as well as an endocrine function.  相似文献   

3.
Summary Somatostatin cells are numerous in the pancreas and digestive tract of mammals as well as birds. In the pancreas of chicken, cat and dog they occur in both the exocrine parenchyma and in the islets. In the rat and rabbit, somatostatin cells have a peripheral location in the islets, whereas in the cat, dog and man the cells are usually more randomly distributed. In the stomach of rabbits and pigs, somatostatin cells are more numerous in the oxyntic gland area than in the pyloric gland area, whereas the reverse is true for the cat, dog and man. In the cat, pig and man, somatostatin cells are fairly numerous in the duodenum, whereas in the rat, rabbit and dog they are few in this location. In the remainder of the intestines somatostatin cells are few but regularly observed. Somatostatin cells are numerous in the human fetal pancreas and gut. In the fetal rat, somatostatin cells first appear in the pancreas and duodenum (at about the 16–17th day of gestation) and subsequently in the remainder of the intestine. Somatostatin cells do not appear in the gastric mucosa until after birth. Three weeks after birth, somatostatin cells show the adult frequency of occurrence and pattern of distribution. In the chicken, somatostatin cells are numerous in the proventriculus, absent from the gizzard, abundant in the gizzard-duodenal junction (antrum), infrequent in the duodenum and virtually absent from the remainder of the intestines. No immunoreactive cells can be observed in the thyroid of any species nor in the ultimobranchial gland of the chicken. In the chick embryo, somatostatin cells are first detected in the pancreas and proventriculus (at about the 12th day of incubation). They appear in the remainder of the gut much later, in the duodenum at the 16th day, in the antrum at about the 19th day and still later in the lower small intestine. The ultrastructure of the somatostatin cells was studied in the chicken, rat, cat and man; the cells were identified by the consecutive semithin/ultrathin section technique. The somatostatin cells display the properties of the D cell. There was no difference in granule ultrastructure between somatostatin cells in the gut and the pancreas. The granules, which are the storage site of the peptide, are round, supplied with a tightly fitting membrane and have a moderately electron-dense, fine-granulated core. The mean diameter of the somatostatin granules is smallest in rat (155–170 nm) and largest in the chicken (270–290 nm).  相似文献   

4.
The distribution of vasoactive intestinal polypeptide (VIP) immunoreactive nerves and endocrine cells in the gastrointestinal tract and pancreas of a number of mammalian and submammalian species has been examined in order to throw light on the exact localization of this peptide. Seven out of 8 VIP antisera demonstrated numerous nerve fibers in the gut, whereas one antiserum (TR2) revealed only scattered, few nerve fibers. The distribution of endocrine cells demonstrated by the different VIP antisera varied considerably. Thus, some antisera demonstrated only endocrine cells in the feline antrum, others only colonic endocrine cells and still others only endocrine cells of the upper gut and pancreas. The variability in staining pattern of endocrine cells as well as recent radioimmunological data makes it opportune to suggest that true VIP is a neuronal peptide and that endocrine cells store peptides resembling, but not being identical with, VIP (VIPoids).  相似文献   

5.
Antisera were raised against the icosapeptide fragment of the pancreatic polypeptide (PP) isolated from the canine pancreas. They were used for the immunocytochemical study of the cellular localisation and distribution of the icosapeptide in the gut and pancreas of various mammals. The results indicate that PP and the icosapeptide coexist in the majority of the PP-immunoreactive cells in the pancreas of cat, dog, pig, monkey and man and in all the PP-immunoreactive cells in the stomach of the cat and dog. The icosapeptide does not seem to occur in cells or nerves containing PP-related peptides, such as peptide YY or neuropeptide Y. PP-immunoreactive cells devoid of the icosapeptide could be demonstrated in the large intestine. These cells are probably distinct from the pancreatic PP cell type, and the PP-immunoreactive material probably represents the homologous peptide YY rather than PP. The present findings support the view that the icosapeptide is part of the PP precursor and hence, only the cells containing immunoreactive icosapeptide in addition to immunoreactive PP are to be considered ‘true’ PP cells. The icosapeptide antisera did not stain PP cells in mouse, rat and guinea-pig, suggesting marked species variation in the amino acid sequence of the icosapeptide portion of the PP precursor.  相似文献   

