首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Cyanobacteria possess multiple,functionally distinct NADPH dehydrogenase (NDH-1) complexes.In this mini-review,we describe the cyanobacterial NDH-1 complexes by focusing on their identification,regulatory properties,and multiple functions.The multiple functions can be divided into basic and extending functions,and the basic functions are compared with those in chloroplasts.Many questions related to cyanobacterial NDH-1 complexes remain unanswered and are briefly summarized here.  相似文献   

2.
Cyanobacteria possess functionally distinct multiple NADPH dehydrogenase (NDH-1) complexes that are essential to CO2 uptake, photosystem-1 cyclic electron transport and respiration. The unique nature of cyanobacterial NDH-1 complexes is the presence of subunits involved in CO2 uptake. Other than CO2 uptake, chloroplastic NDH-1 complex has a similar role as cyanobacterial NDH-1 complexes in photosystem-1 cyclic electron transport and respiration (chlororespiration). In this mini-review we focus on the structure and function of cyanobacterial NDH-1 complexes and their phylogeny. The function of chloroplastic NDH-1 complex and characteristics of plants defective in NDH-1 are also described for comparison.  相似文献   

3.
In cyanobacteria, the NAD(P)H:quinone oxidoreductase (NDH-1) is involved in a variety of functions like respiration, cyclic electron flow around PSI and CO2 uptake. Several types of NDH-1 complexes, which differ in structure and are responsible for these functions, exist in cyanobacterial membranes. This minireview is based on data obtained by reverse genetics and proteomics studies and focuses on the structural and functional differences of the two types of cyanobacterial NDH-1 complexes: NDH-1L, important for respiration and PSI cyclic electron flow, and NDH-1MS, the low-CO2 inducible complex participating in CO2 uptake. The NDH-1 complexes in cyanobacteria share a common NDH-1M 'core' complex and differ in the composition of the distal membrane domain composed of specific NdhD and NdhF proteins, which in complexes involved in CO2 uptake is further associated with the hydrophilic carbon uptake (CUP) domain. At present, however, very important questions concerning the nature of catalytically active subunits that constitute the electron input device (like NADH dehydrogenase module of the eubacterial 'model' NDH-1 analogs), the substrate specificity and reaction mechanisms of cyanobacterial complexes remain unanswered and are shortly discussed here.  相似文献   

4.
Cyanobacterial NDH-1 complexes belong to a family of energy converting NAD(P)H:Quinone oxidoreductases that includes bacterial type-I NADH dehydrogenase and mitochondrial Complex I. Several distinct NDH-1 complexes may coexist in cyanobacterial cells and thus be responsible for a variety of functions including respiration, cyclic electron flow around PSI and CO(2) uptake. The present review is focused on specific features that allow to regard the cyanobacterial NDH-1 complexes, together with NDH complexes from chloroplasts, as a separate sub-class of the Complex I family of enzymes. Here, we summarize our current knowledge about structure of functionally different NDH-1 complexes in cyanobacteria and consider implications for a functional mechanism. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts.  相似文献   

5.
The larger protein complexes of the cyanobacterial photosynthetic membrane of Thermosynechoccus elongatus and Synechocystis 6803 were studied by single particle electron microscopy after detergent solubilization, without any purification steps. Besides the "standard" L-shaped NDH-1L complex, related to complex I, large numbers of a U-shaped NDH-1MS complex were found in both cyanobacteria. In membranes from Synechocystis DeltacupA and DeltacupA/cupB mutants the U-shaped complexes were absent, indicating that CupA is responsible for the U-shape by binding at the tip of the membrane-bound arm of NDH-1MS. Comparison of membranes grown under air levels of CO(2) or 3% CO(2) indicates that the number of NDH-1MS particles is 30-fold higher under low-CO(2).  相似文献   

