首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Mosaic evolution of ruminant stomach lysozyme genes   总被引:1,自引:0,他引:1  
The genomes of ruminant artiodactyls, such as cow and sheep, have approximately 10 lysozyme genes, 4 of which are expressed in the stomach. Most of the duplications of the lysozyme genes occurred 40-50 million years ago, before the divergence of cow and sheep. Despite this, the coding regions of stomach lysozyme genes within a species (e.g., cow, sheep, or deer) are more similar to each other than to lysozyme genes in other ruminants. This observation suggests that the coding regions of the stomach lysozyme genes have evolved in a concerted fashion. Our previous characterization of 3 cow stomach lysozyme genes suggested that it was only the coding exons that had participated in concerted evolution. To determine whether the introns and flanking regions of ruminant stomach lysozyme genes are evolving in a concerted or a divergent fashion, we have isolated and characterized 2 sheep stomach lysozyme genes. Comparison of the sequences of the sheep and cow stomach lysozyme genes clearly shows that the introns and flanking regions have evolved, like the 3' untranslated region of the mRNAs, in a divergent manner. Thus, if the four coding exons are evolving by concerted evolution, then a mosaic pattern of concerted and divergent evolution is occurring in these genes. The independent concerted evolution of coding exons of the ruminant stomach lysozyme gene may have assisted in the accelerated adaptive evolution of the lysozyme to new function in the early ruminant.  相似文献   

2.
Multiple genes of the hoatzin encoding stomach lysozyme c and closely related members of this calcium-binding lysozyme c group were cloned from a genomic DNA library and sequenced. There are a minimum of five genes represented among these sequences that encode two distinct groups of protein sequences. One group of three genes corresponds to the stomach lysozyme amino acid sequences, and the remaining genes encode predicted proteins that are more basic in character and share several sequence identities with the pigeon egg-white lysozyme rather than with the hoatzin stomach lysozymes. Despite these structural similarities between some of the hoatzin gene products and the pigeon lysozyme, phylogenetic analyses indicate that all of the hoatzin sequences are closely related to one another. This is borne out by the relatively small genetic distances even in the intronic regions, which are not subject to the selective pressures operating on the coding regions of the stomach lysozymes. These results suggest that multiple gene duplication events have occurred during the evolution of hoatzin lysozymes.  相似文献   

3.
Contradictory evolutionary histories of ruminant lysozymes have been predicted by analysis of genomic blots (Irwin, D.M., Sidow, A., White, R., and Wilson, A.C. (1989) in The Immune Response to Structurally Defined Proteins: The Lysozyme Model (Smith-Gill, S.J., and Sercarz, E.E., eds) pp. 73-85, Adenine Press, Guilderland, NY) and sequences of cow stomach lysozyme cDNAs (Irwin, D.M., and Wilson, A.C. (1989) J. Biol. Chem. 264, 11387-11393). Genomic blots indicate that the amplification of the lysozyme gene family occurred 40-50 million years ago, while the cDNA sequences imply that the stomach genes began diverging from one another after the splitting of the deer and cow lineages, 25 million years ago. To resolve this contradiction, we characterized 111 stomach lysozyme cDNAs from two additional ruminant species: domestic sheep and axis deer. The cDNA sequences of the coding region of mature lysozyme together with the 3'-untranslated region were obtained from abomasum (true stomach) mRNA with the use of the polymerase chain reaction. The two primers for amplifying the cDNA were a lysozyme-specific primer, encoding a conserved sequence at the amino terminus of mature stomach lysozyme, and oligo(dT) as a general mRNA primer. Comparison of the cDNA sequences from these species to one another and to those of the cow revealed that different parts of the ruminant stomach lysozyme genes have had different evolutionary histories. The 3'-untranslated region has evolved in a divergent fashion since the original duplications 40-50 million years ago, supporting the genomic blot interpretation; by contrast, the coding region has evolved in a concerted fashion, that is, the multiple sequences within a species have evolved in unison. The 3'-untranslated portion of the lysozyme genes appears to have escaped from concerted evolution due to inability to initiate concerted evolution, rather than due to reduced sequence similarity. The process of concerted evolution in stomach lysozymes may have had roles both in adapting lysozyme to the stomach environment in early ruminants as well as in retarding amino acid sequence evolution in the well adapted lysozyme of modern ruminants.  相似文献   

