首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We showed previously that fresh Leu-2+ T cells respond to autologous antigen-primed Leu-3+ T cells by proliferation and differentiation into suppressor T cells (Ts) that specifically inhibit the response of fresh Leu-3+ cells to the original priming antigen. This study was undertaken to characterize the role of various cell surface molecules expressed by antigen-primed Leu-3+ cells in their activation of Leu-2+ Ts cells. Alloactivated Leu-3+ blasts were treated in the absence of complement with a variety of monoclonal antibodies recognizing distinct antigens on human lymphoid cells, and then were examined for their functional effects on fresh autologous T cells. Prior treatment of Leu-3+ blasts with anti-Leu-4 or anti-HLA-A,B,C framework antibodies, but not with anti-Leu-1, anti-Leu-3, anti-Leu-5, or anti-HLA-DR framework-specific antibodies, not only blocked proliferation of fresh Leu-2+ cells, it also prevented their differentiation into Ts cells. Furthermore, after their activation by Leu-3+ blasts, Leu-2+ Ts cells inhibited the response of fresh Leu-3+ cells from only those individuals who shared HLA-A,B phenotypes with suppressor-effector cells. These results suggest that both the inductive and effector phases of suppression involve dual recognition of autologous class I MHC molecules and structures associated with the Leu-4 (T3) molecule on the surface of antigen-reactive Leu-3+ cells.  相似文献   

2.
The function of the T cell differentiation antigens CD4 (Leu-3/T4) and CD8 (Leu-2/T8) on human cytotoxic T lymphocytes (CTL) is presently seen only in conjugate formation between CTL and target cell via class II or class I MHC antigens rather than in the later killing steps. In this study, human CD4+ and CD8+ CTL clones were used to investigate the effects of monoclonal antibodies against these differentiation antigens on nonspecific triggering of cytotoxicity. Cytotoxicity was induced either by antibodies against the CD3 (T3) antigen or by the lectins Con A and PHA. Anti-CD4 or anti-CD8 antibodies specifically inhibited all types of cytotoxicity of CD4+ or CD8+ CTL, respectively, regardless of the specificity of the CTL for class I or class II HLA antigens and regardless of whether target cells expressed class I or class II antigens. These results are incompatible with an exclusive role of the CD4 and CD8 molecules in MHC class recognition and are discussed with respect to a function as negative signal receptors for these molecules on CTL.  相似文献   

3.
Monoclonal antibodies against the CD3 antigen and certain lectins can induce interleukin 2 dependent antigen-specific T cell clones to mediate non-antigen specific cytotoxicity. On the basis of this observation, we predicted that it may be possible to identify cytotoxic T lymphocytes (CTL) in peripheral blood without knowing the antigen specificity of these in vivo primed CTL. By using this strategy, peripheral blood lymphocytes were separated into low and high-density fractions on Percoll gradients and were tested for cytotoxic activity in the presence or absence of concanavalin A (Con A) or anti-Leu-4 antibody. Lectin-dependent cellular cytotoxicity (LDCC) and anti-CD3 induced cytotoxicity against both natural killer (NK)-insensitive and NK-sensitive targets were exclusively mediated by low-density CD3+ T lymphocytes. Additional studies indicated that low-density CD3+ T lymphocytes co-expressing Leu-7 antigen preferentially mediated this activity, although in some individuals, significant activity was also observed in the low-density T cells lacking Leu-7. In contrast, high-density CD3+ T lymphocytes and CD16+ (Leu-11+) NK cells (both Leu-7 and Leu-7+) did not mediate nonantigen-specific cytotoxicity under these conditions. The finding that NK cell-mediated cytotoxicity was unaffected by these lectins refutes the hypothesis that lectin-dependent cellular cytotoxicity is simply a result of effector and target agglutination. T cell-mediated cytotoxicity was both lectin and antibody specific. Phytohemagglutinin, Con A, and pokeweed mitogen induced cytolytic activity in the Leu-7+ T cells, whereas wheat germ agglutinin did not. Of the antibodies against T cell-associated differentiation antigens (anti-Leu-2,3,4, and 5), only anti-Leu-4 induced cytotoxicity. This anti-CD3-induced cytotoxicity was essentially completely inhibited by the presence of anti-LFA-1 or anti-CD2 monoclonal antibodies, implicating these molecules in the triggering process. A proportion of the CD3+, Leu-7+ CTL expressed HLA-DR antigens, indicating possible in vivo activation. Because previous clinical studies have indicated that lymphocytes with this phenotype may be elevated in clinical situations associated with immunosuppression and chronic viral infection, this unique subset of CD3+ T lymphocytes may represent a population of in vivo primed CTL possibly against viral antigens.  相似文献   