6.
蓝藻NAD(P)H脱氢酶(NDH-1)是一种重要的光合膜蛋白复合体,参与CO2吸收、围绕光系统I的循环电子传递和细胞呼吸。就几种蓝藻NDH-1复合体的鉴定、结构、生理功能等研究的新进展进行了综述与分析,并对今后NDH-1复合体的研究作了展望。  相似文献   

7.
Cyanobacterial NADPH:plastoquinone oxidoreductase, or type I NAD(P)H dehydrogenase, or the NDH-1 complex is involved in plastoquinone reduction and cyclic electron transfer (CET) around photosystem I. CET, in turn, produces extra ATP for cell metabolism particularly under stressful conditions. Despite significant achievements in the study of cyanobacterial NDH-1 complexes during the past few years, the entire subunit composition still remains elusive. To identify missing subunits, we screened a transposon-tagged library of Synechocystis 6803 cells grown under high light. Two NDH-1-mediated CET (NDH-CET)-defective mutants were tagged in the same ssl0352 gene encoding a short unknown protein. To clarify the function of Ssl0352, the ssl0352 deletion mutant and another mutant with Ssl0352 fused to yellow fluorescent protein (YFP) and the His(6) tag were constructed. Immunoblotting, mass spectrometry, and confocal microscopy analyses revealed that the Ssl0352 protein resides in the thylakoid membrane and associates with the NDH-1L and NDH-1M complexes. We conclude that Ssl0352 is a novel subunit of cyanobacterial NDH-1 complexes and designate it NdhS. Deletion of the ssl0352 gene considerably impaired the NDH-CET activity and also retarded cell growth under high light conditions, indicating that NdhS is essential for efficient operation of NDH-CET. However, the assembly of the NDH-1L and NDH-1M complexes and their content in the cells were not affected in the mutant. NdhS contains a Src homology 3-like domain and might be involved in interaction of the NDH-1 complex with an electron donor.  相似文献   

8.
The structure of the multifunctional NAD(P)H dehydrogenase type 1 (NDH-1) complexes from cyanobacteria was investigated by growing the wild type and specific ndh His-tag mutants of Thermosynechococcus elongatus BP-1 under different CO(2) conditions, followed by an electron microscopy (EM) analysis of their purified membrane protein complexes. Single particle averaging showed that the complete NDH-1 complex (NDH-1L) is L-shaped, with a relatively short hydrophilic arm. Two smaller complexes were observed, differing only at the tip of the membrane-embedded arm. The smallest one is considered to be similar to NDH-1M, lacking the NdhD1 and NdhF1 subunits. The other fragment, named NDH-1I, is intermediate between NDH-1L and NDH-1M and only lacks a mass compatible with the size of the NdhF1 subunit. Both smaller complexes were observed under low- and high-CO(2) growth conditions, but were much more abundant under the latter conditions. EM characterization of cyanobacterial NDH-1 further showed small numbers of NDH-1 complexes with additional masses. One type of particle has a much longer peripheral arm, similar to the one of NADH: ubiquinone oxidoreductase (complex I) in E. coli and other organisms. This indicates that Thermosynechococcus elongatus must have protein(s) which are structurally homologous to the E. coli NuoE, -F, and -G subunits. Another low-abundance type of particle (NDH-1U) has a second labile hydrophilic arm at the tip of the membrane-embedded arm. This U-shaped particle has not been observed before by EM in a NDH-I preparation.  相似文献   

