首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 526 毫秒
1.
2.
低氧诱导因子-1的转录活性调控及其信号传导   总被引:5,自引:0,他引:5  
低氧诱导因子-1(hypoxia-inducible factor-1,HIF-1)是氧平衡调控相关的转录因子.依赖HIF-1的基因表达调控系统广泛影响葡萄糖代谢、细胞增殖、凋亡和血管发生,与机体低氧适应、胚胎发育、各种缺血性疾病及肿瘤相关.HIF-1自身活性调节是低氧应答基因表达调控的中心环节.调控主要发生在源于Ras的两条信号途径:Ras/Raf/MEK介导的HIF-1反式激活功能调控,PI(3)K/Akt依赖的HIF-1alpha蛋白稳定性调控.这两个信号传导途径分别独立又协调地调控着HIF-1的转录活性.  相似文献   

3.
4.
Macrophages metabolic reprogramming in response to microbial insults is a major determinant of pathogen growth or containment. Here, we reveal a distinct mechanism by which stimulator of interferon genes (STING), a cytosolic sensor that regulates innate immune responses, contributes to an inflammatory M1-like macrophage profile upon Brucella abortus infection. This metabolic reprogramming is induced by STING-dependent stabilization of hypoxia-inducible factor-1 alpha (HIF-1α), a global regulator of cellular metabolism and innate immune cell functions. HIF-1α stabilization reduces oxidative phosphorylation and increases glycolysis during infection with B. abortus and, likewise, enhances nitric oxide production, inflammasome activation and IL-1β release in infected macrophages. Furthermore, the induction of this inflammatory profile participates in the control of bacterial replication since absence of HIF-1α renders mice more susceptible to B. abortus infection. Mechanistically, activation of STING by B. abortus infection drives the production of mitochondrial reactive oxygen species (mROS) that ultimately influences HIF-1α stabilization. Moreover, STING increases the intracellular succinate concentration in infected macrophages, and succinate pretreatment induces HIF-1α stabilization and IL-1β release independently of its cognate receptor GPR91. Collectively, these data demonstrate a pivotal mechanism in the immunometabolic regulation of macrophages during B. abortus infection that is orchestrated by STING via HIF-1α pathway and highlight the metabolic reprogramming of macrophages as a potential treatment strategy for bacterial infections.  相似文献   

5.
6.
7.
Chlamydia pneumoniae is an omnipresent obligate intracellular bacterial pathogen that infects numerous host species. C. pneumoniae infections of humans are a common cause of community acquired pneumonia but have also been linked to chronic diseases such as atherosclerosis, Alzheimer's disease, and asthma. Persistent infection and immune avoidance are believed to play important roles in the pathophysiology of C. pneumoniae disease. We found that C. pneumoniae organisms inhibited activated but not nonactivated human T cell proliferation. Inhibition of proliferation was pathogen specific, heat sensitive, and multiplicity of infection dependent and required chlamydial entry but not de novo protein synthesis. Activated CD4(+) and CD8(+) T cells were equally sensitive to C. pneumoniae antiproliferative effectors. The C. pneumoniae antiproliferative effect was linked to T cell death associated with caspase 1, 8, 9, and IL-1β production, indicating that both apoptotic and pyroptotic cellular death pathways were activated after pathogen-T cell interactions. Collectively, these findings are consistent with the conclusion that C. pneumoniae could induce a local T cell immunosuppression and inflammatory response revealing a possible host-pathogen scenario that would support both persistence and inflammation.  相似文献   

8.
Chlamydophila pneumoniae is an important human intracellular pathogen; however, the pathogenesis of C. pneumoniae infection is poorly understood and the immune control mechanism versus host cells is not completely known. The role of the nitric oxide (NO) synthase pathway in inhibiting the ability of C. pneumoniae to infect macrophage J774 cells and the ability of NO to damage isolated C. pneumoniae were investigated. Exposure of infected cultures to recombinant murine gamma interferon (MurIFN-gamma) resulted in increased production of NO and reduced viability. Addition of 2-(N,N-diethylamino)-diazenolase-2-oxide before infection of J774 cells or during chlamydial cultivation released NO, both resulting in a reduction in the viability of C. pneumoniae in a dose-dependent way. These results indicate that immune control of chlamydial growth in murine macrophage cells may trigger a mechanism that includes NO release with effects on the multiplication of the microorganism, thus suggesting that NO may play a role in preventing the systemic spread of Chlamydia.  相似文献   