4.
Studies of cell-surface molecules involved in human T cell interaction reveal that differential expression of each of three adhesion molecules (LFA-3, CD2, and LFA-1) subdivides human peripheral blood T cells into major subpopulations. Systematic analysis of the relationship between expression of these and other markers of T cell subsets demonstrates a single major subset of human peripheral blood T lymphocytes distinguished by enhanced expression of LFA-3, CD2, LFA-1, and three other markers (CDw29 [4B4], UCHL1, and Pgp-1). Large differences in relative expression are observed for UCHL1 (29-fold) and LFA-3 (greater than 8-fold), and smaller differences (2- to 4-fold) are seen for CDw29, CD2, LFA-1, and Pgp-1. Bimodal distribution of LFA-3 is found on both CD4+ cells and on CD8+ cells as well as on B lymphocytes (CD19+). Neonatal T cells (CD3+) are comprised almost exclusively of the subset expressing low LFA-3, CD2, LFA-1, CDw29, and UCHL1. Activation of cord peripheral blood mononuclear leukocytes with PHA leads to uniform enhanced expression of each of these molecules on CD3+ cells. Functional analyses of these T cell subsets were performed after sorting of adult T cells based on differential LFA-3 expression. Only the LFA-3+ subset proliferated in response to the Ag tetanus toxoid, even though the LFA-3- subset proliferated more strongly to PHA. Furthermore, the LFA-3+ subset made greater than fivefold more IFN-gamma than the LFA-3- subset in response to PHA, despite the fact that both subsets made equivalent amounts of IL-2. This phenotypic and functional analysis of resting and activated newborn and adult T cells indicates that human memory T cells express enhanced levels of LFA-3, CD2, LFA-1, UCHL1, CDw29, and Pgp-1; we speculate that the increase in expression of T cell adhesion molecules LFA-3, CD2, and LFA-1 on memory cells is functionally important in their enhanced responsiveness.  相似文献   

5.
Subsets of Leu-2+/T8+ cytotoxic/suppressor T lymphocytes were isolated by using various methods of purification and were investigated for expression of ecto-5' nucleotidase (5'NT) enzyme activity by radiochemical, cytochemical, and ultrastructural techniques. By using both the radiochemical and the cytochemical methods. T4-OKM1- cells displayed higher 5'NT activity in comparison with the entire T4- subpopulation. Analyses of the subpopulations of T4- (and predominantly Leu-2+) cells defined by the Leu-15 or Lyt-1 (9.3) monoclonal antibodies demonstrated that T4-Leu-15- and T4-Lyt-1+ cells displayed high 5'NT activity, whereas virtually no activity was present in T4-Leu-15+ and T4-Lyt-1-cells. At the ultrastructural level, the 5'NT reaction product was detected on the plasma membrane of a proportion of nongranular Leu-2+/T8+ lymphocytes, but no activity was found on cells with a granular lymphocyte (GL) morphology. 5'NT activity was also analyzed in peripheral blood mononuclear cells from one patient with expanded numbers of GL and two patients with GL leukemia. The enzymatic activity was significantly lower in these patients than in normal controls. This study provides new cytochemical evidence demonstrating the heterogeneity of Leu-2+/T8+ cells, and indicates that the population with the suppressor phenotype and function (Leu-15+/Lyt-1-, GL morphology) displays low or absent 5'NT activity, whereas the population composed of cytotoxic cell precursors (Leu-15-/Lyt-1+, nongranular morphology) has high 5'NT activity. Implications of these data for the interpretation of low 5'NT activity described in several immunodeficiency states and lymphoproliferative disorders are discussed.  相似文献   