6.
Summary Enterochromaffin cells of adult mouse duodenum were studied with light- and electron-microscopical techniques. They were distinguished from other enteroendocrine cells by their pleomorphic, electron-dense secretory granules in the basal cytoplasm. At the apices of enterochromaffin cells, tufts of short microvilli bordered the gut lumen. At their bases, irregular cytoplasmic extensions were either in contact with or passed through the basal lamina. The presence of cytoplasmic extensions in close proximity to fenestrated capillaries and subepithelial nerves suggested an endocrine or paracrine function. Electron micrographs of serial thin sections were used to reconstruct an enterochromaffin cell from the crypt epithelium in three dimensions and to determine its relationship with the underlying neural plexus. Although extensions from the serially sectioned and reconstructed cell and other enterochromaffin cells studied in crypt epithelia protruded through the basal lamina, no synaptic contacts were seen. Evidence of a synaptic contact between a neurite and another type of enteroendocrine cell (possibly an intestinal A cell), suggested a neurocrine role for some of the basally-granulated cells. Possible functions of enterochromaffin cells are discussed in the light of recent literature on the system of enteroendocrine cells, also known as APUD (amine precursor uptake and decarboxylation) cells and/or paraneurons.  相似文献   

7.
Endocrine cells containing peptide YY (PYY) were numerous in the rectum, colon and ileum and few in the duodenum and jejunum of rat, pig and man. No immunoreactive cells could be detected in the pancreas and stomach. Coexistence of PYY and glicentin was revealed by sequential staining of the same section and by staining consecutive semi-thin sections. Since the PYY sequence is not contained in the glucagon/glicentin precursor molecule the results suggest that the PYY cell in the gut expresses two different genes coding for regulatory peptides of two different families.  相似文献   

8.
Summary An immunohistochemical study for islet amyloid polypeptide (IAPP) was made on the gastrointestinal (GI) tract and pancreas of man and rat, using antisera raised against a synthetic peptide of C-terminal human IAPP (24–37) and a synthetic peptide of rat IAPP (18–37). A large number of IAPP-immunoreactive cells were found in the pyloric antrum, and a small number in the body of the stomach in both man and rat. Cytoplasmic processes extended out from the bipolar peripheral region of the immunoreactive cells, rather like neuronal processes, and some appeared to make contact with other immunoreactive cells. In addition, small numbers of immunoreactive cells were also seen in the duodenum and rectum, whereas they were absent from the jejunum, ileum and large intestine. An examination was made for evidence of colocalization of IAPP-immunoreactive material with material immunoreactive for gastrin, somatostatin, vasoactive intestinal polypeptide, pancreatic polypeptide, insulin, and glucagon, but none was found. IAPP-immunoreactive cells were also found in the pancreas of non-diabetic and non-insulin-dependent diabetic patients, but they were completely absent from a patient with insulin-dependent diabetes mellitus despite the presence of IAPP in the plasma. The results of these studies suggest that the peptide may have a biological role in situ in the GI tract and, in addition to the pancreas, may be a possible source of plasma IAPP.  相似文献   

9.
Pancreastatin is a 49 amino acid comprising peptide isolated from porcine pancreas that is derived by proteolytic processing from chromogranin A. Using an antibody against the synthetic C-terminal fragment pancreastatin (33-49), we examined the light and electron microscopical immunocytochemical localization of this peptide in porcine tissues. Pancreastatin-like immunoreactivity (PLI) was found in pancreatic somatostatin-, insulin- and glucagon cells in varying intensities; pancreatic polypeptide cells were always negative. At the electron microscopical (EM) level the immunoreactivity was confined to the electron dense core of the secretory granules in the case of somatostatin and insulin cells or to the less electron dense "halo" of the glucagon granules. In the antrum PLI positive cells represented gastrin (G), somatostatin (D) and enterochromaffin (EC) cells, in the duodenum in addition to EC- and G-cells a small number of PLI positive cells showed a positive immunoreaction for glucagon-like peptide (GLP) I and secretin in serial sections. Both norepinephrine and epinephrine containing cells of the adrenal medulla exhibited a strong reaction for PLI. In the pituitary several cell populations stained with varying intensities, including gonadotrophs and thyrotrophys. PLI is present in a distinct and characteristic subpopulation of neuroendocrine cells in various organs. The subcellular localization may indicate a function in the granular concentration, packaging and storage of peptides and amines in the brain-gut endocrine system.  相似文献   

