首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is important to know the comprehensive microbial communities of fecal pollution sources and receiving water bodies for microbial source tracking. Pyrosequencing targeting the V1-V3 hypervariable regions of the 16S rRNA gene was used to investigate the characteristics of bacterial and Bacteroidales communities in major fecal sources and river waters. Diversity analysis indicated that cow feces had the highest diversities in the bacterial and Bacteroidales group followed by the pig sample, with human feces having the lowest value. The Bacteroidales, one of the potential fecal indicators, totally dominated in the fecal samples accounting for 31%-52% of bacterial sequences, but much less (0.6%) in the river water. Clustering and Venn diagram analyses showed that the human sample had a greater similarity to the pig sample in the bacterial and Bacteroidales communities than to samples from other hosts. Traditional fecal indicators, i.e., Escherichia coli, were detected in the human and river water samples at very low rates and Clostridium perfringens and enterococci were not detected in any samples. Besides the Bacteroidales group, some microorganisms detected in the specific hosts, i.e., Parasutterella excrementihominis, Veillonella sp., Dialister invisus, Megamonas funiformis, and Ruminococcus lactaris for the human and Lactobacillus amylovorus and Atopostipes sp. for the pig, could be used as potential host-specific fecal indicators. These microorganisms could be used as multiple fecal indicators that are not dependent on the absence or presence of a single indicator. Monitoring for multiple indicators that are highly abundant and host-specific would greatly enhance the effectiveness of fecal pollution source tracking.  相似文献   

2.
Our purpose was to develop a rapid, inexpensive method of diagnosing the source of fecal pollution in water. In previous research, we identified Bacteroides-Prevotella ribosomal DNA (rDNA) PCR markers based on analysis. These markers length heterogeneity PCR and terminal restriction fragment length polymorphism distinguish cow from human feces. Here, we recovered 16S rDNA clones from natural waters that were close phylogenetic relatives of the markers. From the sequence data, we designed specific PCR primers that discriminate human and ruminant sources of fecal contamination.  相似文献   

3.
Regulatory agencies mandate the use of fecal coliforms, Escherichia coli or Enterococcus spp., as microbial indicators of recreational water quality. These indicators of fecal pollution do not identify the specific sources of pollution and at times underestimate health risks associated with recreational water use. This study proposes the use of human polyomaviruses (HPyVs), which are widespread among human populations, as indicators of human fecal pollution. A method was developed to concentrate and extract HPyV DNA from environmental water samples and then to amplify it by nested PCR. HPyVs were detected in as little as 1 microl of sewage and were not amplified from dairy cow or pig wastes. Environmental water samples were screened for the presence of HPyVs and two additional markers of human fecal pollution: the Enterococcus faecium esp gene and the 16S rRNA gene of human-associated Bacteroides. The presence of human-specific indicators of fecal pollution was compared to fecal coliform and Enterococcus concentrations. HPyVs were detected in 19 of 20 (95%) samples containing the E. faecium esp gene and Bacteroides human markers. Weak or no correlation was observed between the presence/absence of human-associated indicators and counts of indicator bacteria. The sensitivity, specificity, and correlation with other human-associated markers suggest that the HPyV assay could be a useful predictor of human fecal pollution in environmental waters and an important component of the microbial-source-tracking "toolbox."  相似文献   

4.
Our purpose was to develop a rapid, inexpensive method of diagnosing the source of fecal pollution in water. In previous research, we identified Bacteroides-Prevotella ribosomal DNA (rDNA) PCR markers based on analysis. These markers length heterogeneity PCR and terminal restriction fragment length polymorphism distinguish cow from human feces. Here, we recovered 16S rDNA clones from natural waters that were close phylogenetic relatives of the markers. From the sequence data, we designed specific PCR primers that discriminate human and ruminant sources of fecal contamination.  相似文献   