6.
Optimal proliferation of T cells although initiated via ligation of the CD3/TCR complex requires additional stimulation resulting from adhesive interactions between costimulatory receptors (R) on T cells and their counter-R on APC. At least four distinct adhesion molecules (counter-R) present on APC, B7, ICAM-1 (CD54), LFA-3 (CD58), and VCAM-1 have been individually shown to costimulate T cell activation. Because some of these molecules may be expressed simultaneously on APC, it has been difficult to examine relative contributions of individual counter-R during the induction of T cell proliferation. We have produced soluble IgC gamma 1 fusion chimeras (receptor globulins or Rg) of B7, ICAM-1, LFA-3, and VCAM-1 and compared their relative abilities to costimulate proliferation of resting or Ag-primed CD4+ T cells. When co-immobilized with mAb directed at TCR alpha beta or CD3 but not CD2 or CD28, each Rg induced proliferation of both resting and Ag-primed CD4+ cells. In contrast, similarly co-immobilized CD7 Rg or ELAM-1 Rg were ineffective. Resting CD4+ T cells produced more IL-2, expressed significantly higher levels of IL-2R alpha, and proliferated more efficiently when costimulated with either ICAM-1 Rg or VCAM-1 Rg than with B7 Rg or LFA-3 Rg. CD4+ CD45RO+ memory T cells proliferated more vigorously in response to the costimulation by each of the four Rg than CD4+ CD45RA+ naive T cells. In contrast with the behavior of resting CD4+ T cells, proliferation of Ag-preactivated CD4+ T cells was most efficient when costimulated by B7 Rg. The costimulatory effect of LFA-3 Rg on Ag-primed CD4+ T cells was weaker than that of B7 Rg but was significantly greater than that of either ICAM-1 Rg or VCAM-1 Rg. These results suggest that resting and Ag-primed CD4+ T cells preferentially respond by proliferation to different costimulatory counter-R. ICAM-1 and VCAM-1 may be involved in the initiation of proliferation of Ag-responsive T cells, and B7 and LFA-3 may facilitate sustained proliferation of Ag-primed T cells. The cumulative costimulation by the above counter-R may facilitate optimal expression of various regulatory and effector functions of T cells.  相似文献   

7.
The antigen receptor molecules on human T lymphocytes are noncovalently associated on the cell surface with the CD3 (T3) molecular complex. Perturbation of this complex with anti-CD3 monoclonal antibodies induces T cell activation. Previous studies have demonstrated that this process requires the participation of monocytes. In the present report, we demonstrate that purified, resting (G0 phase) T cells incubated with monoclonal anti-CD3 antibodies proliferate in response to purified interleukin 2 (IL 2), in a lymphokine dose-dependent fashion. Anti-CD3 antibody or IL 2 alone did not trigger cell division. The effect was specific for anti-CD3 antibodies because monoclonal antibodies reactive with other surface molecules (OKT4, OKT8, L368) were inactive. Furthermore, the same phenomenon was observed when anti-CD3 antibody Leu-4 (IgG1) was incubated with cells of individuals whose monocytes cannot process antibodies of the IgG1 subclass (Leu-4 nonresponders). In addition, both F(ab')2 and Fab fragments of anti-CD3 antibody OKT3 were also capable of rendering T cells receptive to the IL 2 growth signal. These data indicate that neither monocytes nor CD3 receptor cross-linking are required absolutely for resting T cell activation, provided that IL 2 is supplied exogenously. T lymphocytes treated with anti-CD3 antibodies proliferated in response to both purified mitogen-induced and recombinant IL 2. Antibodies to the IL 2 receptor (anti-Tac) inhibited the proliferation. Thus, the most likely mechanism for anti-CD3 antibody-mediated triggering is induction of IL 2 receptors.  相似文献   