4.
Multiple cDNA sequences and the evolution of bovine stomach lysozyme   总被引:4,自引:0,他引:4  
To investigate the origin of stomach expression of lysozyme in ruminants; we surveyed clones from a cow stomach cDNA library with a lysozyme cDNA probe. Ten percent of the clones in this library were lysozyme-specific. Thirty of the lysozyme clones were sequenced, and seven types of lysozyme mRNA sequence were found. They encode the three previously identified stomach isozymes of lysozyme. The seven sequences are closely related to one another and represent the products of a minimum of 4 of the approximately 10 cow lysozyme genes detected by genomic blotting. The most abundant form of stomach lysozyme (form 2) is encoded by at least two genes, whereas forms 1 and 3 are possibly each encoded by only one gene. The number of genes encoding each isozyme appears to contribute the largest factor in the relative abundance of each isozyme. The multiple lysozyme genes expressed in the cow stomach are the result of gene duplications that occurred during ruminant evolution. The recruitment of lysozyme as a major enzyme in the stomach may thus have involved an early regulatory event and a later 4-7-fold increase in expression allowed by gene amplification. During this period, the amino acid sequences of these lysozymes have been evolving more slowly than those of nonruminant lysozymes.  相似文献   

5.
David M Irwin 《Génome》2004,47(6):1082-1090
Expansion of the lysozyme gene family is associated with the evolution of the ruminant lifestyle in ruminant artiodactyls such as the cow. Gene duplications allowed recombination between stomach lysozyme genes that may have assisted in the evolution of an enzyme adapted to survive and function in the stomach environment. Despite amplification of lysozyme genes, cow tears, milk, and blood are considered to be lysozyme deficient. Here we have identified 2 new cow lysozyme cDNA sequences and show that at least 4 different lysozymes are expressed in cows in nonstomach tissues and probably function as antibacterial defence enzymes. These 4 lysozyme genes are in addition to the 4 digestive lysozyme genes expressed in the stomach, yielding a number of expressed lysozyme genes in the cow larger than that found in most nonlysozyme-deficient mammals. In contrast to expectations, evidence for recombination between stomach and nonstomach lysozyme genes was found. Recombination, through concerted evolution, may have allowed some lysozymes to acquire the ability to survive in occasional acidic environments.  相似文献   

6.
Multiple copies of a given ribosomal RNA gene family undergo concerted evolution such that sequences of all gene copies are virtually identical within a species although they diverge normally between species. In eukaryotes, gene conversion and unequal crossing over are the proposed mechanisms for concerted evolution of tandemly repeated sequences, whereas dispersed genes are homogenized by gene conversion. However, the homogenization mechanisms for multiple-copy, normally dispersed, prokaryotic rRNA genes are not well understood. Here we compared the sequences of multiple paralogous rRNA genes within a genome in 12 prokaryotic organisms that have multiple copies of the rRNA genes. Within a genome, putative sequence conversion tracts were found throughout the entire length of each individual rRNA genes and their immediate flanks. Individual conversion events convert only a short sequence tract, and the conversion partners can be any paralogous genes within the genome. Interestingly, the genic sequences undergo much slower divergence than their flanking sequences. Moreover, genomic context and operon organization do not affect rRNA gene homogenization. Thus, gene conversion underlies concerted evolution of bacterial rRNA genes, which normally occurs within genic sequences, and homogenization of flanking regions may result from co-conversion with the genic sequence. Received: 31 March 2000 / Accepted: 15 June 2000  相似文献   