5.
We describe a new PCR-based method for distinguishing human and cow fecal contamination in coastal waters without culturing indicator organisms, and we show that the method can be used to track bacterial marker sequences in complex environments. We identified two human-specific genetic markers and five cow-specific genetic markers in fecal samples by amplifying 16S ribosomal DNA (rDNA) fragments from members of the genus Bifidobacterium and the Bacteroides-Prevotella group and performing length heterogeneity PCR and terminal restriction fragment length polymorphism analyses. Host-specific patterns suggested that there are species composition differences in the Bifidobacterium and Bacteroides-Prevotella populations of human and cow feces. The patterns were highly reproducible among different hosts belonging to the same species. Additionally, all host-specific genetic markers were detected in water samples collected from areas frequently contaminated with fecal pollution. Ease of detection and longer survival in water made Bacteroides-Prevotella indicators better than Bifidobacterium indicators. Fecal 16S rDNA sequences corresponding to our Bacteroides-Prevotella markers comprised closely related gene clusters, none of which exactly matched previously published Bacteroides or Prevotella sequences. Our method detected host-specific markers in water at pollutant concentrations of 2.8 x 10(-5) to 2.8 x 10(-7) g (dry weight) of feces/liter and 6.8 x 10(-7) g (dry weight) of sewage/liter. Although our aim was to identify nonpoint sources of fecal contamination, the method described here should be widely applicable for monitoring spatial and temporal fluctuations in specific bacterial groups in natural environments.  相似文献   

6.
The objectives of this study were to elucidate spatial and temporal dynamics in source-specific Bacteroidales 16S rRNA genetic marker data across a watershed; to compare these dynamics to fecal indicator counts, general measurements of water quality, and climatic forces; and to identify geographic areas of intense exposure to specific sources of contamination. Samples were collected during a 2-year period in the Tillamook basin in Oregon at 30 sites along five river tributaries and in Tillamook Bay. We performed Bacteroidales PCR assays with general, ruminant-source-specific, and human-source-specific primers to identify fecal sources. We determined the Escherichia coli most probable number, temperature, turbidity, and 5-day precipitation. Climate and water quality data collectively supported a rainfall runoff pattern for microbial source input that mirrored the annual precipitation cycle. Fecal sources were statistically linked more closely to ruminants than to humans; there was a 40% greater probability of detecting a ruminant source marker than a human source marker across the basin. On a sample site basis, the addition of fecal source tracking data provided new information linking elevated fecal indicator bacterial loads to specific point and nonpoint sources of fecal pollution in the basin. Inconsistencies in E. coli and host-specific marker trends suggested that the factors that control the quantity of fecal indicators in the water column are different than the factors that influence the presence of Bacteroidales markers at specific times of the year. This may be important if fecal indicator counts are used as a criterion for source loading potential in receiving waters.  相似文献   

7.
Based on the comparative 16S rRNA gene sequence analysis of fecal DNAs, we identified one human-, three cow-, and two pig-specific Bacteroides–Prevotella 16S rRNA genetic markers, designed host-specific real-time polymerase chain reaction (real-time PCR) primer sets, and successfully developed real-time PCR assay to quantify the fecal contamination derived from human, cow, and pig in natural river samples. The specificity of each newly designed host-specific primer pair was evaluated on fecal DNAs extracted from these host feces. All three cow-specific and two pig-specific primer sets amplified only target fecal DNAs (in the orders of 9–11 log10 copies per gram of wet feces), showing high host specificity. This real-time PCR assay was then applied to the river water samples with different fecal contamination sources and levels. It was confirmed that this assay could sufficiently discriminate and quantify human, cow, and pig fecal contamination. There was a moderate level of correlation between the Bacteroides–Prevotella group-specific 16S rRNA gene markers with fecal coliforms (r 2 = 0.49), whereas no significant correlation was found between the human-specific Bacteroides 16S rRNA gene with total and fecal coliforms. Using a simple filtration method, the minimum detection limits of this assay were in the range of 50–800 copies/100 ml. With a combined sample processing and analysis time of less than 8 h, this real-time PCR assay is useful for monitoring or identifying spatial and temporal distributions of host-specific fecal contaminations in natural water environments.  相似文献   

8.
To effectively manage surface and ground waters it is necessary to improve our ability to detect and identify sources of fecal contamination. We evaluated the use of the anaerobic bacterial group Bacteroides-Prevotella as a potential fecal indicator. Terminal restriction length polymorphism (T-RFLP) of the 16S rRNA genes from this group was used to determine differences in populations and to identify any unique populations in chickens, cows, deer, dogs, geese, horses, humans, pigs, and seagulls. The group appears to be a good potential fecal indicator in all groups tested except for avians. Cluster analysis of Bacteroides-Prevotella community T-RFLP profiles indicates that Bacteroides-Prevotella populations from samples of the same host species are much more similar to each other than to samples from different source species. We were unable to identify unique peaks that were exclusive to any source species; however, for most host species, at least one T-RFLP peak was identified to be more commonly found in that species, and a combination of peaks could be used to identify the source. T-RFLP profiles obtained from water spiked with known-source feces contained the expected diagnostic peaks from the source. These results indicate that the approach of identifying Bacteroides-Prevotella molecular markers associated with host species might be useful in identifying sources of fecal contamination in the environment.  相似文献   

