首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
We isolated a new pea mutant that was selected on the basis of pale color and elongated internodes in a screen under white light. The mutant was designated pcd1 for phytochrome chromophore deficient. Light-grown pcd1 plants have yellow-green foliage with a reduced chlorophyll (Chl) content and an abnormally high Chl a/Chl b ratio. Etiolated pcd1 seedlings are developmentally insensitive to far-red light, show a reduced response to red light, and have no spectrophotometrically detectable phytochrome. The phytochrome A apoprotein is present at the wild-type level in etiolated pcd1 seedlings but is not depleted by red light treatment. Crude phytochrome preparations from etiolated pcd1 tissue also lack spectral activity but can be assembled with phycocyanobilin, an analog of the endogenous phytochrome chromophore phytochromobilin, to yield a difference spectrum characteristic of an apophytochrome-phycocyanobilin adduct. These results indicate that the pcd1-conferred phenotype results from a deficiency in phytochrome chromophore synthesis. Furthermore, etioplast preparations from pcd1 seedlings can metabolize biliverdin (BV) IX[alpha] but not heme to phytochromobilin, indicating that pcd1 plants are severely impaired in their ability to convert heme to BV IX[alpha]. This provides clear evidence that the conversion of heme to BV IX[alpha] is an enzymatic process in higher plants and that it is required for synthesis of the phytochrome chromophore and hence for normal photomorphogenesis.  相似文献   

2.
Utilizing an in vitro coupled assay system, we show that isolated plastids from cucumber cotyledons convert the linear tetrapyrrole biliverdin IX alpha to the free phytochrome chromophore, phytochromobilin, which assembles with oat apophytochrome to yield photoactive holoprotein. The spectral properties of this synthetic phytochrome are indistinguishable from those of the natural photoreceptor. The plastid-dependent biliverdin conversion activity is strongly stimulated by both NADPH and ATP. Substitution of the nonnatural XIII alpha isomer of biliverdin for the IX alpha isomer affords a synthetic holophytochrome adduct with blue-shifted difference spectra. These results, together with experiments using boiled plastids, indicate that phytochromobilin synthesis from biliverdin is enzyme-mediated. Experiments where NADPH (and ATP) levels in intact developing chloroplasts are manipulated by feeding the metabolites 3-phosphoglycerate, dihydroxyacetone phosphate, and glucose 6-phosphate or by illumination with white light, support the hypothesis that the enzyme that accomplishes this conversion, phytochromobilin synthase, is plastid-localized. It is therefore likely that all of the enzymes of the phytochrome chromophore biosynthetic pathway reside in the plastid.  相似文献   

3.
The oxidative cleavage of heme by heme oxygenases (HOs) to form biliverdin IXalpha (BV) is the committed step in the biosynthesis of the phytochrome (phy) chromophore and thus essential for proper photomorphogenesis in plants. Arabidopsis (Arabidopsis thaliana) contains four possible HO genes (HY1, HO2-4). Genetic analysis of the HY1 locus showed previously that it is the major source of BV with hy1 mutant plants displaying long hypocotyls and decreased chlorophyll accumulation consistent with a substantial deficiency in photochemically active phys. More recent analysis of HO2 suggested that it also plays a role in phy assembly and photomorphogenesis but the ho2 mutant phenotype is more subtle than that of hy1 mutants. Here, we define the functions of HO3 and HO4 in Arabidopsis. Like HY1, the HO3 and HO4 proteins have the capacity to synthesize BV from heme. Through a phenotypic analysis of T-DNA insertion mutants affecting HO3 and HO4 in combination with mutants affecting HY1 or HO2, we demonstrate that both of the encoded proteins also have roles in photomorphogenesis, especially in the absence of HY1. Disruption of HO3 and HO4 in the hy1 background further desensitizes seedlings to red and far-red light and accelerates flowering time, with the triple mutant strongly resembling seedlings deficient in the synthesis of multiple phy apoproteins. The hy1/ho3/ho4 mutant can be rescued phenotypically and for the accumulation of holo-phy by feeding seedlings BV. Taken together, we conclude that multiple members of the Arabidopsis HO family are important for synthesizing the bilin chromophore used to assemble photochemically active phys.  相似文献   