8.
The phenotype of T lymphocyte subsets present in renal biopsies showing acute cellular allograft rejection in six patients on cyclosporine have been characterized in situ by immunoperoxidase staining, and after expansion in vitro in interleukin 2 (IL-2) by two-color flow cytometry, sorting, and functional analysis. After 8 to 42 days in organ culture, both Leu-3+ (CD4) and Leu-2+ (CD8) subsets were found in each culture, in a ratio that varied from 0.2 to 5.0, which was not significantly different than the results of in situ immunoperoxidase staining of the uncultured biopsy. The cultured cells were almost all Leu-4+ (CD3) T cells (89% +/- 4), which expressed the activation markers DR (82% +/- 6) and the IL 2 (CD25) receptor (15% +/- 4). The Leu-3+ cells were largely Leu-8- (90% +/- 6), whereas a minority of the Leu-2+ cells were Leu-15+ (CD11) (26% +/- 4). Only a small fraction of the Leu-2+ cells stained for Leu-7 (8% +/- 6). Functional analysis of FACS-purified Leu-2-3+ and Leu-2+3- populations indicated that both subsets proliferated in response to graft donor antigens in a mixed lymphocyte reaction (MLR) and produced IL 2. Only the Leu-2+3- population demonstrated donor-specific cytotoxic activity. A minor subpopulation in each culture were both Leu-3+ and Leu-2+ (2.0%). Leu-2+3+ cells from one biopsy were purified to homogeneity (99.8%), and were found to express the T cell antigen receptor complex Ti/CD3 (WT-31+, Leu-4+), but not the common thymocyte antigen CD1 (OKT6). The Leu-2+3+ cells neither responded in the MLR, nor showed any cytotoxic capacity. The Leu-2+3+ cells were capable of IL 2 but not interferon-gamma production. None of the purified cultures demonstrated NK activity. A subset of the purified Leu-2+3+ cells lost Leu-2+ during 1 to 3 wk in culture, and became Leu-2-3+. These studies provide evidence that the cells that infiltrate renal allografts during rejection include alloproliferative, lymphokine-producing cells of both Leu-2+ and Leu-3+ subsets. The Leu-2+3- cells are also highly cytotoxic against donor lymphocytes, indicating the presence of helper independent cytotoxic T cells. A minor population of Leu-2+3+ T cells that do not express donor specific function was also identified.  相似文献   

9.
Three bovine serum albumin-specific Lyt-2+ T suppressor (Ts) cell clones from CBA/J mice have been analyzed with regard to expression of L3T4 molecules. All three Ts-cell clones can be stained with monoclonal antibodies (mAb) to L3T4. Tested for the two clones restricted to recognition of Ek determinants, antigen-specific proliferation on antigen-presenting cells, but not the proliferation induced by conditioned medium can be inhibited by L314-specific mAb. In a similar way, Ts-cell cytolytic effector functions can be blocked by L3T4-specific mAb. Thus L3T4 structures seem to play a role in Ts-cell functions. Furthermore, the data support the view that L3T4 expression can be a property of class II-restricted T cells irrespective of their Lyt phenotype.  相似文献   

10.
The role of LFA-1/ICAM-1 interactions during murine T lymphocyte development.   总被引:14,自引:0,他引:14  
We have examined the expression and function of the cell adhesion molecules LFA-1 (CD11a/CD18), ICAM-1 (CD54), and ICAM-2 in murine fetal thymic ontogeny and in the adult thymus. On fetal days 14 and 15, 40 to 50% of thymocytes coexpress high levels of LFA-1 and ICAM-1, as determined by flow cytometry. By day 16, more than 90% of fetal thymocytes are LFA-1+ ICAM-1hi, and all IL-2R+ cells are located in this population. Although LFA-1 expression remains unchanged thereafter, ICAM-1 expression appears to be differentially regulated in different thymocyte subpopulations, with CD4+8+ cells being ICAM-1lo and CD4-8- thymocytes remaining ICAM-1hi. ICAM-2 surface expression is dull on both fetal and adult thymocytes. Surprisingly, the expression of ICAM-1 is differentially up-regulated on T cells having a mature phenotype in thymus and in peripheral lymphoid organs, with CD8+ T cells bearing the highest amount of surface ICAM-1. Addition of anti-ICAM-1 or anti-LFA-1 antibodies to fetal thymic organ cultures results in the impaired generation of CD4+8+ cells. These results indicate that LFA-1/ICAM-1 interactions facilitate murine thymic development and suggest that cell adhesion molecules mediate important events in T cell differentiation.  相似文献   