9.
Most environmental waters are susceptible to fecal contamination from animal and/or human pollution sources. To attenuate or eliminate such contamination, it is often critical that the pollution sources are rapidly and correctly identified. Fecal pollution source tracking (FST) is a promising research area that aims to identify the origin(s) of fecal pollution in water. This mini-review focuses on the potentials and limitations of library independent molecular markers that are exclusively or strongly associated with fecal pollution from humans and different animals. Fecal-source-associated molecular markers include nucleic acid sequences from prokaryotes and viruses associated with specific biological hosts, but also sequences such as mitochondrial DNA retrieved directly from humans and animals. However, some fecal-source-associated markers may not be absolutely specific for a given source type, and apparent specificity and frequency established in early studies are sometimes compromised by new studies suggesting variation in specificity and abundance on a regional, global and/or temporal scale. It is therefore recommended that FST studies are based on carefully selected arrays of markers, and that identification of human and animal contributions are based on a multi-marker toolkit with several markers for each source category. Furthermore, future FST studies should benefit from increased knowledge regarding sampling strategies and temporal and spatial variability of marker ratios. It will also be important to obtain a better understanding of marker persistence and the quantitative relationship between marker abundance and the relative contribution from individual fecal pollution source types. A combination of enhanced pathogen screening methods, and validated quantitative source tracking techniques could then contribute significantly to future management of environmental water quality including improved microbial risk assessment.  相似文献   

10.
PCR-based analysis of Bacteroidales 16S rRNA genes has emerged as a promising tool to identify sources of fecal water pollution. In this study, three TaqMan real-time PCR assays (BacGeneral, BacHuman, and BacBovine) were developed and evaluated for their ability to quantitatively detect general (total), human-specific, and bovine-specific Bacteroidales 16S rRNA genetic markers. The detection sensitivity was determined to be 6.5 copies of 16S rRNA gene for the BacGeneral and BacHuman assays and 10 copies for the BacBovine assay. The assays were capable of detecting approximately one to two cells per PCR. When tested with 70 fecal samples from various sources (human, cattle, pig, deer, dog, cat, goose, gull, horse, and raccoon), the three assays positively identified the target markers in all samples without any false-negative results. The BacHuman and BacBovine assays exhibited false-positive reactions with non-target samples in a few cases. However, the level of the false-positive reactions was about 50 times smaller than that of the true-positive ones, and therefore, these cross-reactions were unlikely to cause misidentifications of the fecal pollution sources. Microbial source-tracking capability was tested at two freshwater streams of which water quality was influenced by human and cattle feces, respectively. The assays accurately detected the presence of the corresponding host-specific markers upon fecal pollution and the persistence of the markers in downstream areas. The assays are expected to reliably determine human and bovine fecal pollution sources in environmental water samples.  相似文献   

11.
Nonpoint sources of pollution that contribute fecal bacteria to surface waters have proven difficult to identify. Knowledge of pollution sources could aid in restoration of the water quality, reduce the amounts of nutrients leaving watersheds, and reduce the danger of infectious disease resulting from exposure to contaminated waters. Patterns of antibiotic resistance in fecal streptococci were analyzed by discriminant and cluster analysis and used to identify sources of fecal pollution in a rural Virginia watershed. A database consisting of patterns from 7,058 fecal streptococcus isolates was first established from known human, livestock, and wildlife sources in Montgomery County, Va. Correct fecal streptococcus source identification averaged 87% for the entire database and ranged from 84% for deer isolates to 93% for human isolates. To field test the method and the database, a watershed improvement project (Page Brook) in Clarke County, Va., was initiated in 1996. Comparison of 892 known-source isolates from that watershed against the database resulted in an average correct classification rate of 88%. Combining all animal isolates increased correct classification rates to > or = 95% for separations between animal and human sources. Stream samples from three collection sites were highly contaminated, and fecal streptococci from these sites were classified as being predominantly from cattle (>78% of isolates), with small proportions from waterfowl, deer, and unidentified sources ( approximately 7% each). Based on these results, cattle access to the stream was restricted by installation of fencing and in-pasture watering stations. Fecal coliforms were reduced at the three sites by an average of 94%, from prefencing average populations of 15,900 per 100 ml to postfencing average populations of 960 per 100 ml. After fencing, <45% of fecal streptococcus isolates were classified as being from cattle. These results demonstrate that antibiotic resistance profiles in fecal streptococci can be used to reliably determine sources of fecal pollution, and water quality improvements can occur when efforts to address the identified sources are made.  相似文献   

