首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work was aimed at the study of the phage-type pattern of the causative agents of typhoid fever isolated in the Azerbaijan SSR in 1960-1973. As revealed, the following 26 phage-types circulated in Azerbaijan during the period under study: A, B1, B2, B3, C1, C4, C5, D1, D2, D4, D8, E1, E2, E3, E5, F1, F2, I1, M1N, T, 28, 38, 39, 40 and 46. The most widespread were phage-types A (22.86%), E1 (13.96%), F1 (9.74%), F2 (6.70%), and 28 (5.71%) constituting over half of the typed typhoid strains. Sources and ways of transmission of the infection were deciphered with the aid of phage-typing typhoid cultures.  相似文献   

2.
Cytochrome P450 2D6 (CYP2D6) metabolizes a wide range of therapeutic drugs. CYP2D6 substrates typically contain a basic nitrogen atom, and the active-site residue Asp-301 has been implicated in substrate recognition through electrostatic interactions. Our recent computational models point to a predominantly structural role for Asp-301 in loop positioning (Kirton, S. B., Kemp, C. A., Tomkinson, N. P., St.-Gallay, S., and Sutcliffe, M. J. (2002) Proteins 49, 216-231) and suggest a second acidic residue, Glu-216, as a key determinant in the binding of basic substrates. We have evaluated the role of Glu-216 in substrate recognition, along with Asp-301, by site-directed mutagenesis. Reversal of the Glu-216 charge to Lys or substitution with neutral residues (Gln, Phe, or Leu) greatly decreased the affinity (K(m) values increased 10-100-fold) for the classical basic nitrogen-containing substrates bufuralol and dextromethorphan. Altered binding was also manifested in significant differences in regiospecificity with respect to dextromethorphan, producing enzymes with no preference for N-demethylation versus O-demethylation (E216K and E216F). Neutralization of Asp-301 to Gln and Asn had similarly profound effects on substrate binding and regioselectivity. Intriguingly, removal of the negative charge from either 216 or 301 produced enzymes (E216A, E216K, and D301Q) with elevated levels (50-75-fold) of catalytic activity toward diclofenac, a carboxylate-containing CYP2C9 substrate that lacks a basic nitrogen atom. Activity was increased still further (>1000-fold) upon neutralization of both residues (E216Q/D301Q). The kinetic parameters for diclofenac (K(m) 108 microm, k(cat) 5 min(-1)) along with nifedipine (K(m) 28 microm, k(cat) 2 min(-1)) and tolbutamide (K(m) 315 microm, k(cat) 1 min(-1)), which are not normally substrates for CYP2D6, were within an order of magnitude of those observed with CYP3A4 or CYP2C9. Neutralizing both Glu-216 and Asp-301 thus effectively alters substrate recognition illustrating the central role of the negative charges provided by both residues in defining the specificity of CYP2D6 toward substrates containing a basic nitrogen.  相似文献   

3.
The active site structures of human Q31 granzyme A, murine granzymes (A, B, C, D, E, and F), and human granzymes (A, B, and 3) isolated from cytotoxic T lymphocytes (CTL) were studied with peptide thioester substrates, peptide chloromethyl ketone, and isocoumarin inhibitors. Human Q31, murine, and human granzyme A hydrolyzed Arg- or Lys-containing thioesters very efficiently with kcat/KM of 10(4)-10(5) M-1 s-1. Murine granzyme B was found to have Asp-ase activity and hydrolyzed Boc-Ala-Ala-Asp-SBzl with a kcat/KM value of 2.3 X 10(5) M-1 s-1. The rate was accelerated 1.4-fold when the 0.05 M NaCl in the assay was replaced with CaCl2. The preparation of granzyme B also had significant activity toward Boc-Ala-Ala-AA-SBzl substrates, where AA was Asn, Met, or Ser [kcat/KM = (4-5) X 10(4) M-1 s-1]. Murine granzymes C, D, and E did not hydrolyze any thioester substrate but contained minor contaminating activity toward Arg- or Lys-containing thioesters. Murine granzyme F had small activity toward Suc-Phe-Leu-Phe-SBzl, along with some contaminating trypsin-like activity. Human Q31 granzyme A, murine, and human granzyme A were inhibited quite efficiently by mechanism-based isocoumarin inhibitors substituted with basic groups (guanidino or isothiureidopropoxy). Although the general serine protease inhibitor 3,4-dichloroisocoumarin (DCI) inactivated these tryptases poorly, it was the best isocoumarin inhibitor for murine granzyme B (kobs/[I] = 3700-4200 M-1 s-1). Murine and human granzyme B were also inhibited by Boc-Ala-Ala-Asp-CH2Cl; however, the inhibition was less potent than that with DCI. DCI, 3-(3-amino-propoxy)-4-chloroisocoumarin, 4-chloro-3-(3-isothiureidopropoxy)isocoumarin, and 7-amino-4-chloro-3-(3-isothiureidopropoxy)isocoumarin inhibited Q31 cytotoxic T lymphocyte mediated lysis of human JY lymphoblasts (ED50 = 0.5-5.0 microM).  相似文献   