9.
The cyanobacterial type I NAD(P)H dehydrogenase (NDH-1) complexes play a crucial role in a variety of bioenergetic reactions such as respiration, CO2 uptake, and cyclic electron transport around photosystem I. Two types of NDH-1 complexes, NDH-1MS and NDH-1MS′, are involved in the CO2 uptake system. However, the composition and function of the complexes still remain largely unknown. Here, we found that deletion of ndhM caused inactivation of NDH-1-dependent cyclic electron transport around photosystem I and abolishment of CO2 uptake, resulting in a lethal phenotype under air CO2 condition. The mutation of NdhM abolished the accumulation of the hydrophilic subunits of the NDH-1, such as NdhH, NdhI, NdhJ, and NdhK, in the thylakoid membrane, resulting in disassembly of NDH-1MS and NDH-1MS′ as well as NDH-1L. In contrast, the accumulation of the hydrophobic subunits was not affected in the absence of NdhM. In the cytoplasm, the NDH-1 subcomplex assembly intermediates including NdhH and NdhK were seriously affected in the ΔndhM mutant but not in the NdhI-deleted mutant ΔndhI. In vitro protein interaction analysis demonstrated that NdhM interacts with NdhK, NdhH, NdhI, and NdhJ but not with other hydrophilic subunits of the NDH-1 complex. These results suggest that NdhM localizes in the hydrophilic subcomplex of NDH-1 complexes as a core subunit and is essential for the function of NDH-1MS and NDH-1MS′ involved in CO2 uptake in Synechocystis sp. strain PCC 6803.  相似文献   

10.
The structure of the multifunctional NAD(P)H dehydrogenase type 1 (NDH-1) complexes from cyanobacteria was investigated by growing the wild type and specific ndh His-tag mutants of Thermosynechococcus elongatus BP-1 under different CO2 conditions, followed by an electron microscopy (EM) analysis of their purified membrane protein complexes. Single particle averaging showed that the complete NDH-1 complex (NDH-1L) is L-shaped, with a relatively short hydrophilic arm. Two smaller complexes were observed, differing only at the tip of the membrane-embedded arm. The smallest one is considered to be similar to NDH-1M, lacking the NdhD1 and NdhF1 subunits. The other fragment, named NDH-1I, is intermediate between NDH-1L and NDH-1M and only lacks a mass compatible with the size of the NdhF1 subunit. Both smaller complexes were observed under low- and high-CO2 growth conditions, but were much more abundant under the latter conditions. EM characterization of cyanobacterial NDH-1 further showed small numbers of NDH-1 complexes with additional masses. One type of particle has a much longer peripheral arm, similar to the one of NADH: ubiquinone oxidoreductase (complex I) in E. coli and other organisms. This indicates that Thermosynechococcus elongatus must have protein(s) which are structurally homologous to the E. coli NuoE, -F, and -G subunits. Another low-abundance type of particle (NDH-1U) has a second labile hydrophilic arm at the tip of the membrane-embedded arm. This U-shaped particle has not been observed before by EM in a NDH-I preparation.  相似文献   

11.
《BBA》2020,1861(11):148254
Photosynthetic NADH dehydrogenase-like complex type-1 (a.k.a, NDH, NDH-1, or NDH-1L) is a multi-subunit, membrane-bound oxidoreductase related to the respiratory complex I. Although originally discovered 30 years ago, a number of recent advances have revealed significant insight into the structure, function, and physiology of NDH-1. Here, we highlight progress in understanding the function of NDH-1 in the photosynthetic light reactions of both cyanobacteria and chloroplasts from biochemical and structural perspectives. We further examine the cyanobacterial-specific forms of NDH-1 that possess vectorial carbonic anhydrase (vCA) activity and function in the CO2-concentrating mechanism (CCM). We compare the proposed mechanism for the cyanobacterial NDH-1 vCA-activity to that of the DAB (DABs accumulates bicarbonate) complex, another putative vCA. Finally, we discuss both new and remaining questions pertaining to the mechanisms of NDH-1 complexes in light of these recent advances.  相似文献   