12.
To effectively manage surface and ground waters it is necessary to improve our ability to detect and identify sources of fecal contamination. We evaluated the use of the anaerobic bacterial group Bacteroides-Prevotella as a potential fecal indicator. Terminal restriction length polymorphism (T-RFLP) of the 16S rRNA genes from this group was used to determine differences in populations and to identify any unique populations in chickens, cows, deer, dogs, geese, horses, humans, pigs, and seagulls. The group appears to be a good potential fecal indicator in all groups tested except for avians. Cluster analysis of Bacteroides-Prevotella community T-RFLP profiles indicates that Bacteroides-Prevotella populations from samples of the same host species are much more similar to each other than to samples from different source species. We were unable to identify unique peaks that were exclusive to any source species; however, for most host species, at least one T-RFLP peak was identified to be more commonly found in that species, and a combination of peaks could be used to identify the source. T-RFLP profiles obtained from water spiked with known-source feces contained the expected diagnostic peaks from the source. These results indicate that the approach of identifying Bacteroides-Prevotella molecular markers associated with host species might be useful in identifying sources of fecal contamination in the environment.  相似文献   

13.
In this study, host-associated molecular markers and bacterial 16S rRNA gene community analysis using high-throughput sequencing were used to identify the sources of fecal pollution in environmental waters in Brisbane, Australia. A total of 92 fecal and composite wastewater samples were collected from different host groups (cat, cattle, dog, horse, human, and kangaroo), and 18 water samples were collected from six sites (BR1 to BR6) along the Brisbane River in Queensland, Australia. Bacterial communities in the fecal, wastewater, and river water samples were sequenced. Water samples were also tested for the presence of bird-associated (GFD), cattle-associated (CowM3), horse-associated, and human-associated (HF183) molecular markers, to provide multiple lines of evidence regarding the possible presence of fecal pollution associated with specific hosts. Among the 18 water samples tested, 83%, 33%, 17%, and 17% were real-time PCR positive for the GFD, HF183, CowM3, and horse markers, respectively. Among the potential sources of fecal pollution in water samples from the river, DNA sequencing tended to show relatively small contributions from wastewater treatment plants (up to 13% of sequence reads). Contributions from other animal sources were rarely detected and were very small (<3% of sequence reads). Source contributions determined via sequence analysis versus detection of molecular markers showed variable agreement. A lack of relationships among fecal indicator bacteria, host-associated molecular markers, and 16S rRNA gene community analysis data was also observed. Nonetheless, we show that bacterial community and host-associated molecular marker analyses can be combined to identify potential sources of fecal pollution in an urban river. This study is a proof of concept, and based on the results, we recommend using bacterial community analysis (where possible) along with PCR detection or quantification of host-associated molecular markers to provide information on the sources of fecal pollution in waterways.  相似文献   

14.
Regulatory agencies mandate the use of fecal coliforms, Escherichia coli or Enterococcus spp., as microbial indicators of recreational water quality. These indicators of fecal pollution do not identify the specific sources of pollution and at times underestimate health risks associated with recreational water use. This study proposes the use of human polyomaviruses (HPyVs), which are widespread among human populations, as indicators of human fecal pollution. A method was developed to concentrate and extract HPyV DNA from environmental water samples and then to amplify it by nested PCR. HPyVs were detected in as little as 1 μl of sewage and were not amplified from dairy cow or pig wastes. Environmental water samples were screened for the presence of HPyVs and two additional markers of human fecal pollution: the Enterococcus faecium esp gene and the 16S rRNA gene of human-associated Bacteroides. The presence of human-specific indicators of fecal pollution was compared to fecal coliform and Enterococcus concentrations. HPyVs were detected in 19 of 20 (95%) samples containing the E. faecium esp gene and Bacteroides human markers. Weak or no correlation was observed between the presence/absence of human-associated indicators and counts of indicator bacteria. The sensitivity, specificity, and correlation with other human-associated markers suggest that the HPyV assay could be a useful predictor of human fecal pollution in environmental waters and an important component of the microbial-source-tracking “toolbox.”  相似文献   