4.
The hy 1 and hy 2 long hypocotyl mutants of Arabidopsis thaliana contain less than 20% (the detection limit) of the phytochrome in wild-type tissue as measured by in vivo difference spectroscopy. In contrast, spectral measurements for the hy 3, hy 4, and hy 5 long hypocotyl mutants indicate that they each contain levels of phytochrome equivalent to the wild-type parent. Immunoblot analysis using a monoclonal antibody directed against the chromophore-bearing region of etiolated-oat phytochrome demonstrates that extracts of all mutant and wild-type Arabidopsis tissues, prepared by extraction of proteins into hot SDS-containing buffer, have identical levels of one major immunodetectable protein (116 kDa). An assay involving controlled in vitro proteolysis, known to produce distinctive fragmentation patterns for Pr and Pfr (Vierstra RD, Quail PH, Planta 156: 158–165, 1982), indicates that the 116 kDa polypeptide from the wild-type parent represents Arabidopsis phytochrome. The 116 kDa protein from either hy 3, hy 4, or hy 5 displays the same fragmentation pattern found for the wild type. Together with the spectral data, these results indicate that the mutant phenotype of these variants does not involve lesions in the polypeptide sequence that lead to gross conformational aberrations, and suggest that the genetic lesions may affect steps in the transduction chain downstream of the photoreceptor. In contrast, this same analysis for hy 1 and hy 2 has revealed that the 116 kDa protein from either of these mutants is not degraded differently in response to the different wavelengths of irradiation given in vitro. Moreover, whereas immunoblot analysis of tissue extracts from light-grown wild-type seedlings show that the 116 kDa phytochrome protein level is greatly reduced relative to dark-grown tissue as expected, similar extracts of light-grown hy 1 and hy 2 seedlings contain the 116 kDa polypeptide in amounts equivalent to those of dark-grown tissue. Combined, these data indicate that the hy 1 and hy 2 mutants both produce normal levels of immunochemically detectable phytochrome that is photochemically nonfunctional.  相似文献   

5.
Leaf and cotyledon expansion in dicotyledonous plants is a light-dependent developmental process. The unique role of phytochrome B has been tested by investigating expansion of cotyledons in wild-type and phytochrome-deficient mutants of Arabidopsis thaliana (L.) Heynh. A relatively rapid method for measuring cotyledon area was developed to quantify growth in large populations (average n [greater than or equal to] 100) of wild-type or mutant seedlings under different light and chemical treatments. Three-day-old wild-type (La-er) Arabidopsis seedlings, grown in saturating, low-fluence red light (2-4 [mu]mol m-2 s-1), showed a >250% increase in cotyledon area after 48 h of bright-red light when compared with the phytochrome mutants hy1, hy2, and hy3. An increase in epidermal cell area was observed in wild-type cotyledons but not in hy3, indicating that light-stimulated growth is due in part to cell expansion. The mutant phenotype was rescued by feeding the chromophore precursor biliverdin to the chromophore biosynthesis mutants hy1 and hy6. This treatment did not rescue the hy3 mutant. Since the hy3 lesion is specific to phytochrome B, we conclude that this pigment is involved in the enhancement of cotyledon cell expansion in bright-red light.  相似文献   

6.
During screening of ethylmethane sulphonate-mutagenized pea ( Pisum sativum L.) seedlings under far-red light a mutant line, AF130, was isolated which showed a reduction in both red and far-red light-induced de-etiolation responses. The photomorphogenic phenotype of AF130 results from a single recessive mutation which is not allelic with the previously described phytochrome chromophore biosynthesis mutant pcd1 . This new mutant has been designated pcd2 , for p hytochrome c hromophore d eficient 2. Like pcd1 , etiolated pcd2 seedlings are severely deficient in spectrally active phytochrome and contain wild-type levels of phytochrome A apoprotein which is not substantially depleted by red light treatment. Etioplast preparations from pcd2 seedlings can metabolize heme to biliverdin (BV) IXα, but are unable to convert BV IXα to the phytochrome chromophore, phytochromobilin. The PCD1 and PCD2 genes therefore control consecutive steps in phytochromobilin synthesis. Despite a similarly severe impairment of photomorphogenic responses, pcd2 mutant seedlings do not display the strongly chlorotic phenotype of pcd1 , suggesting that this characteristic of pcd1 does not result from phytochrome deficiency per se , but is a specific effect of the pcd1 mutation. A double mutant between pcd1 and pcd2 was constructed. This mutant is paler than pcd1 and less responsive to red light than either single mutant, but retains a strong response to blue light.  相似文献   