10.
Immunohistochemical tests were applied to sections of intestine of uninfected and Pomphorhynchus laevis Muller-infected chub, Leuciscus cephalus (L.) using 15 different antisera. Nerve cell bodies and fibres immunoreactive (IR) to the anti-bombesin, -Cholecystokinin-8 (CCK-8), -galanin, -Gastrin-Releasing Peptide (-GRP), -Nitric Oxide Synthase (-NOS), -Substance P (-SP), and -Vasoactive Intestinal Peptide (-VIP) sera were observed in the myenteric plexus of uninfected chub. The density of nerve components immunoreactive to these antisera was high in the intestine of the infected fish, especially near the site of attachment. Moreover, numerous nerve fibres, immunoreactive to anti-bombesin, -GRP, -galanin, -SP, and -VIP sera, were encountered in the connective tissue capsule surrounding the bulb and proboscis of P. laevis. The occurrence of P. laevis in the chub gut significantly increased the number of endocrine cells per intestinal fold immunoreactive to galanin, met-enkephalin and leu-enkephalin antisera. CCK-8, Neuropeptide Y and glucagon-like immunoreactive cells were less numerous in the intestine of infected chub. A large number of cells in the tunica propria-submucosa of L. cephalus infected with P. laevis were immunoreactive to anti-serotonin and -leu-enkephalin sera.  相似文献   

11.
The time of appearance, morphology and topographic distribution of gastrin/CCK-, somatostatin-, 5HT-, and bombesin-like immunoreactive cells during embryonic and postnatal development were studied in chicken antrum and duodenum with immunohistochemical methods. Gastrin/CCK-like cells appeared on or about the 11th day in the antrum and duodenum, somatostatin-like cells around the 12th day in the antrum and the 11th day in the duodenum, bombesin-like cells appeared only in the antrum and only at hatching. In the early stages of development all the immunoreactive cells were localized in the surface epithelium, descending deeper into the glands as these form, although some cells could always be seen in the surface epithelium. Around the 17th day the number of gastrin/CCK-like cells and somatostatin-like cells in the antrum increases, while 5HT-like already become more numerous in the duodenum from the 13th day onwards. Two territories were recognized in the antrum of the adult: the first was near the duodenum where gastrin/CCK-like and somatostatin-like cells, often in close contact, were very numerous; the other territory was near the gizzard where bombesin-like cells were more numerous. Both regions contained 5HT-like cells in smaller number. In adult duodenum, 5HT-like cells were the most numerous, while somatostatin-like cells and gastrin/CCK-like cells, found in more superficial locations, were more scanty.  相似文献   

12.
Serotonin-like immunoreactivity (5-HT-LI) has been localized at the ultrastructural level in enterochromaffin (EC) cells of rat gastrointestinal tract. Ultra-thin sections of tissues embedded in epoxy resin were incubated with 5-HT antisera and antibody binding sites were visualized with protein A-gold. Three different antisera were compared and were shown to require different fixation regimens for optimal preservation of 5-HT-LI. For one antiserum, tissues fixed in glutaraldehyde and osmium tetroxide could be used to demonstrate 5-HT-LI in EC cells. Immunocytochemical localization of 5-HT can thus be performed with good ultrastructural preservation of tissues. Quantitative evaluation of the intracellular distribution of 5-HT-LI was performed on EC cells from antrum, duodenum, and proximal colon, fixed in glutaraldehyde only. In all three locations, the majority of the gold particles (90%) in EC cells were localized over the dense core of the secretory granules, while a minor fraction (10%) were localized in parts of the cytoplasm devoid of granules. In EC cells fixed in glutaraldehyde and post-fixed in osmium tetroxide, 5-HT-LI was reduced by about 85%, although intracellular distribution was essentially the same as in cells fixed in glutaraldehyde alone. The results indicate that 5-HT in EC cells is stored mainly in secretory granules, with a small fraction of 5-HT being localized outside the granules.  相似文献   

13.
Summary Pancreastatin is a 49 amino acid comprising peptide isolated from porcine pancreas that is derived by proteolytic processing from chromogranin A. Using an antibody against the synthetic C-terminal fragment pancreastatin (33–49), we examined the light and electron microscopical immunocytochemical localization of this peptide in porcine tissues. Pancreastatin-like immunoreactivity (PLI) was found in pancreatic somatostatin-, insulin- and glucagon cells in varying intensities; pancreatic polypeptide cells were always negative. At the electron microscopical (EM) level the immunoreactivity was confined to the electron dense core of the secretory granules in the case of somatostatin and insulin cells or to the less electron dense halo of the glucagon granules. In the antrum PLI positive cells represented gastrin (G), somatostatin (D) and enterochromaffin (EC) cells, in the duodenum in addition to EC- and G-cells a small number of PLI positive cells showed a positive immunoreaction for glucagon-like peptide (GLP) I and secretin in serial sections. Both norepinephrine and epinephrine containing cells of the adrenal medulla exhibited a strong reaction for PLI. In the pituitary several cell populations stained with varying intensities, including gonadotrophs and thyrotrophs. PLI is present in a distinct and characteristic subpopulation of neuroendocrine cells in various organs. The subcellular localization may indicate a function in the granular concentration, packaging and storage of peptides and amines in the brain-gut endocrine system.  相似文献   