12.
Patricia Saura  Ville R.I. Kaila 《BBA》2019,1860(3):201-208
NDH-1 is a gigantic redox-driven proton pump linked with respiration and cyclic electron flow in cyanobacterial cells. Based on experimentally resolved X-ray and cryo-EM structures of the respiratory complex I, we derive here molecular models of two isoforms of the cyanobacterial NDH-1 complex involved in redox-driven proton pumping (NDH-1L) and CO2-fixation (NDH-1MS). Our models show distinct structural and dynamic similarities to the core architecture of the bacterial and mammalian respiratory complex I. We identify putative plastoquinone-binding sites that are coupled by an electrostatic wire to the proton pumping elements in the membrane domain of the enzyme. Molecular simulations suggest that the NDH-1L isoform undergoes large-scale hydration changes that support proton-pumping within antiporter-like subunits, whereas the terminal subunit of the NDH-1MS isoform lacks such structural motifs. Our work provides a putative molecular blueprint for the complex I-analogue in the photosynthetic energy transduction machinery and demonstrates that general mechanistic features of the long-range proton-pumping machinery are evolutionary conserved in the complex I-superfamily.  相似文献   

13.
The cyanobacterial NADPH:plastoquinone oxidoreductase complex (NDH-1), that is related to Complex I of eubacteria and mitochondria, plays a pivotal role in respiration as well as in cyclic electron transfer (CET) around PSI and is involved in a unique carbon concentration mechanism (CCM). Despite many achievements in the past, the complex protein composition and the specific function of many subunits of the different NDH-1 species remain elusive. We have recently discovered in a NDH-1 preparation from Thermosynechococcus elongatus two novel single transmembrane peptides (NdhP, NdhQ) with molecular weights below 5 kDa. Here we show that NdhP is a unique component of the ∼450 kDa NDH-1L complex, that is involved in respiration and CET at high CO2 concentration, and not detectable in the NDH-1MS and NDH-1MS'' complexes that play a role in carbon concentration. C-terminal fusion of NdhP with his-tagged superfolder GFP and the subsequent analysis of the purified complex by electron microscopy and single particle averaging revealed its localization in the NDH-1L specific distal unit of the NDH-1 complex, that is formed by the subunits NdhD1 and NdhF1. Moreover, NdhP is essential for NDH-1L formation, as this type of NDH-1 was not detectable in a ΔndhP::Km mutant.  相似文献   

14.
The subunit compositions of two types of NAD(P)H dehydrogenase complexes of Synechocystis sp. PCC 6803, NDH-1L and NDH-1M, were studied by two-dimensional blue-native/SDS-PAGE followed by electrospray tandem mass spectrometry. Fifteen proteins were observed in NDH-1L including hydrophilic subunits (NdhH, -K, -I, -J, -M, and -N) and hydrophobic subunits (NdhA, -B, -E, -G, -D1, and -F1). In addition, NdhL and a novel subunit, Ssl1690 (designated NdhO), were shown to be components of this complex. All subunits mentioned above were present in the NDH-1M complex except NdhD1 and NdhF1. NdhL and Ssl1690 (NdhO) were homologous to hypothetical proteins encoded by genomic DNA in higher plants, suggesting that chloroplast NDH-1 complexes contain related subunits. Diagnostic sequence motifs were found for both NdhL and NdhO homologous proteins. Analysis of ndhL deletion mutant (M9) revealed the presence of assembled NDH-1L and NDH-1M complexes, but these complexes appear to be functionally impaired in the absence of NdhL. Both NDH-1 complexes were absent in the ndhB deletion mutant (M55).  相似文献   