11.
The cytotoxic reaction mediated by cytotoxic T lymphocytes (CTL) consists of three phases: first, the CTL binds to the target cell; next, the CTL is triggered to lyse the target cell; and in the third phase, the CTL detaches from the target cell which is lysed in the absence of the CTL. Recently, we obtained evidence that human alloreactive CTL clones initially adhere to target cells without the involvement of the interaction between the T cell receptor (Tcr) and its specific target antigen. In the present study, we investigated the effect of monoclonal antibodies specific for the Tcr on the cytotoxic reaction of three CD8+ HLA-A2-specific CTL clones, using a single cell assay in which the binding event can be distinguished from the post-binding (lytic) phase of the cytolytic reaction. It was found that monoclonal antibodies directed at a variable part of the Tcr do not affect the binding phase but strongly block the lytic phase of the cytotoxic reaction. An anti-constant region Tcr antibody and an anti-CD3 reagent had a similar effect on the two phases of the reaction as the anti-variable part Tcr antibodies. In contrast, antibodies specific for LFA-1 strongly blocked the adhesion phase but did not affect the lytic phase. Antibodies specific for CD-8 had intermediate effects. They could block both the adhesion as well as the lytic phase. The effect of anti-CD8 appeared to be dependent on the CTL clone tested. One clone was found to be inhibited in the adhesion phase, but not in the lytic phase, whereas anti-CD8 hardly blocked the adhesion phase of two other CTL clones, but affected the lytic step of those clones. Our data indicate that LFA-1 is a major adhesion molecule in the CTL reaction, whereas the Tcr/CD3 complex is implicated in a phase after the initial formation of conjugates. CD8 is associated with both steps in the cytolytic reaction. In addition to its minor role in the adhesion phase, our data suggest strongly that CD-8 is involved in the triggering phase of the cytolytic reaction.  相似文献   

12.
Three cell surface antigens associated with the cytolytic T lymphocyte(CTL)-target cell interaction were identified by generation of monoclonal antibodies (MAb) against OKT4+, HLA-DR-specific CTL and selection for inhibition of cytolysis in a 51Cr-release assay. These MAb block cytolysis by both OKT4+ and OKT8+ CTL and the proliferative responses to PHA and the mixed lymphocyte response (MLR). LFA-1 is an antigen widely distributed on lymphoid tissues and is composed of two polypeptides of 177,000 and 95,000 Mr on all cell types studied. Anti-LFA-1 MAb block NK cell-mediated cytolysis in addition to T lymphocyte-mediated cytotoxicity and proliferation. LFA-2 (Mr = 55,000 to 47,000), a determinant on the sheep red blood cell receptor, is expressed by T cells but not B cells and appears specific for T cell functions. LFA-3 (Mr = 60,000) is a widely distributed antigen present on both hematopoietic and nonhematopoietic tissues and appears to only be involved in T cell functions. MAb to LFA-1 and LFA-2 inhibit function by binding to effector cell surface molecules, whereas anti-LFA-3 MAb appear to block by binding to the target cells. Together with previously described molecules, LFA-1, LFA-2, and LFA-3 demonstrate the complexity of CTL-mediated cytotoxicity at the molecular level.  相似文献   

13.
The subpopulation of CD4+ T cells that expresses the Leu-8 peripheral lymph node homing receptor suppresses PWM-stimulated Ig synthesis. To determine the mechanism of this suppression, the immunoregulatory activity of culture supernatants obtained from peripheral blood CD4+ Leu-8+ T cells cultured with anti-CD3 mAb and PMA (Leu-8+ supernatant) was determined. Leu-8+ supernatant suppressed PWM-stimulated Ig synthesis in cultures containing non-T cells and CD4+ Leu-8- T cells. In contrast, the supernatant from CD4+ Leu-8- T cells did not suppress Ig synthesis. The inhibitory activity of CD4+ Leu-8+ T cell supernatants could not be accounted for by a deficiency or excess of IL-2, IL-4, IFN-gamma, IL-6, or PGE2. In studies examining the effect of CD4+ Leu-8+ supernatant on T cells, the supernatant did not alter either mitogen-induced proliferation or the helper function of CD4+ Leu-8- T cells. In studies examining the effect of CD4+ Leu-8+ supernatant on B cells, the supernatant inhibited Staphylococcus aureus Cowan I strain-induced B cell Ig secretion but not B cell proliferation. The suppressor activity of Leu-8+ supernatant was eliminated by protease treatment and was eluted by HPLC in two main peaks, with molecular sizes of 44 and 12 kDa. In summary, these studies indicate that supernatants from activated CD4+ Leu-8+ T cells directly suppress B cell Ig production.  相似文献   