7.
Recruitment of lysozyme to a digestive function in ruminant artiodactyls is associated with amplification of the gene. At least four of the approximately ten genes are expressed in the stomach, and several are expressed in nonstomach tissues. Characterization of additional lysozymelike sequences in the bovine genome has identified most, if not all, of the members of this gene family. There are at least six stomachlike lysozyme genes, two of which are pseudogenes. The stomach lysozyme pseudogenes show a pattern of concerted evolution similar to that of the functional stomach genes. At least four nonstomach lysozyme genes exist. The nonstomach lysozyme genes are not monophyletic. A gene encoding a tracheal lysozyme was isolated, and the stomach lysozyme of advanced ruminants was found to be more closely related to the tracheal lysozyme than to the stomach lysozyme of the camel or other nonstomach lysozyme genes of ruminants. The tracheal lysozyme shares with stomach lysozymes of advanced ruminants the deletion of amino acid 103, and several other adaptive sequence characteristics of stomach lysozymes. I suggest here that tracheal lysozyme has reverted from a functional stomach lysozyme. Tracheal lysozyme then represents a second instance of a change in lysozyme gene expression and function within ruminants. Correspondence to: D.M. Irwin  相似文献   

8.
9.
10.
Wide arrays of repetitive DNA sequences form an important part of eukaryotic genomes. These repeats appear to evolve as coherent families, where repeats within a family are more similar to each other than to other orthologous representatives in related species. The continuous homogenization of repeats, through selective and non-selective processes, is termed concerted evolution. Ascertaining the level of variation between repeats is crucial to determining which evolutionary model best explains the homogenization observed for these sequences. Here, for the grasshopper Eyprepocnemis plorans, we present the analysis of intragenomic diversity for two repetitive DNA sequences (a satellite DNA (satDNA) and the 45S rDNA) resulting from the independent microdissection of several chromosomes. Our results show different homogenization patterns for these two kinds of paralogous DNA sequences, with a high between-chromosome structure for rDNA but no structure at all for the satDNA. This difference is puzzling, considering the adjacent localization of the two repetitive DNAs on paracentromeric regions in most chromosomes. The disparate homogenization patterns detected for these two repetitive DNA sequences suggest that several processes participate in the concerted evolution in E. plorans, and that these mechanisms might not work as genome-wide processes but rather as sequence-specific ones.  相似文献   

11.
T Pavelitz  D Liao    A M Weiner 《The EMBO journal》1999,18(13):3783-3792
The genes encoding primate U2 snRNA are organized as a nearly perfect tandem array (the RNU2 locus) that has been evolving concertedly for >35 Myr since the divergence of baboons and humans. Thus the repeat units of the tandem array are essentially identical within each species, but differ between species. Homogeneity is maintained because any change in one repeat unit is purged from the array or fixed in all other repeats. Intriguingly, the cytological location of RNU2 has remained unchanged despite concerted evolution of the tandem array. We had found previously that junction sequences between the U2 tandem array and flanking DNA were subject to remodeling over a region of 200-300 bp during the past 5 Myr in the hominid lineage. Here we show that the junctions between the U2 tandem array and flanking DNA have undergone dramatic rearrangements over a region of 1 to >10 kbp in the 35 Myr since divergence of the Old World Monkey and hominid lineages. We argue that these rearrangements reflect the high level of genetic activity required to sustain concerted evolution, and propose a model to explain why maintenance of homogeneity within a tandemly repeated multigene family would lead to junctional diversity.  相似文献   

12.
Y. Xiong  B. Sakaguchi    T. H. Eickbush 《Genetics》1988,120(1):221-231
The 140-kbp late chorion locus of Bombyx mori strain 703 contains 15 divergently oriented gene pairs encoding the high cysteine (Hc) eggshell proteins. Sequence homology is approximately 91% for the 2-kb region of each gene pair, including the 5' flanking region, intron and exons. The homology rapidly disappears within a few hundred basepairs of the 3' end of most genes. Here we present the results of the nucleotide sequence and genomic blot comparison of Hc genes from different races of B. mori. Comparison of the nucleotide sequences of the same gene pair in two different races reveals that most of the nucleotide differences occur in clusters or patches and correspond to sequences present in other Hc genes in the locus. The number of nucleotide differences that have accumulated in the highly conserved regions of the gene pair (2.3/100 bp), most of which are attributable to patchwork exchanges, is significantly higher than the number of differences in the poorly conserved 3' flanking regions (0.6/100 bp), due primarily to new mutations. These data are consistent with a gene conversion process, which in the short-term generates new combinations of sequence variants, but in the long-term results in concerted evolution. Genomic blot analyses of different geographical races of B. mori reveal that there is variation in the number of Hc gene pairs (14-19 gene pairs), indicating that unequal crossovers also occur in the locus.  相似文献   