15.
To investigate the (co)expression, interaction, and membrane location of multifunctional NAD(P)H dehydrogenase type 1 (NDH-1) complexes and their involvement in carbon acquisition, cyclic photosystem I, and respiration, we grew the wild type and specific ndh gene knockout mutants of Synechocystis sp PCC 6803 under different CO2 and pH conditions, followed by a proteome analysis of their membrane protein complexes. Typical NDH-1 complexes were represented by NDH-1L (large) and NDH-1M (medium size), located in the thylakoid membrane. The NDH-1L complex, missing from the DeltaNdhD1/D2 mutant, was a prerequisite for photoheterotrophic growth and thus apparently involved in cellular respiration. The amount of NDH-1M and the rate of P700+ rereduction in darkness in the DeltaNdhD1/D2 mutant grown at low CO2 were similar to those in the wild type, whereas in the M55 mutant (DeltaNdhB), lacking both NDH-1L and NDH-1M, the rate of P700+ rereduction was very slow. The NDH-1S (small) complex, localized to the thylakoid membrane and composed of only NdhD3, NdhF3, CupA, and Sll1735, was strongly induced at low CO2 in the wild type as well as in DeltaNdhD1/D2 and M55. In contrast with the wild type and DeltaNdhD1/D2, which show normal CO2 uptake, M55 is unable to take up CO2 even when the NDH-1S complex is present. Conversely, the DeltaNdhD3/D4 mutant, also unable to take up CO2, lacked NDH-1S but exhibited wild-type levels of NDH-1M at low CO2. These results demonstrate that both NDH-1S and NDH-1M are essential for CO2 uptake and that NDH-1M is a functional complex. We also show that the Na+/HCO3- transporter (SbtA complex) is located in the plasma membrane and is strongly induced in the wild type and mutants at low CO2.  相似文献   