4.
Three suppressor loci for position-effect variegation, one dominant temperature-sensitive (DTS), three Minute genes, and two recessive visible mutants (ed, tkv) have been cytogenetically localized by using duplications and deficiencies in regions 23-25 of chromosome arm 2L of Drosophila melanogaster. Two of the suppressor loci studied proved to represent haplo-abnormal genes localized in regions 23A6-23F6 and 24E2-25A1, respectively. The third one is a strong triplo-abnormal suppressor mapping in 25F4-26B9 which affects white variegation in wm4h when present in three doses. The l(2)2DTS mutation, which belongs to a group of noncomplementing dominant temperature-sensitive mutations, is localized in the 25A4-B1 region. Furthermore, two Minute genes have been localized in region 24 that are included in Df(2L)M11 and can be separated employing translocation (Y;2)P8 (24E2-4): M(2)LS2 in 24D3-4-24E2-4, and M(2)z in 24E4-5-24F5-7. A third Minute gene (M(2)S1) is localized in 25C3-8-25C9-D1. The usefulness of the isolated chromosomal rearrangements for further genetic studies of region 23-26 is discussed.  相似文献   

5.
The Saccharomyces cerevisiae MOD5 gene encodes proteins that function in three subcellular locations: mitochondria, the cytoplasm, and nuclei (M. Boguta, L.A. Hunter, W.-C. Shen, E. C. Gillman, N. C. Martin, and A. K. Hopper, Mol. Cell. Biol. 14:2298-2306, 1994; E. C. Gillman, L. B. Slusher, N. C. Martin, and A. K. Hopper, Mol. Cell. Biol. 11:2382-2390, 1991). A mutant allele of MOD5 encoding a protein (Mod5p-I,KR6) located predominantly in mitochondria was constructed. Mutants defective in delivering Mod5p-I,KR6 to mitochondria were sought by selecting cells with increased cytosolic activity of this protein. Twenty-five mutants defining four complementation groups, mdp1, mdp2, mdp3, and mdp4, were found. They are unable to respire at 34 degrees C or to grow on glucose medium at 38 degrees C. Cell fractionation studies showed that mdp1, mdp2, and mdp3 mutants have an altered mitochondrial-cytoplasmic distribution of Mod5p. mdp2 can be suppressed by ACT1, the actin-encoding gene. The actin cytoskeleton organization is also aberrant in mdp2 cells. MDP2 is the same as VRP1 (S. F. H. Donnelly, M. J. Picklington, D. Pallotta, and E. Orr, Mol. Microbiol. 10:585-596, 1993). MDP3 is identical to PAN1, which encodes a protein that interacts with mRNA 3' ends and affects initiation of protein synthesis (A. B. Sachs and J. A. Deardoff, Cell 70:961-973, 1992). These results implicate the actin cytoskeleton and mRNA 3' ends and/or protein synthesis as being as important for protein distribution in S. cerevisiae as they are for distribution of cytosolic proteins in higher eukaryotes. This provides the potential to apply genetic and molecular approaches to study gene products and mechanisms involved in this type of protein distribution. The selection strategy also offers a new approach for identifying gene products involved in the distribution of proteins to their subscellular destinations.  相似文献   