15.
Sun  Haohao  He  Xiwei  Ye  Lin  Zhang  Xu-Xiang  Wu  Bing  Ren  Hongqiang 《Applied microbiology and biotechnology》2017,101(5):2143-2152

The fecal bacteria in natural waters may pose serious risks on human health. Although many source tracking methods have been developed and used to determine the possible sources of the fecal pollution, little is known about the overall diversity and abundance of fecal bacterial community in natural waters. In this study, a method based on fecal bacterial sequence library was introduced to evaluate the fecal bacterial profile in the Yangtze River (Nanjing section). Our results suggested that the Yangtze River water harbors diverse fecal bacteria. Fifty-eight fecal operational taxonomic units (97% identity level) were detected in the Yangtze River water samples and the relative abundance of fecal bacteria in these samples ranged from 0.1 to 8%. It was also found that the relative abundances of the fecal bacteria in locations near to the downstream of wastewater treatment plants were obviously higher than those in other locations. However, the high abundance of fecal bacteria could decrease to the normal level in 2~4 km in the river due to degradation or dilution, and the overall fecal bacteria level changed little when the Yangtze River flew through the Nanjing City. Moreover, the fecal bacteria in the Yangtze River water were found to be highly associated (Spearman rho = 0.804, P < 0.001) with the potential pathogenic bacteria. Collectively, the findings in this study reveal the diversity, abundance, and possible sources of fecal bacteria in the Yangtze River and advance our understandings of the fecal bacteria community in the natural waters.

  相似文献   

16.
We used genome fragment enrichment and bioinformatics to identify several microbial DNA sequences with high potential for use as markers in PCR assays for detection of human fecal contamination in water. Following competitive solution-phase hybridization of total DNA from human and pig fecal samples, 351 plasmid clones were sequenced and were determined to define 289 different genomic DNA regions. These putative human-specific fecal bacterial DNA sequences were then analyzed by dot blot hybridization, which confirmed that 98% were present in the source human fecal microbial community and absent from the original pig fecal DNA extract. Comparative sequence analyses of these sequences suggested that a large number (43.5%) were predicted to encode bacterial secreted or surface-associated proteins. Deoxyoligonucleotide primers capable of annealing to a subset of 26 of the candidate sequences predicted to encode factors involved in interactions with host cells were then used in the PCR and did not amplify markers in DNA from any additional pig fecal specimens. These 26 PCR assays exhibited a range of specificity in tests with 11 other animal sources, with more than half amplifying markers only in specimens from dogs or cats. Four assays were more specific, detecting markers only in specimens from humans, including those from 18 different human populations examined. We then demonstrated the potential utility of these assays by using them to detect human fecal contamination in several impacted watersheds.  相似文献   

17.
We evaluated the efficacy, sensitivity, host-specificity, and spatial/temporal dynamics of human- and ruminant-specific 16S rRNA gene Bacteroidetes markers used to assess the sources of fecal pollution in a fecally impacted watershed. Phylogenetic analyses of 1271 fecal and environmental 16S rRNA gene clones were also performed to study the diversity of Bacteroidetes in this watershed. The host-specific assays indicated that ruminant feces were present in 28-54% of the water samples and in all sampling seasons, with increasing frequency in downstream sites. The human-targeted assays indicated that only 3-5% of the water samples were positive for human fecal signals, although a higher percentage of human-associated signals (19-24%) were detected in sediment samples. Phylogenetic analysis indicated that 57% of all water clones clustered with yet-to-be-cultured Bacteroidetes species associated with sequences obtained from ruminant feces, further supporting the prevalence of ruminant contamination in this watershed. However, since several clusters contained sequences from multiple sources, future studies need to consider the potential cosmopolitan nature of these bacterial populations when assessing fecal pollution sources using Bacteroidetes markers. Moreover, additional data is needed in order to understand the distribution of Bacteroidetes host-specific markers and their relationship to water quality regulatory standards.  相似文献   