16.
Two major complexes of NADPH dehydrogenase (NDH-1) have been identified in cyanobacteria. A large complex (NDH-1L) contains NdhD1, NdhF1, and NdhP, which are absent in a medium size complex (NDH-1M). They play important roles in respiration, NDH-1-dependent cyclic electron transport around photosystem I, and CO2 uptake. Two mutants sensitive to high light for growth and impaired in cyclic electron transport around photosystem I were isolated from the cyanobacterium Synechocystis sp. strain PCC 6803 transformed with a transposon-bearing library. Both mutants had a tag in an open reading frame encoding a product highly homologous to NdhQ, a single-transmembrane small subunit of the NDH-1L complex, identified in Thermosynechococcus elongatus by proteomics strategy. Deletion of ndhQ disassembled about one-half of the NDH-1L to NDH-1M and consequently impaired respiration, but not CO2 uptake. During prolonged incubation of the thylakoid membrane with n-dodecyl-β-d-maltoside at room temperature, the rest of the NDH-1L in ΔndhQ was disassembled completely to NDH-1M and was much faster than in the wild type. In the ndhP-deletion mutant (ΔndhP) background, absence of NdhQ almost completely disassembled the NDH-1L to NDH-1M, similar to the results observed in the ΔndhD1ndhD2 mutant. We therefore conclude that both NdhQ and NdhP are essential to stabilize the NDH-1L complex.Cyanobacterial NADPH dehydrogenase (NDH-1) complexes are localized in the thylakoid membrane (Ohkawa et al., 2001, 2002; Zhang et al., 2004; Xu et al., 2008; Battchikova et al., 2011a) and participate in a variety of bioenergetic reactions, such as respiration, cyclic electron transport around PSI, and CO2 uptake (Ogawa, 1991; Mi et al., 1992; Ohkawa et al., 2000). Structurally, the cyanobacterial NDH-1 complexes closely resemble energy-converting complex I in eubacteria and the mitochondrial respiratory chain, regardless of the absence of homologs of three subunits in cyanobacterial genomes that constitute the catalytically active core of complex I (Friedrich et al., 1995; Friedrich and Scheide, 2000; Arteni et al., 2006). Over the past few years, significant achievements have been made in resolving the subunit compositions and functions of the multiple NDH-1 complexes in several cyanobacterial strains (for review, see Battchikova and Aro, 2007; Ogawa and Mi, 2007; Ma, 2009; Battchikova et al., 2011b; Ma and Ogawa, 2015). Four types of NDH-1 have been identified in the cyanobacterium Synechocystis sp. strain PCC 6803 (hereafter, Synechocystis 6803), and all four types of NDH-1 are involved in NDH-1-dependent cyclic electron transport (CET) around PSI (NDH-CET; Bernát et al., 2011). The NDH-CET plays an important role in coping with various environmental stresses, regardless of its elusive mechanism. For example, this function can greatly alleviate high light-sensitive growth phenotypes (Endo et al., 1999; Battchikova et al., 2011a; Dai et al., 2013; Zhang et al., 2014; Zhao et al., 2014). Therefore, high light strategy can help in identifying the proteins essential to NDH-CET.Proteomics studies revealed the presence of three major NDH-1 complexes in cyanobacteria: a large complex (NDH-1L), a medium size complex (NDH-1M), and a small complex (NDH-1S) with molecular masses of about 460, 350, and 200 kD, respectively (Herranen et al., 2004). NDH-1M consists of 14 subunits (i.e. NdhA–NdhC, NdhE, NdhG–NdhO, and NdhS). In addition to these subunits, the NDH-1L complex contains NdhD1, NdhF1, NdhP, and NdhQ (Prommeenate et al., 2004; Battchikova et al., 2005, 2011b; Zhang et al., 2005, 2014; Nowaczyk et al., 2011; Wulfhorst et al., 2014; Ma and Ogawa, 2015) and is involved in respiration (Zhang et al., 2004). NDH-1S is composed of NdhD3, NdhF3, CO2 uptake A (CupA), and CupS (Ogawa and Mi, 2007) and is considered to be associated with NDH-1M in the cells as a functional complex NDH-1MS (Zhang et al., 2004, 2005) participating in CO2 uptake. Among the several copies of ndhD and ndhF genes found in cyanobacterial genomes, ndhD1 and ndhF1 show the highest homology to chloroplast ndhD and ndhF genes, respectively, and CupA and CupS subunits of the cyanobacteria have no counterparts in higher plants. These facts suggest that the structure and composition of NDH-1L, but not the NDH-1MS complex, are similar to those of the chloroplast NDH-1 complex (Battchikova and Aro, 2007; Ogawa and Mi, 2007; Shikanai, 2007; Ma, 2009; Suorsa et al., 2009; Battchikova et al., 2011b; Ifuku et al., 2011; Peng et al., 2011a; Ma and Ogawa, 2015). Despite their similarity, a large number of subunits that constitute the chloroplast NDH-1 complex, including ferredoxin-binding subcomplex subunits NdhT and NdhU and all the subunits of subcomplex B and lumen subcomplex, are absent in the cyanobacterial NDH-1L complex (Battchikova et al., 2011b; Ifuku et al., 2011; Peng et al., 2011a). This implies that the stabilization strategies for the cyanobacterial NDH-1L complex and chloroplastic NDH-1 complex might be significantly different.Recently, a new oxygenic photosynthesis-specific small subunit NdhQ was identified in the NDH-1L complex purified by Ni2+ affinity chromatography from Thermosynechococcus elongatus (Nowaczyk et al., 2011). NdhQ is extensively present in cyanobacteria, but its homolog is absent in higher plants (Nowaczyk et al., 2011). In this study, we demonstrate that deletion of NdhQ disassembled the NDH-1L into NDH-1M, but not NDH-1MS, in Synechocystis 6803 and consequently impaired respiration, but not CO2 uptake. NdhQ and NdhP stabilize the NDH-1L complex. Thus, the stabilization strategy of cyanobacterial NDH-1L is distinctly different from that of the chloroplastic NDH-1 complex.  相似文献   