9.
10.
The activity of hypoxia-inducible factor 1 (HIF-1) is primarily determined by stability regulation of its alpha subunit, which is stabilized under hypoxia but degraded during normoxia. Hydroxylation of HIF-1alpha by prolyl hydroxylases (PHDs) recruits the von Hippel-Lindau (pVHL) E3 ubiquitin ligase complex to initiate proteolytic destruction of the alpha subunit. Hypoxic stabilization of HIF-1alpha has been reported to be antagonized by nitric oxide (NO). By using a HIF-1alpha-pVHL binding assay, we show that NO released from DETA-NO restored prolyl hydroxylase activity under hypoxia. Destabilization of HIF-1alpha by DETA-NO was reversed by free radical scavengers such as NAC and Tiron, thus pointing to the involvement of reactive oxygen species (ROS). Therefore, we examined the effects of ROS on HIF-1alpha stabilization. Treatment of cells under hypoxia with low concentrations of the superoxide generator 2,3-dimethoxy-1,4-naphthoquinone lowered HIF-1alpha protein stabilization. In vitro HIF-1alpha-pVHL interaction assays demonstrated that low-level ROS formation increased prolyl hydroxylase activity, an effect antagonized by ROS scavengers. While determining intracellular ROS formation we noticed that reduced ROS production under hypoxia was restored by the addition of DETA-NO. We propose that an increase in ROS formation contributes to HIF-1alpha destabilization by NO donors under hypoxia via modulation of PHD activity.  相似文献   

11.
12.
13.
Research on intracellular bacteria of the family Chlamydiaceae, and the diseases they cause, requires large amounts of infectious elementary bodies (EB). We describe an approach that maximizes the generation of Chlamydia pneumoniae, Chlamydia trachomatis, Chlamydia abortus, or Chlamydia pecorum EBs in several replication cycles over approximately 10 days or more in a saturated equilibrium monolayer cell culture system. Buffalo Green Monkey Kidney (BGMK) cells, Human Epidermoid Carcinoma-2 (HEp-2) cells, or mouse McCoy cells were tested. BGMK cells best supported C. pneumoniae replication when cultivated in Iscove's Modified Dulbecco's Medium. From day 1 to day 9 after inoculation, C. pneumoniae genomes per ml culture medium increased from 10(5.1) to 10(8.6) in BGMK, from 10(5.6) to 10(8.1) in HEp-2, and remained at 10(5.2) in McCoy cell cultures. Three-month pre-inoculation maintenance of BGMK cells in different culture media did not influence C. pneumoniae yields. Inoculation at multiplicities of infection (MOI) of 10 or higher and supplementation of the cell culture medium on day 7 after inoculation with 0.1% glucose enhanced C. pneumoniae EB yields in harvested cell culture medium. For purification, EBs in medium were concentrated by sedimentation, followed by low-speed centrifugation for removal of host cell nuclei, and by step-gradient centrifugation of the supernatant in a 30% RenoCal-76-50% sucrose step-gradient. Extensive sonication increased yield and infectivity of chlamydial EB. The combined method typically produced from 1000 ml infected BGMK culture medium 10 ml homogeneous, single-cell, highly infectious EB stock containing approximately 5x10(11) C. pneumoniae genomes equivalent to 4-5x10(11) inclusion forming units.  相似文献   

14.
15.
16.
Hypoxia inducible factor 1 (HIF-1) senses and coordinates cellular responses towards hypoxia. HIF-1 activity is primarily determined by stability regulation of its alpha subunit that is degraded by the 26S proteasome under normoxia due to hydroxylation by prolyl hydroxylases (PHDs) but is stabilized under hypoxia. Besides hypoxia, nitric oxide (NO) stabilizes HIF-1alpha and promotes hypoxia-responsive target gene expression under normoxia. However, in hypoxia, NO attenuates HIF-1alpha stabilization and gene activation. It was our intention to explain the contrasting behavior of NO under hypoxia. We used the iron chelator desferrioxamine (DFX) or hypoxia to accumulate HIF-1alpha in HEK293 cells. Once the protein accumulated, we supplied NO donors and followed HIF-1alpha disappearance. NO-evoked HIF-1alpha destabilization was reversed by proteasomal inhibition or by blocking PHD activity. By using the von Hippel Lindau (pVHL)-HIF-1alpha capture assay, we went on to demonstrate binding of pVHL to HIF-1alpha under DFX/NO but not DFX alone. Showing increased intracellular free iron under conditions of hypoxia/NO compared to hypoxia alone, we assume that increased free iron contributes to regain PHD activity. Variables that allow efficient PHD activation such as oxygen availability, iron content, or cofactor accessibility at that end allow NO to modulate HIF-1alpha accumulation.  相似文献   