6.
Although such solubility is uncommon among proteins generally, several bovine brain proteins were found to be soluble in 2.5% perchloric acid, and many of them were in vitro substrates for protein kinase C (Ca2+/phospholipid-dependent enzyme). Two of the perchloric acid-soluble brain proteins were purified, p43 and p17. P43 and p17 could be phosphorylated by protein kinase C only in the presence of Ca2+ and phospholipids and neither was a substrate for protein kinase II. P43 was subsequently identified as the neurospecific, calmodulin-binding protein, neuromodulin (also designated P-57, GAP43, B50, or F1) (Alexander, K. H., Wakim, B. T., Doyle, G. S., Walsh, K. A., and Storm, D. R. (1988) J. Biol. Chem. 263, 7544-7549). A rapid purification method for neuromodulin was developed taking advantage of its newly discovered property, solubility in 2.5% perchloric acid, and of its previously recognized calmodulin-binding property. Evidence was obtained that neuromodulin isolated from cytosolic extract exists as a mixture of molecular forms and that the Ca2+-binding S100 protein-beta discriminates among the different neuromodulin isoforms in forming covalent complexes via disulfide bridges; this discrimination may be explained by analogous differences observed between the NH2-terminal amino acid sequences of p57 and F1. Solubility in 2.5% perchloric acid was demonstrated for another rat brain protein kinase C substrate, p87. We suggest that perchloric acid solubility might be a common property of protein kinase C substrates.  相似文献   

7.
A chemosystematic study of the subtribe Scorzonerinae, a subtribe of the Lactuceae tribe of the Asteraceae family was performed, using the recently discovered tyrolobibenzyls as well as lignans and caffeic acid derivatives as diagnostic characters. In addition to the known compounds two new tyrolobibenzyls (E and F) were isolated and their structures were established by mass spectrometry and 1D and 2D NMR spectroscopy. Twenty four samples from rootstocks of seventeen different Scorzonerinae taxa, comprising members of three genera (Podospermum, Scorzonera, and Tragopogon), were analyzed. Tyrolobibenzyls A (1), B (2), C (5), D (3), E (6), and F (4) were identified in crude extracts by means of HPLC retention times, on-line UV spectra and on-line MS/MS spectra. Quantification of these compounds was performed by HPLC, using 2,2-bis-(4-hydroxyphenyl)-propane as an internal standard. Tyrolobibenzyls A-F were only detected in samples from Scorzonera humilis, while chlorogenic acid and 3,5-dicaffeoylquinic acid were detected in all samples investigated. In contrast, caffeoyl tartaric acid and cichoric acid were not detectable in any member of the subtribe Scorzonerinae.  相似文献   

8.
9.
Four new des-A-ergostane derivatives including blazeispirols B, C, E and F were isolated from the cultured mycelia of fungus Agaricus blazei Murill and were established to be (20S, 22R, 23R, 24S)-14beta,22: 22,25-diepoxy-5-methoxy-des-A-ergosta-5,7,9,11-tetraen-23-ol; (20S, 22S, 23R, 24S)-14beta,22: 22,25-diepoxy-5-methoxy-des-A-ergosta-5,7,9-trien-23-ol; (20S, 22S, 23R, 24S)-14beta, 22: 22, 25-diepoxy-5-methoxy-des-A-ergosta-5,7,9,11-tetraene-19,23-diol and (20S, 22S, 23R, 24S)-14beta,22: 22,25-diepoxy-des-A-ergosta-5,7,9-triene-5,23-diol by comparison of extensive 1D and 2D NMR spectral data with that of blazeispirol A.  相似文献   