14.
One of the opioid precursor molecules, pre-pro-enkephalin A, contains within it, in addition to Leu-enkephalin (Leu-Enk) and Met-enkephalin (Met-Enk), Met-enkephalin-Arg6-Gly7-Leu8 (Met-Enk-8), which is specific to this precursor. This study deals with the localization of Met-Enk-8-like immunoreactivity in the gastrointestinal tract of rat and pig. Immunoreactivity was identified in intramural nerve elements of rat and pig, and in gut endocrine cells of pig. Immunoreactive (IR) nerve fibers were seen mainly in the myenteric plexus of rat and in both the myenteric and submucosal plexuses of pig. Some IR fibers were dispersed throughout the lamina propria mucosae of rat. Porcine IR endocrine cells were dispersed in the epithelium from the pyloric antrum to the ileum, existing concomitantly with enterochromaffin (EC) cells. Specificity tests revealed that immunoreactivity to Met-Enk-8 antiserum was not influenced by preincubation of the antiserum with Leu-Enk and Met-Enk. This suggests the possibility that pre-pro-enkephalin A is contained in the gastroenteric nerves of rat and pig and in a population of porcine EC cells.  相似文献   

15.
Summary The distribution and origins of vasoactive intestinal peptide (VIP) in the gut and pancreas of the turkey were studied by radioimmunoassay of tissue extracts and by immunocytochemistry. Several antisera were used that vary in their specificity for different regions of porcine or chicken VIP. Radioimmunoassays using NH2-terminal specific antisera that react almost equally with porcine and chicken VIP's revealed significant amounts of immunoreactive VIP in extracts of pancreas, brain and all regions of the gastrointestinal tract from crop to colon. Highest concentrations (300pmol/g) were found in the colon muscle, and concentrations were generally low (< 20 pmol/g) in the mucosal layers of the small intestine. After ion exchange chromatography of extracts on CM-Sephadex three immunoreactive forms of VIP were separated corresponding to the three molecular forms previously found in mammalian gut extracts. In immunocytochemical studies nerve fibres were found throughout the gut, and in the pancreas. Immunoreactive nerve cell bodies were also identified in the submucous plexus throughout the gut, but were particularly prominent in the oesophagus and pancreas. It has previously been shown that VIP is a strong stimulant of the flow of pancreatic juice in birds whereas the structurally related hormone secretin, which is known to control the flow of pancreatic juice in mammals, is a weak stimulant. It is proposed that in birds VIP might regulate the pancreas, and other aspects of gut function, as a neurotransmitter or neurohormone.  相似文献   

16.
Summary Two types of mammosomatotropes (MS), the small-granule and vesicle-granule MS, were detected in mouse adenohypophysis by electron microscopy and immunohistochemistry. Both cell-types were immunoreactive to prolactin (PRL) and growth hormone (GH) antisera. The small-granule MS contained small, round, solid secretory granules about 100 nm in diameter, and were smaller than the classical GH and PRL cell-types. The vesicle-granule MS contained secretory granules like cored vesicles, and were larger than classical GH and PRL cells. Small-granule MS were immunoreactive to both PRL and GH antisera in the same region of the cell cytoplasm; the vesicle-granule MS, however, were immunoreactive to only PRL antiserum in most cytoplasmic areas, and a positive response to both PRL and GH antisera was confined to only certain small areas.  相似文献   

17.
The presence of FMRF-amide, a cardioactive tetrapeptide, was studied by immunocytochemistry in human and rat gastric antrum and pancreas, and in the ovine, bovine, canine and rabbit pancreas. In human and rat gastric antrum, numerous cells contained FMRF-amide immunoreactive material. By staining of serial sections and by double staining, colocalization of immunoreactivity for gastrin and FMRF-amide was observed in part of the gastrin cells. In the pancreas of these and the other species, immunoreactivity for FMRF-amide was located both in acinar and islet endocrine cells. Colocalization of FMRF-amide and pancreatic polypeptide was found in a proportion of pancreatic polypeptide cells in the pancreas. FMRF-amide immunoreactivity never colocalized with the other neurohormonal peptides which occur in the gastric antrum and the pancreas. Our observations show that neuroendocrine cells occur in the gastric antrum and pancreas which are exclusively immunoreactive or gastrin and for pancreatic polypeptide respectively. In addition cells occur which show immunoreactivity for FMRF-amide as well as for gastrin in the gastric antrum and with antiserum to FMRF-amide as well as for pancreatic polypeptide in the pancreas. It is concluded that FMRF-amide antibodies probably recognize a substance in G and PP cells which is not identical but may be structurally related to gastrin and pancreatic polypeptide.  相似文献   