17.
Chlamydia trachomatis LGV (CtL2) causes systemic infection and proliferates in lymph nodes as well as genital tract or rectum producing a robust inflammatory response, presumably leading to a low oxygen environment. We therefore assessed how CtL2 growth in immortal human epithelial cells adapts to hypoxic conditions. Assessment of inclusion forming units, the quantity of chlamydial 16S rDNA, and inclusion size showed that hypoxia promotes CtL2 growth. Under hypoxia, HIF-1α was stabilized and p53 was degraded in infected cells. Moreover, AKT was strongly phosphorylated at S473 by CtL2 infection. This activation was significantly diminished by LY-294002, a PI3K-AKT inhibitor, which decreased the number of CtL2 progeny. HIF-1α stabilizers (CoCl2, desferrioxamine) had no effect on increasing CtL2 growth, indicating no autocrine impact of growth factors produced by HIF-1α stabilization. Furthermore, in normoxia, CtL2 infection changed the NAD+/NADH ratio of cells with increased gapdh expression; in contrast, under hypoxia, the NAD+/NADH ratio was the same in infected and uninfected cells with high and stable expression of gapdh, suggesting that CtL2-infected cells adapted better to hypoxia. Together, these data indicate that hypoxia promotes CtL2 growth in immortal human epithelial cells by activating the PI3K-AKT pathway and maintaining the NAD+/NADH ratio with stably activated glycolysis.  相似文献   

18.
The molecular mechanisms by which cells detect hypoxia (1.5% O2), resulting in the stabilization of hypoxia-inducible factor 1alpha (HIF-1alpha) protein remain unclear. One model proposes that mitochondrial generation of reactive oxygen species is required to stabilize HIF-1alpha protein. Primary evidence for this model comes from the observation that cells treated with complex I inhibitors, such as rotenone, or cells that lack mitochondrial DNA (rho(0)-cells) fail to generate reactive oxygen species or stabilize HIF-1alpha protein in response to hypoxia. In the present study, we investigated the role of mitochondria in regulating HIF-1alpha protein stabilization under anoxia (0% O2). Wild-type A549 and HT1080 cells stabilized HIF-1alpha protein in response to hypoxia and anoxia. The rho(0)-A549 cells and rho(0)-HT1080 cells failed to accumulate HIF-1alpha protein in response to hypoxia. However, both rho(0)-A549 and rho(0)-HT1080 were able to stabilize HIF-1alpha protein levels in response to anoxia. Rotenone inhibited hypoxic, but not anoxic, stabilization of HIF-1alpha protein. These results indicate that a functional electron transport chain is required for hypoxic but not anoxic stabilization of HIF-1alpha protein.  相似文献   

19.
20.
Chlamydiae are obligate intracellular bacterial pathogens that cause trachoma, sexually transmitted diseases and respiratory infections in humans. Fragmentation of the host cell Golgi apparatus (GA) is essential for chlamydial development, whereas the consequences for host cell functions, including cell migration are not well understood. We could show that Chlamydia trachomatis‐infected cells display decelerated migration and fail to repopulate monolayer scratch wounds. Furthermore, infected cells lost the ability to reorient the fragmented GA or the microtubule organization centre (MTOC) after a migratory stimulus. Silencing of golgin‐84 phenocopied this defect in the absence of the infection. Interestingly, GA stabilization via knockdown of Rab6A and Rab11A improved its reorientation in infected cells and it was fully rescued after inhibition of Golgi fragmentation with WEHD‐fmk. These results show that C. trachomatis infection perturbs host cell migration on multiple levels, including the alignment of GA and MTOC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号