14.
Human T lymphocytes and monocytes bear the same Leu-3(T4) antigen   总被引:15,自引:0,他引:15  
An analysis of the cellular distribution, biosynthesis, and structure of the human T lymphocyte antigen Leu-3(T4) was performed. By using a sensitive ELISA as well as FACS analysis, relative quantities of the Leu-3(T4) antigen from whole cell lysates and from cell surfaces of six cell lines were determined. The T-T hybrid cell line 255.88, and the monocyte/macrophage cell line U937, proved to be high producers of the antigen and were chosen for additional investigation. The Leu-3(T4) antigens from the T lymphocyte cell line and the monocyte/macrophage cell were shown to be identical by SDS-PAGE. Leu-3(T4) was a polypeptide of 55,000 AMW under reducing conditions, and 63,000 AMW under nonreducing conditions. In the 255.88 cell line, a second band of 41,000 AMW was associated with the true Leu-3(T4) molecule. The 55,000 AMW Leu-3(T4) molecule was shown to possess a high mannose sugar side chain, and to contain few accessible tyrosine residues. These studies demonstrate that human T lymphocytes and monocytes produce and process similar molecules that react with the anti-Leu-3(T4) monoclonal antibody. They also characterize this important associative antigen recognition structure and suggest that cells other than the T lymphocyte may be targets for the retrovirus HTLV-III.  相似文献   

15.
Three-color immunofluorescence has been used to determine the co-expression of cell surface antigens on human peripheral blood lymphocytes. Monoclonal antibodies or avidin were coupled to either FITC (green), phycoerythrin (orange), or Texas Red (red) fluorochromes. These three fluorochromes could be independently measured by using a dual laser FACS IV system equipped with an argon ion laser (488 nm) and a dye laser (600 nm). Human peripheral blood lymphocytes were stained with the following combinations of reagents: (1) FITC anti-Leu-11a + PE anti-Leu-2a + TR avidin/biotin anti-Leu-7; (2) FITC anti-Leu-11a + PE anti-Leu-3a + TR avidin/biotin anti-Leu-7; (3) FITC anti-Leu-8 + PE anti-Leu-2a + TR avidin/biotin anti-Leu-7; and (4) FITC anti-Leu-11a + PE anti-Leu-2 + TR avidin/biotin anti-Leu-8. The light scatter, green fluorescence, orange fluorescence, and red fluorescence signals for each sample were stored by a Consort 40 PDP/11 computer in list mode files. Sequential reanalysis of the data directly demonstrated the existence of several unrecognized subpopulations of lymphocytes. Previously, we reported that the anti-Leu-7 and anti-Leu-11 antibodies can be used to identify discrete subsets of human NK cells with distinct functional capacities. In this report, we show that these subsets can be further subdivided on the basis of Leu-8 and Leu-2 expression. Thus, these studies illustrate how multicolor and multiparameter flow cytometry can further our understanding of cellular heterogeneity within this group of lymphocytes.  相似文献   

16.
The Leu-2 antigen is expressed on a subpopulation of human T cells that perform suppressor and cytotoxic functions. In addition, this antigen is also present on a portion of cells with morphologic characteristics of granular lymphocytes. Although both Leu-2+ cells and granular lymphocytes have been shown to suppress B cell differentiation, the interrelationship of these two suppressor populations has not previously been fully characterized. We recently produced a monoclonal antibody, termed D12 (anti-Leu-15), which reacts with a variety of cell types, including a subpopulation of Leu-2+ cells. Previous studies have indicated that the Leu-2+ cells that suppress T cell proliferative responses express the Leu-2+15+ phenotype, whereas the precursor and effector cytotoxic T cells that recognize class I major histocompatibility antigens are Leu-2+15- lymphocytes. For this report, we used the anti-Leu-2 and anti-Leu-15 monoclonal antibodies and fluorescence-activated cell sorter techniques to characterize the E+ cells that suppress PWM-induced B cell differentiation. These studies indicate that the vast majority of Leu-2+ cells that suppress this T cell-dependent B cell response have the Leu-2+15+ phenotype. Furthermore, when the morphologic and cytochemical characteristics of these Leu-2+15+ cells were studied, virtually all of these cells were granular lymphocytes. Most of the Leu-2+15+ suppressor cells co-expressed the HNK-1 (Leu-7) antigen, which is detected only on granular lymphocytes. In contrast, virtually none of the Leu-2+15+ granular lymphocytes expressed Fc receptors for IgG molecules. These data indicate that the Leu-2+ cells that suppress PWM-induced B cell differentiation are Leu-2+15+ (and predominantly Leu-7+) granular lymphocytes that do not express Fc receptors. The implications of these observations concerning the relationship of human Leu-2+ suppressor cells to murine Ly-2+ cells and the lineage of granular lymphocytes are discussed.  相似文献   