10.
The cDNA encoding adenovirus E1A enhancer-binding protein E1A-F was isolated by screening a HeLa cell lambda gt11 expression library for E1A-F site-specific DNA binding. One cDNA clone produced recombinant E1A-F protein with the same DNA binding specificity as that endogenous to HeLa cells. Sequence analysis of the cDNA showed homology with the ETS-domain, a region required for sequence-specific DNA binding and common to all ets oncogene members. Analysis of the longest cDNA revealed about a 94% identity in amino acids between human E1A-F and mouse PEA3 (polyomavirus enhancer activator 3), a recently characterized ets oncogene member. E1A-F was encoded by a 2.5kb mRNA in HeLa cells, which was found to increase during the early period of adenovirus infection. In contrast, ets-2 mRNA was significantly reduced in infected HeLa cells. The results indicate that E1A enhancer binding protein E1A-F is a member of the ets oncogene family and is probably a human homologue of mouse PEA3.  相似文献   

11.
Avian infectious bronchitis virus, a coronavirus, directed the synthesis of six major single-stranded polyadenylated RNA species in infected chicken embryo kidney cells. These RNAs include the intracellular form of the genome (RNA F) and five smaller RNA species (RNAs A, B, C, D, and E). Species A, B, C, and D are subgenomic RNAs and together with the genome form a nested sequence set, with the sequences of each RNA contained within every larger RNA species (D. F. Stern and S. I. T. Kennedy, J. Virol 34:665-674, 1980). In the present paper we show by RNase T1 oligonucleotide fingerprinting that RNA E is also a member of the nested set. Partial alkaline fragmentation of the genome followed by sucrose fractionation, oligodeoxythymidylate-cellulose chromatography, and RNase T1 fingerprinting gave a partial 3'-to-5' oligonucleotide spot order. A comparison of the oligonucleotides of each of the five subgenomic RNAs with this spot order established that all of the RNAs are comprised of nucleotide sequences inward from the 3' end of the genome. This result is discussed in relation to the multiplication strategy both of coronaviruses and of other RNA-containing viruses.  相似文献   

12.
By inducing with mitomycin C the following phages were isolated from all the tested 32 methicillin resistant strains of S. aureus: the serogroup B phage was isolated from 2 strains, the serogroup B and F phages were isolated from 5 strains and the serogroup F phage was isolated from 25 strains. The phages were divided into 5 groups by the antiphage immunity. In group 1 of the phages 4 additional phages were specified. By the specificity of the prophages in the cultures all the strains were divided into 5 groups. Group 1 of the cultures was divided into 5 subgroups (A, B, C, D and E).  相似文献   

13.
Biotin and fluorescent labeling of RNA using T4 RNA ligase.   总被引:8,自引:8,他引:0       下载免费PDF全文
Biotin, fluorescein, and tetramethylrhodamine derivatives of P1-(6-aminohex-1-yl)-P2-(5'-adenosine) pyrophosphate were synthesized and used as substrates with T4 RNA ligase. In the absence of ATP, the non-adenylyl portion of these substrates is transferred to the 3'-hydroxyl of an RNA acceptor to form a phosphodiester bond and the AMP portion is released. E. coli and D. melanogaster 5S RNA, yeast tRNAPhe, (Ap)3C, and (Ap)3A serve as acceptors with yields of products varying from 50 to 100%. Biotin-labeled oligonucleotides are bound selectively and quantitatively to avidin-agarose and may be eluted with 6 M guanidine hydrochloride, pH 2.5. Fluorescein and tetramethylrhodamine-labeled oligonucleotides are highly fluorescent and show no quenching due to attachment to the acceptor. The diverse structures of the appended groups and of the chain lengths and compositions of the acceptor RNAs show that T4 RNA ligase will be a useful modification reagent for the addition of various functional groups to the 3'-terminus of RNA molecules.  相似文献   