18.
Host-specific Bacteroides–Prevotella 16S rRNA genetic markers are promising alternative indicators for identifying the sources of fecal pollution because of their high abundance in the feces of warm-blooded animals and high host specificity. However, little is known about the persistence of these genetic markers in environments after being released into environmental waters. The persistence of feces-derived four different host-specific Bacteroides–Prevotella 16S rRNA genetic makers (total, human-, cow-, and pig-specific) in environmental waters was therefore investigated at different incubation temperatures (4, 10, 20, and 30°C) and salinities (0, 10, 20, and 30 ppt) and then compared with the survival of conventional fecal-indicator organisms. The host-specific genetic markers were monitored by using real-time polymerase chain reaction (PCR) assays with specific primer sets. Each host-specific genetic marker showed similar responses in non-filtered river water and seawater: They persisted longer at lower temperatures and higher salinities. In addition, these markers did not increase in all conditions tested. Decay rates for indicator organisms were lower than those for host-specific genetic markers at temperature above 10°C. Furthermore, we investigated whether the PCR-detectable 16S rRNA genetic markers reflect the presence of live target cells or dead target cells in environmental waters. The result revealed that the detection of the Bacteroides–Prevotella 16S rRNA genetic markers in environmental waters mainly reflected the presence of ‘viable but non-culturable’ Bacteroides–Prevotella cells. These findings indicate that seasonal and geographical variations in persistence of these host-specific Bacteroides–Prevotella 16S rRNA genetic markers must be considered when we use them as alternative fecal indicators in environmental waters.  相似文献   

19.
The objectives of this study were to elucidate spatial and temporal dynamics in source-specific Bacteroidales 16S rRNA genetic marker data across a watershed; to compare these dynamics to fecal indicator counts, general measurements of water quality, and climatic forces; and to identify geographic areas of intense exposure to specific sources of contamination. Samples were collected during a 2-year period in the Tillamook basin in Oregon at 30 sites along five river tributaries and in Tillamook Bay. We performed Bacteroidales PCR assays with general, ruminant-source-specific, and human-source-specific primers to identify fecal sources. We determined the Escherichia coli most probable number, temperature, turbidity, and 5-day precipitation. Climate and water quality data collectively supported a rainfall runoff pattern for microbial source input that mirrored the annual precipitation cycle. Fecal sources were statistically linked more closely to ruminants than to humans; there was a 40% greater probability of detecting a ruminant source marker than a human source marker across the basin. On a sample site basis, the addition of fecal source tracking data provided new information linking elevated fecal indicator bacterial loads to specific point and nonpoint sources of fecal pollution in the basin. Inconsistencies in E. coli and host-specific marker trends suggested that the factors that control the quantity of fecal indicators in the water column are different than the factors that influence the presence of Bacteroidales markers at specific times of the year. This may be important if fecal indicator counts are used as a criterion for source loading potential in receiving waters.  相似文献   

20.
The purpose of this study was to examine host distribution patterns among fecal bacteria in the order Bacteroidales, with the goal of using endemic sequences as markers for fecal source identification in aquatic environments. We analyzed Bacteroidales 16S rRNA gene sequences from the feces of eight hosts: human, bovine, pig, horse, dog, cat, gull, and elk. Recovered sequences did not match database sequences, indicating high levels of uncultivated diversity. The analysis revealed both endemic and cosmopolitan distributions among the eight hosts. Ruminant, pig, and horse sequences tended to form host- or host group-specific clusters in a phylogenetic tree, while human, dog, cat, and gull sequences clustered together almost exclusively. Many of the human, dog, cat, and gull sequences fell within a large branch containing cultivated species from the genus Bacteroides. Most of the cultivated Bacteroides species had very close matches with multiple hosts and thus may not be useful targets for fecal source identification. A large branch containing cultivated members of the genus Prevotella included cloned sequences that were not closely related to cultivated Prevotella species. Most ruminant sequences formed clusters separate from the branches containing Bacteroides and Prevotella species. Host-specific sequences were identified for pigs and horses and were used to design PCR primers to identify pig and horse sources of fecal pollution in water. The primers successfully amplified fecal DNAs from their target hosts and did not amplify fecal DNAs from other species. Fecal bacteria endemic to the host species may result from evolution in different types of digestive systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号