17.
We examined the antigenic and functional characteristics of human peripheral blood lymphocytes that differentially express the CD16 (Leu-11) and Leu-19 (NKH-1) antigens. Leu-19 is a approximately 220,000 daltons protein expressed on approximately 15% of freshly isolated peripheral blood lymphocytes. Within the Leu-19+ subset, three distinct populations were identified: CD3-,CD16+,Leu-19+ cells; CD3+,CD16-,Leu-19+ cells; and CD3-,CD16-,Leu-19bright+ cells. Both the CD3+,CD16-,Leu-19+ and CD3-,CD16+,Leu-19+ populations mediated non-major histocompatibility complex (MHC)-restricted cytotoxicity against the NK-sensitive tumor cell K562 and were large granular lymphocytes. CD3-,CD16+,Leu-19+ NK cells were the most abundant (comprising approximately 10% of peripheral blood lymphocytes) and the most efficient cytotoxic effectors. The finding that CD3+,Leu 19+ lymphocytes mediated cytotoxicity against K562 unequivocally demonstrates that a unique subset of non-MHC-restricted cytotoxic CD3+ T lymphocytes are present in the peripheral blood of unprimed, normal individuals. However, CD3+,CD16-,Leu-19+ cells comprised less than 5% of peripheral blood lymphocytes, and the cytotoxic activity of this subset was significantly less than CD3-,CD16+,Leu-19+ NK cells. Most CD3+,Leu-19+ T cells co-expressed the CD2, CD8, and CD5 differentiation antigens. The antigenic and functional phenotype of peripheral blood CD3+,Leu-19+ cytotoxic T lymphocytes corresponds to the interleukin 2-dependent CD3+ cell lines that mediate non-MHC-restricted cytotoxicity against NK-sensitive tumor cell targets. A small population of Leu-19bright+ lymphocytes lacking both CD3 and CD16 was also observed. This population (comprising less than 2% of peripheral blood lymphocytes) contained both large agranular lymphocytes and large granular lymphocytes. CD3-,CD16-,Leu-19bright+ lymphocytes also mediate non-MHC-restricted cytotoxicity. The relationship of these CD3-CD16-,Leu-19bright+ lymphocytes to CD3+ T cells or CD16+ NK cells is unknown.  相似文献   

18.
Regulation of the immune response in man is largely dependent on interactions between cells of the cluster designation 4+ (CD4+) helper/inducer sublineage and the CD8+ suppressor/cytotoxic sublineage. When cultured with autologous antigen-primed CD4+ lymphocytes, CD8+ cells differentiate into suppressor T cells (Ts) that specifically inhibit the response of fresh autologous CD4+ cells to the priming antigen only. The current study was undertaken to analyze the roles in this suppressor circuit of subpopulations of the CD4+ sublineage distinguished from one another on the basis of their binding (or lack of binding) to monoclonal antibodies against molecules p80 (Leu8) and CD45R (p220/Leu18/2H4). When examined for the proliferative responses to alloantigenic stimuli, each of the four: CD4+p80+, CD4+p80-, CD4+CD45R+, and CD4+CD45R- populations proliferated vigorously, synthesized interleukin 2 (IL-2) and interferon and released soluble IL-2 receptors. However, the responses to soluble antigens such as Candida and diphtheria toxoid were exhibited by CD4+CD45R-, CD4+p80+, and CD4+p80- cells, but not by CD4+CD45R+ cells. When examined for their ability to induced CD8+ Ts in the Candida-driven suppressor-induction culture system, only CD4+p80+ and CD4+CD45R- cells induced strong suppression. Further, when CD4+CD45R- cells were separated into CD4+CD45R-p80+ and CD4+CD45R-p80- subpopulations, despite the ability of both subpopulations to respond to Candida, only CD4+CD45R-p80+ cells induced autologous CD8+ Ts. Activated CD8+ Ts suppressed not only proliferation but also the release of soluble IL-2 receptors by autologous antigen-activated CD4+ cells. Thus, the antigen-specific suppressor-inducer T cells appear to be derived from the CD4+CD45R-p80+ (Leu3+, Leu8+, 2H4-) subpopulation of the CD4+ sublineage.  相似文献   