18.
The gastroenteropancreatic (GEP) endocrine system of bowfin (Amia calva) was described using light and electron microscopy and immunological methods. The islet organ (endocrine pancreas) consists of diffusely scattered, mostly small islets and isolated patches of cells among and within the exocrine acini. The islets are composed of abundant, centrally located B cells immunoreactive to bovine and lamprey insulin antisera and D cells showing a widespread distribution and specificity to somatostatin antibodies. A and F cells are present at the very periphery of the islets and are immunoreactive with antisera against glucagon (and glucagon-like peptide) and several peptides of the pancreatic polypeptide (PP)-family, respectively. The peptides of the two families usually collocates within the same peripheral islet cells and are the most common immunoreactive peptides present in the extra-islet tissue. Immunocytochemistry and fine structural observations characterised the granule morphology for B and D cells and identified two cell types with granules immunoreactive to glucagon antisera. These two putative A cells had similar granules, which were distinct from either B or D cells, but one of the cells had rod-shaped cytoplasmic inclusions within cisternae of what appeared to be rough endoplasmic reticulum. The inclusions were not immunoreactive to either insulin or glucagon antisera. Only small numbers of cells in the stomach and intestine immunoreacted to antisera against somatostatin, glucagon, and PP-family peptides. The paucity of these cells was reflected in the low concentrations of these peptides in intestinal extracts. The GEP system of bowfin is not unlike that of other actinopterygian fishes, but there are some marked differences that may reflect the antiquity of this system and/or may be a consequence of the ontogeny of this system in this species.  相似文献   

19.
Midguts of mosquitoes, Aedes aegypti and Anopheles stephensi, and of the tsetse fly, Glossina morsitans morsitans, as well as guinea pig pancreas, were prepared for electron microscopy by using low-temperature embedding in Lowicryl K4M. Rabbit antiserum to bovine pancreatic polypeptide (PP) crossreacted with secretory granules of pancreatic PP-producing cells and of the clear cells in mosquito gut. Rabbit antiserum to human somatostatin crossreacted with the control tissue, guinea pig pancreas D-cells, but not with the mosquito clear cells. None of the antisera used showed a distinct reaction with the endocrine-like cells of tsetse fly midgut. Positive reactions were revealed by gold as electron-dense marker. The gold particles were coated with protein A-gold or goat antibodies to rabbit immunoglobulin.  相似文献   

20.
A large number of antisera mainly raised against mammalian hormones are tested immunocytochemically on the GEP-endocrine system of mouse and fish (Barbus conchonius). The endocrine pancreas of mouse and fish appeared to contain the same four endocrine cell types; insulin-, glucagon-, PP- and somatostatin-immunoreactive cells. In mouse about 13 GEP endocrine cell types are distinguished: 1. insulin-, 2. somatostatin-, 3. glucagon-, 4. PP-, 5. (entero)glucagon-/PP-like, 6. CCK-like, 7. substance P-, 8. neurotensin-, 9. VIP-, 10. gastrin-, 11. secretin-, 12. beta-endorphin-, 13. serotonin-immunoreactive cells. Based on this and a previous study at least 13 GEP endocrine cell types seems to be present in stomachless fish: 1-9 as described for mouse, 10. (entero)glucagon-like, 11. met-enkephalin, 12. VIP-like, 13. unspecific immunoreactive endocrine cells. Coexistence of glucagon and PP-like peptides is found in the gut and pancreas of mice and in the gut of B. conchonius. In mouse pancreas and fish gut, endocrine cells showing only PP- or glucagon-like immunoreactivity are found too. In mouse stomach some endocrine cells showing only PP-immunoreactivity are demonstrated. In the same region coexistence of C-t-gastrin- and FMRF-amide-immunoreactivity is found in endocrine cells. The importance of these phenomena are discussed. Enteric nerves immunoreactive with antisera raised against substance P and GRP are found in mouse, against somatostatin and met-enkephalin in both mouse and fish and against VIP in fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号