7.
Plants exhibit organ- and tissue-specific light responses. To explore the molecular basis of spatial-specific phytochrome-regulated responses, a transgenic approach for regulating the synthesis and accumulation of the phytochrome chromophore phytochromobilin (PΦB) was employed. In prior experiments, transgenic expression of the BILIVERDIN REDUCTASE (BVR) gene was used to metabolically inactivate biliverdin IXα, a key precursor in the biosynthesis of PΦB, and thereby render cells accumulating BVR phytochrome deficient. Here, we report analyses of transgenic Arabidopsis (Arabidopsis thaliana) lines with distinct patterns of BVR accumulation dependent upon constitutive or tissue-specific, promoter-driven BVR expression that have resulted in insights on a correlation between root-localized BVR accumulation and photoregulation of root elongation. Plants with BVR accumulation in roots and a PΦB-deficient elongated hypocotyl2 (hy2-1) mutant exhibit roots that are longer than those of wild-type plants under white illumination. Additional analyses of a line with root-specific BVR accumulation generated using a GAL4-dependent bipartite enhancer-trap system confirmed that PΦB or phytochromes localized in roots directly impact light-dependent root elongation under white, blue, and red illumination. Additionally, roots of plants with constitutive plastid-localized or root-specific cytosolic BVR accumulation, as well as phytochrome chromophore-deficient hy1-1 and hy2-1 mutants, exhibit reduced sensitivity to the plant hormone jasmonic acid (JA) in JA-dependent root inhibition assays, similar to the response observed for the JA-insensitive mutants jar1 and myc2. Our analyses of lines with root-localized phytochrome deficiency or root-specific phytochrome depletion have provided novel insights into the roles of root-specific PΦB, or phytochromes themselves, in the photoregulation of root development and root sensitivity to JA.  相似文献   

8.
9.
10.
Phytochrome chromophore-deficient mutants   总被引:9,自引:1,他引:8  
Phytochrome chromophore-deficient mutants have been used as phytochrome-deficient plants to study many aspects of plant development. However, there are still a number of important questions to be resolved concerning both the targets and the phenotypic consequences of these mutations. Recently, progress has been made in our understanding of the molecular basis of the chromophore deficiency in these mutants. Biochemical assays for the committed steps of chromophore synthesis have been developed and used to demonstrate that the pcd1 and yellow-green-2 mutants of pea and tomato, respectively, are unable to synthesize biliverdin IXα from heme while pcd2 and aurea are deficient in phytochromobilin synthase activity. This review focuses on how this information can be used to help understand the basis of other chromophore-deficient mutants, such as the hy1 and hy2 mutants of Arabidopsis, and discusses how the phenotype of chromophore-deficient mutants is related to lesions in the chromophore biosynthesis pathway.  相似文献   

11.
The committed step in the biosynthesis of the phytochrome chromophore phytochromobilin involves the oxidative cleavage of heme by a heme oxygenase (HO) to form biliverdin IXalpha. Through positional cloning of the photomorphogenic mutant hy1, the Arabidopsis HO (designated AtHO1) responsible for much of phytochromobilin synthesis recently was identified. Using the AtHO1 sequence, we identified families of HO genes in a number of plants that cluster into two subfamilies (HO1- and HO2-like). The tomato (Lycopersicon esculentum) yg-2 and Nicotiana plumbaginifolia pew1 photomorphogenic mutants are defective in specific HO genes. Phenotypic analysis of a T-DNA insertion mutant of Arabidopsis HO2 revealed that the second HO subfamily also contributes to phytochromobilin synthesis. Homozygous ho2-1 plants show decreased chlorophyll accumulation, reduced growth rate, accelerated flowering time, and reduced de-etiolation. A mixture of apo- and holo-phyA was detected in etiolated ho2-1 seedlings, suggesting that phytochromobilin is limiting in this mutant, even in the presence of functional AtHO1. The patterns of Arabidopsis HO1 and HO2 expression suggest that the products of both genes overlap temporally and spatially. Taken together, the family of HOs is important for phytochrome-mediated development in a number of plants and that each family member may uniquely contribute to the phytochromobilin pool needed to assemble holo-phytochromes.  相似文献   