19.
The ability to grow normal T lymphocytes in long term culture has advanced our understanding of T cell biology. The growth of CD4+ cell lines allowed a further evaluation and appreciation of functional subtypes within this group. Cytotoxic CD8+ T cells have been characterized as well. The routine and continuous culture of Ag-nonspecific CD8+ Ts cells has been difficult to achieve. We have found that CD8+ T cells that suppress T cell proliferation and lack cytotoxic activity against T cells can be routinely obtained from PWM or PHA-stimulated PBMC. Continuous culture of T cell blasts from PWM or PHA-stimulated PBMC resulted in the growth of CD4+ and CD8+ T cells. These lines developed suppressor cell activity within 7 days after stimulation with PWM and 3 to 4 wk after stimulation with PHA. Concomitant with the development of suppressor activity was the loss of CD4+ T cells resulting in homogeneous lines of CD8+ suppressor cells. These cell lines have been maintained in continuous culture for greater than 6 mo by addition of rIL-2 twice weekly and restimulation with feeder cells and PHA every 2 wk. Activity of these cell lines was relatively resistant to irradiation or treatment with mitomycin C. Both cell lines suppressed proliferation of autologous or heterologous CD4+ T cells stimulated with PWM, OKT3, or tetanus toxoid but failed to suppress proliferation of CD4+ T cells in a mixed lymphocyte reaction. CD4+ T cells stimulated with PWM produced equivalent amounts of IL-2 in the presence or absence of Ts cells but failed to express the IL-2R (TAC) on their surface in the presence of Ts cells. By contrast, CD4+ T cell lines or cytotoxic CD8+ T cell lines failed to suppress proliferation of CD4+ T cells. With these results we describe methods for the generation and continuous culture of Ag-nonspecific CD8+ Ts cells and define some of their properties. These cells lines should be helpful in further elucidating the functional and phenotypic repertoire of CD8+ Ts cells.  相似文献   

20.
Leukemic cells from a patient with an 11-yr history of chronic lymphocytic leukemia (CLL) were found to have the surface phenotype Leu-1+, Leu-2a+, Leu-3a-, sheep erythrocyte rosette+, IgGFc receptor+. The cells also bore a receptor for histamine inhibitable by cimetidine (H-2). The clonal nature of the proliferation was documented by the presence of a consistent marker chromosome (22-trisomy) in metaphases elicited by culture with T cell growth factors. Although the surface phenotype suggested that these cells might function as suppressor lymphocytes, they had an enhancing effect on the pokeweed- mitogen- (PWM) driven generation of plasma cells and reverse hemolytic plaque-forming cells in vitro. This helper activity was modified neither by irradiation of the leukemic cells nor by removal of a minor population of Leu-3a+ cells, suggesting that the effects were attributable to the CLL cells themselves. In addition to these functions, the CLL cells were active in antibody-dependent cellular cytotoxicity (ADCC) assays in association with expression of Fc receptors for IgG. The ADCC was diminished when a transient loss of the Fc receptor expression was observed. No activity in natural killer cell assays employing K-562 cells or herpes simplex virus- (HSV) infected cells as targets could be attributed to the leukemic clone. These studies indicate that the cell surface phenotype, as defined by monoclonal antibodies, may not always predict the functional state of a particular cell, and suggest that within the Leu-2a+ (TH-2+) population of human lymphocytes, some helper as well as suppressor/cytotoxic cells are to be found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号