13.
14.
Genomic DNA fragments bearing proline-rich protein (PRP) genes expressed specifically in hamster parotid glands have been isolated and characterized. Complete exonic sequences as well as intronic and a considerable portion of the flanking sequences are reported for a PRP gene, H29. H29 is interrupted by three intervening sequences, with consensus splice junctions, and it likely encodes the acidic hamster PRP Hp43a. Exceedingly high homology of the 5'-untranslated region and the sequence encoding the signal peptide is observed with other PRPs of all species studied. Significant homology was also detected among the repetitive sequences of the mature acidic PRPs from human, mouse, hamster, and rat. This conservation of the internal repeats of the PRPs suggested that proline-rich protein gene evolution involved intragenic duplication of internal repeats and gene duplication and conversion. Both hamster and mouse PRP genes (H29 and mouse proline-rich protein gene, respectively) share considerable sequence similarity in the 5'-flanking regions for about 100 base pairs upstream. The remainder of the upstream sequences were heterologous except for three oligonucleotide regions with 60-70% sequence conservation. These three regions are thought to be involved in the regulation of the tissue-specific PRP gene induction.  相似文献   

15.
A cluster of four trypsin genes has previously been localized to cytological position 47D-F of the Drosophila melanogaster genome. One of these genes had been sequenced, and the presence of the other three genes was identified by cross-hybridization. Here, we present the DNA sequence of the entire genomic region encoding these four trypsin genes. In addition to the four previously inferred genes, we have identified a fifth trypsin-coding sequence located within this gene cluster. This new gene shows a high degree of sequence divergence (more than 30%) from the other four genes, although it retains all of the functional motifs that are characteristic of trypsin-coding sequences. In order to trace the molecular evolution of this gene cluster, we isolated and sequenced the homologous 7-kb region from the closely related species Drosophila erecta. A comparison of the DNA sequences between the two species provides strong evidence for the concerted evolution of some members of this gene family. Two genes within the cluster are evolving in concert, while a third gene appears to be evolving independently. The remaining two genes show an intermediate pattern of evolution. We propose a simple model, involving chromosome looping and gene conversion, to explain the relatively complex patterns of molecular evolution within this gene cluster.  相似文献   

16.
The genomic distribution of microsatellites can be explained by DNA slippage, slippage like processes and base substitutions. Nevertheless, microsatellites are also frequently associated with repetitive DNA, raising the question of the relative contributions of these processes to microsatellite genesis. We show that in Silene tatarica about 50% of the microsatellites isolated by an enrichment cloning protocol are associated with repetitive DNA. Based on the flanking sequences, we distinguished seven different classes of repetitive DNA. PCR primers designed for the flanking sequences of an individual clone amplified a heterogeneous family of repetitive DNA. Despite considerable variation in the flanking sequence (pi = 0.108), the microsatellite repeats did not show any evidence for decay. Rather, we observed the emergence of a new repeat type that probably arose by mutation and was spread by replication slippage. In fact, a complete repeat type switch could be observed among the analysed clones. We propose that the analysis of microsatellite sequences embedded in repetitive DNA provides a hitherto largely unexplored tool to study microsatellite evolution.  相似文献   