14.
15.
The competitive antagonist d-tubocurarine (curare) has greater potency at mouse than at human 5-hydroxytryptamine 3A (5-HT3A) receptors, despite 84% amino acid sequence identity between the receptors. Within the ligand binding domain of this receptor are six loops (A-F). A previous report demonstrated that loop C of the 5-HT3A receptor contributed to differential potency between the receptors [Hope, A. G. et al. (1999) Mol. Pharmacol. 55, 1037-1043]. The present study tested the hypothesis that loop F plays a significant role in conferring interspecies curare potency differences. Wild-type, chimeric, and point mutant 5-HT3A receptors were expressed in Xenopus oocytes, and two-electrode voltage clamp electrophysiological recordings were performed. Our data suggest that loops C and F contribute to curare potency, given that the curare IC50's (concentration of drug that produces 50% inhibition of the response) for chimeric human receptors with substitutions of mouse residues in loop C (40.07 +/- 2.52 nM) or loop F (131.8 +/- 5.95 nM) were intermediate between those for the mouse (12.99 +/- 0.77 nM) and human (1817 +/- 92.36 nM) wild-type receptors. Two human point mutant receptors containing mouse receptor substitutions in loop F (H-K195E or H-V202I) had significantly lower curare IC50's than that of the human receptor. The human double mutant receptor, H-K195E,V202I, had the same curare IC50 (133.8 +/- 6.38 nM) as that of the human receptor containing all six loop F mouse substitutions. These results demonstrate that two loop F residues make a significant contribution in determining curare potency at the 5-HT3A receptor.  相似文献   

16.
Fifty-four isolates of lactic acid bacteria were obtained from the intestines of the common carp (Cyprinus carpio) and freshwater prawns (Macrobrachium rosenbergii) in Nakorn-Pathom Province, Thailand. All isolates were Gram-positive and catalase-negative cocci that did not produce gas from glucose and formed dl or L(+) lactic acid only. Most isolates were able to grow in broth at pH 9.6, in 6.5% NaCl (w/v) and 40% (w/v) bile. These isolates were divided into six groups (A-F) by sugar fermentation patterns. Strains in the groups A, B, C, and D showed intergroup DNA homology values of above 73.8%, indicating that these groups were composed of a single species. Following phylogenetic analysis, strains E 1, E 7, and E 26 from groups A, E, and F were placed in the clusters of the genera Lactococcus, Pediococcus, and Enterococcus, respectively. The type strains of Lactococcus garvieae, Pediococcus acidilactici, and Enterococcus faecium were the most closely related species with E 1, E 7, and E 26 in the phylogenetic tree, respectively. The DNA-DNA hybridization results indicated that strains in groups A (including groups B, C, and D), E, and F could be identified as belonging to the species Lactococcus garvieae, Pediococcus acidilactici, and Enterococcus faecium, respectively. Lactococcus garvieae was the dominant member of the population, accounting for 90.7% of the isolates.  相似文献   

17.
Members of the bone morphogenetic protein-1/tolloid (BMP-1/Tld) family of metalloproteinases, also known as procollagen C-proteinases (PCPs), control multiple biological events (including matrix assembly, cross-linking, cell adhesion/migration and pattern formation) through enzymatic processing of several extracellular substrates. PCP activities on fibrillar procollagens can be stimulated by another family of extracellular proteins, PCP enhancers (PCPE-1, PCPE-2), which lack intrinsic enzymatic activity. While PCPs have multiple substrates, the extent to which PCPEs is involved in the processing of proteins other than fibrillar procollagens is unknown. In the experiments reported here, PCPE-1 was found to have no effect on the in vitro BMP-1 processing of procollagen VII, the procollagen V N-propeptide, the laminin 5 gamma2 chain, osteoglycin, prolysyl oxidase, or chordin. In contrast, PCPE-1 enhanced C-terminal processing of human fibrillar procollagen III but only when this substrate was in its native, disulfide-bonded conformation. Surprisingly, processing of procollagen III continued to be enhanced when essentially all the triple-helical region was removed. These and previous results (Ricard-Blum, S., Bernocco, S., Font, B., Moali, C., Eichenberger, D., Farjanel, J., Burchardt, E. R., van der Rest, M., Kessler, E., and Hulmes, D. J. S. (2002) J. Biol. Chem. 277, 33864-33869; Bernocco, S., Steiglitz, B. M., Svergun, D. I., Petoukhov, M. V., Ruggiero, F., Ricard-Blum, S., Ebel, C., Geourjon, C., Deleage, G., Font, B., Eichenberger, D., Greenspan, D. S., and Hulmes, D. J. S. (2003) J. Biol. Chem. 278, 7199-7205) indicate that the mechanism of PCPE-1 action involves recognition sites in both the C-propeptide domain and in the C-telopeptide region of the procollagen molecule. PCPEs therefore define a new class of extracellular adaptor proteins that stimulate proteinase activity in a substrate-specific manner, thereby providing a new target for the selective regulation of PCP activity on fibrillar procollagen substrates.  相似文献   