17.
The chloroplast NAD(P)H dehydrogenase (NDH) complex functions in PSI cyclic and chlororespiratory electron transport in higher plants. Eleven plastid-encoded and three nuclear-encoded subunits have been identified so far, but the entire subunit composition, especially of the putative electron donor-binding module, is unclear. We isolated Arabidopsis thaliana crr23 (chlororespiratory reduction) mutants lacking NDH activity according to the absence of a transient increase in Chl fluorescence after actinic light illumination. Although CRR23 shows similarity to the NdhL subunit of cyanobacterial NDH-1, it has three transmembrane domains rather than the two in cyanobacterial NdhL. Unlike cyanobacterial NdhL, CRR23 is essential for stabilizing the NDH complex, which in turn is required for the accumulation of CRR23. Furthermore, CRR23 and NdhH, a subunit of chloroplast NDH, co-localized in blue-native gel. All the results indicate that CRR23 is an ortholog of cyanobacterial ndhL in Arabidopsis, despite its diversity of structure and function.  相似文献   

18.
The NAD(P)H dehydrogenase (NDH) complex functions in photosystem I cyclic electron transfer in higher plant chloroplasts and is crucial for plant responses to environmental stress. Chloroplast NDH complex is a close relative to cyanobacterial NDH-1L complex, and all fifteen subunits so far identified in NDH-1L have homologs in the chloroplast NDH complex. Here we report on the identification of two nuclear-encoded proteins NDH48 and NDH45 in higher plant chloroplasts and show their intimate association with the NDH complex. These two membrane proteins are shown to interact with each other and with the NDH complex enriched in stroma thylakoids. Moreover, the deficiency of either the NDH45 protein or the NDH48 protein in respective mutant plants leads to severe defects in both the accumulation and the function of the NDH complex. The NDH48 and NDH45 proteins are not components of the hydrophilic connecting domain of the NDH complex but are strongly attached to the hydrophobic membrane domain. We conclude that NDH48 and NDH45 are novel nuclear-encoded subunits of the chloroplast NDH complex and crucial both for the stable structure and function of the NDH complex.  相似文献   

19.
An NADPH-specific NDH-1 sub-complex was separated by native-polyacrylamide gel electrophoresis and detected by activity staining from the whole cell extracts of Synechocystis PCC6803. Low CO2 caused an increase in the activity of this sub-complex quickly, accompanied by an evident increase in the expression of NdhK and PSI-driven NADPH oxidation activity that can reflect the activity of NDH-1-mediated cyclic electron transport. During incubation with high CO2, the activities of NDH-1 sub-complex and PSI-driven NADPH oxidation as well as the protein level of NdhK slightly increased at the beginning, but decreased evidently in various degrees along with incubation time. These results suggest that CO2 concentration in vitro as a signal can control the activity of NDH-1 complex, and NDH-1 complex may in turn function in the regulation of CO2 uptake.  相似文献   

20.
Cyanobacteria have evolved an extremely effective single-cell CO(2) concentrating mechanism (CCM). Recent molecular, biochemical and physiological studies have significantly extended current knowledge about the genes and protein components of this system and how they operate to elevate CO(2) around Rubisco during photosynthesis. The CCM components include at least four modes of active inorganic carbon uptake, including two bicarbonate transporters and two CO(2) uptake systems associated with the operation of specialized NDH-1 complexes. All these uptake systems serve to accumulate HCO(3)(-) in the cytosol of the cell, which is subsequently used by the Rubisco-containing carboxysome protein micro-compartment within the cell to elevate CO(2) around Rubisco. A specialized carbonic anhydrase is also generally present in this compartment. The recent availability of at least nine cyanobacterial genomes has made it possible to begin to undertake comparative genomics of the CCM in cyanobacteria. Analyses have revealed a number of surprising findings. Firstly, cyanobacteria have evolved two types of carboxysomes, correlated with the form of Rubisco present (Form 1A and 1B). Secondly, the two HCO(3)(-) and CO(2) transport systems are distributed variably, with some cyanobacteria (Prochlorococcus marinus species) appearing to lack CO(2) uptake systems entirely. Finally, there are multiple carbonic anhydrases in many cyanobacteria, but, surprisingly, several cyanobacterial genomes appear to lack any identifiable CA genes. A pathway for the evolution of CCM components is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号