17.
Kalay G  Wittkopp PJ 《PLoS genetics》2010,6(11):e1001222
cis-regulatory DNA sequences known as enhancers control gene expression in space and time. They are central to metazoan development and are often responsible for changes in gene regulation that contribute to phenotypic evolution. Here, we examine the sequence, function, and genomic location of enhancers controlling tissue- and cell-type specific expression of the yellow gene in six Drosophila species. yellow is required for the production of dark pigment, and its expression has evolved largely in concert with divergent pigment patterns. Using Drosophila melanogaster as a transgenic host, we examined the expression of reporter genes in which either 5' intergenic or intronic sequences of yellow from each species controlled the expression of Green Fluorescent Protein. Surprisingly, we found that sequences controlling expression in the wing veins, as well as sequences controlling expression in epidermal cells of the abdomen, thorax, and wing, were located in different genomic regions in different species. By contrast, sequences controlling expression in bristle-associated cells were located in the intron of all species. Differences in the precise pattern of spatial expression within the developing epidermis of D. melanogaster transformants usually correlated with adult pigmentation in the species from which the cis-regulatory sequences were derived, which is consistent with cis-regulatory evolution affecting yellow expression playing a central role in Drosophila pigmentation divergence. Sequence comparisons among species favored a model in which sequential nucleotide substitutions were responsible for the observed changes in cis-regulatory architecture. Taken together, these data demonstrate frequent changes in yellow cis-regulatory architecture among Drosophila species. Similar analyses of other genes, combining in vivo functional tests of enhancer activity with in silico comparative genomics, are needed to determine whether the pattern of regulatory evolution we observed for yellow is characteristic of genes with rapidly evolving expression patterns.  相似文献   

18.
The thirty-three 5′ flanking conserved sequences of the known low-molecular-weight subunit (LMW-GS) genes have been divided into eight clusters, which was in agreement with the classification based on the deduced N-terminal protein sequences. The DNA polymorphism between the eight clusters was obtained by sequence alignment, and a total of 34 polymorphic positions were observed in the approximately 200 bp regions, among which 18 polymorphic positions were candidate SNPs. Seven cluster-specific primer sets were designed for seven out of eight clusters containing cluster-specific bases, with which the genomic DNA of the ditelosomic lines of group 1 chromosomes of a wheat variety ‘Chinese Spring’ was employed to carry out chromosome assignment. The subsequent cloning and DNA sequencing of PCR fragments validated the sequences specificity of the 5′ flanking conserved sequences between LMW-GS gene groups in different genomes. These results suggested that the coding and 5′ flanking regions of LMW-GS genes are likely to have evolved in a concerted fashion. The seven primer sets developed in this study could be used to isolate the complete ORFs of seven groups of LMW-GS genes, respectively, and therefore possess great value for further research in the contributions of a single LMW-GS gene to wheat quality in the complex genetic background and the efficient selections of quality-related components in breeding programs.  相似文献   

19.
20.
To determine how the modern copy number (5) of hsp70 genes in Drosophila melanogaster evolved, we localized the duplication events that created the genes in the phylogeny of the melanogaster group, examined D. melanogaster genomic sequence to investigate the mechanisms of duplication, and analyzed the hsp70 gene sequences of Drosophila orena and Drosophila mauritiana. The initial two-to-four hsp70 duplication occurred 10--15 MYA, according to fixed in situ hybridization to polytene chromosomes, before the origin and divergence of the melanogaster and five other species subgroups of the melanogaster group. Analysis of more than 30 kb of flanking sequence surrounding the hsp70 gene clusters suggested that this duplication was likely a retrotransposition. For the melanogaster subgroup, Southern hybridization and an hsp70 restriction map confirmed the conserved number (4) and arrangement of hsp70 genes in the seven species other than D. melanogaster. Drosophila melanogaster is unique; tandem duplication and gene conversion at the derived cluster yielded a fifth hsp70 gene. The four D. orena hsp70 genes are highly similar and concertedly evolving. In contrast, the D. mauritiana hsp70 genes are divergent, and many alleles are nonfunctional. The proliferation, concerted evolution, and maintenance of functionality in the D. melanogaster hsp70 genes is consistent with the action of natural selection in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号