18.
Karyotypes of 24 diploid (2n=12)Tragopogon species are similar with one long pair of chromosomes (A), two medium-length pairs (B and C), and three short pairs (D, E, and F). These species may be divided into three karyotypic groups: 1) seven species with a satellite on A and on D; 2) 14 species with a satellite on A only; and 3) three species with a satellite on D only. Most species within karyotype groups may be separated from each other either by distinctive features of certain chromosomes or by statistical differences in length of chromosome arms or long arm: short arm ratios of chromosome A. Three tetraploid (2n=24) species had two long pairs (A,A′), four medium-length pairs (B,B′;C,C′), and six short pairs (D,D′;E,E′;F,F′). Suggestions are made as to the putative diploid parents of these presumed allotetraploids.  相似文献   

19.
A family of serine esterases in lytic granules of cytolytic T lymphocytes   总被引:38,自引:0,他引:38  
D Masson  J Tschopp 《Cell》1987,49(5):679-685
Cytoplasmic granules of cytolytic T lymphocytes (CTLs) contain, in addition to the pore-forming protein perforin, a family of highly homologous serine esterases, granzymes A-H. The serine esterase affinity label diisopropyl fluorophosphate reacts strongly with granzymes A and D, to a lesser extent with B, E, F, G, and H, and not at all with C and F. For granzymes A and D, synthetic substrates have been found. Antibodies raised against granzyme B strongly cross-react with A, G, and H, and antibodies to granzyme D recognize C, E, and F. These antigenic relationships correlate with similarities in the N-terminal amino acid sequences. At least 60% homology is observed between the eight proteins, and all are similar to rat mast cell protease 2. Sequence analysis suggests the identity of granzyme A with a protease predicted from a CTL-specific cDNA clone (H factor) and of granzyme B, G, or H with a protein encoded by the CTL-specific cDNA clone CTLA 1/CCP 1.  相似文献   

20.
D-amino acid amidase (DAA) from Ochrobactrum anthropi SV3, which catalyzes the stereospecific hydrolysis of D-amino acid amides to yield the D-amino acid and ammonia, has attracted increasing attention as a catalyst for the stereospecific production of D-amino acids. In order to clarify the structure-function relationships of DAA, the crystal structures of native DAA, and of the D-phenylalanine/DAA complex, were determined at 2.1 and at 2.4 A resolution, respectively. Both crystals contain six subunits (A-F) in the asymmetric unit. The fold of DAA is similar to that of the penicillin-recognizing proteins, especially D-alanyl-D-alanine-carboxypeptidase from Streptomyces R61, and class C beta-lactamase from Enterobacter cloacae strain GC1. The catalytic residues of DAA and the nucleophilic water molecule for deacylation were assigned based on these structures. DAA has a flexible Omega-loop, similar to class C beta-lactamase. DAA forms a pseudo acyl-enzyme intermediate between Ser60 O(gamma) and the carbonyl moiety of d-phenylalanine in subunits A, B, C, D, and E, but not in subunit F. The difference between subunit F and the other subunits (A, B, C, D and E) might be attributed to the order/disorder structure of the Omega-loop: the structure of this loop cannot assigned in subunit F. Deacylation of subunit F may be facilitated by the relative movement of deprotonated His307 toward Tyr149. His307 N(epsilon2) extracts the proton from Tyr149 O(eta), then Tyr149 O(eta) attacks a nucleophilic water molecule as a general base. Gln214 on the Omega-loop is essential for forming a network of water molecules that contains the nucleophilic water needed for deacylation. Although peptidase activity is found in almost all penicillin-recognizing proteins, DAA lacks peptidase activity. The lack of transpeptidase and carboxypeptidase activities may be attributed to steric hindrance of the substrate-binding pocket by a loop comprised of residues 278-290 and the Omega-loop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号