12.
In a screen for early-flowering mutants, a number of mutants that were early flowering under both short and long days were isolated. One such mutant, pef1, was selectively insensitive to both red and far-red light in the inhibition of hypocotyl elongation response; a classic phytochrome phenotype mediated by both PHYA and PHYB. The pef1 mutant seedlings could not be phenotypically rescued by biliverdin, a precursor of the phytochrome chromophore, nor did they fail to complement any previously identified elongated hypocotyl (hy) mutants. Difference spectra and Western blot analysis showed normal concentrations of PHYA photoreceptor apoprotein, which appeared photochemically active. It was concluded that the pef1 mutant is defective in both PHYA- and PHYB- mediated signaling pathways, and may represent a lesion in an early step of the phytochrome signal transduction pathway. Additional pef mutants deficient specifically in PHYB-mediated responses were also identified by this screen.  相似文献   

13.
Four Nicotiana plumbaginifolia mutants exhibiting long hypocotyls and chlorotic cotyledons under white light, have been isolated from M2 seeds following mutagenesis with ethyl methane sulphonate. In each of these mutants, this partly etiolated in white light (pew) phenotype is due to a recessive nuclear mutation at a single locus. Complementation analysis indicates that three mutants, dap5, ems28 and ems3-6-34, belong to a single complementation group called pew1, while dap1 defines the pew2 locus. The mutants at pew1 contain normal levels of immunochemically detectable apoprotein of the phytochrome that is relatively abundant in etiolated seedlings, but are deficient in spectrophotometrically detectable phytochrome, whether seedlings are grown in darkness or light. Moreover, biliverdin, a precursor of the phytochrome chromophore, restores light-regulated responses in pew1 mutants and increases their level of photoreversible phytochrome when grown in darkness. These results indicate that the pew1 locus may be involved in chromophore biosynthesis. The mutant at the pew2 locus displays no photoreversible phytochrome in etiolated seedlings, but does contain normal levels of photoreversible phytochrome when grown in the light. Biliverdin had little effect on light-regulated responses in this mutant. In addition, biliverdin did not alter the level of phytochrome in etiolated seedlings. These observations lead us to propose that this mutant could be affected in the phyA gene itself. We have also obtained the homozygous double mutant at the pew1 and pew2 loci. This double mutant is lethal at an early stage of development, consistent with a critical role for phytochrome in early development of higher plants.  相似文献   

14.
Four Nicotiana plumbaginifolia mutants exhibiting long hypocotyls and chlorotic cotyledons under white light, have been isolated from M2 seeds following mutagenesis with ethyl methane sulphonate. In each of these mutants, this partly etiolated in white light (pew) phenotype is due to a recessive nuclear mutation at a single locus. Complementation analysis indicates that three mutants, dap5, ems28 and ems3-6-34, belong to a single complementation group called pew1, while dap1 defines the pew2 locus. The mutants at pew1 contain normal levels of immunochemically detectable apoprotein of the phytochrome that is relatively abundant in etiolated seedlings, but are deficient in spectrophotometrically detectable phytochrome, whether seedlings are grown in darkness or light. Moreover, biliverdin, a precursor of the phytochrome chromophore, restores light-regulated responses in pew1 mutants and increases their level of photoreversible phytochrome when grown in darkness. These results indicate that the pew1 locus may be involved in chromophore biosynthesis. The mutant at the pew2 locus displays no photoreversible phytochrome in etiolated seedlings, but does contain normal levels of photoreversible phytochrome when grown in the light. Biliverdin had little effect on light-regulated responses in this mutant. In addition, biliverdin did not alter the level of phytochrome in etiolated seedlings. These observations lead us to propose that this mutant could be affected in the phyA gene itself. We have also obtained the homozygous double mutant at the pew1 and pew2 loci. This double mutant is lethal at an early stage of development, consistent with a critical role for phytochrome in early development of higher plants.  相似文献   

15.
We have isolated a new complementation group of Arabidopsis thaliana long hypocotyl mutant (hy6) and have characterized a variety of light-regulated phenomena in hy6 and other previously isolated A. thaliana hy mutants. Among six complementation groups that define the HY phenotype in A. thaliana, three (hy1, hy2, and hy6) had significantly lowered levels of photoreversibly detectable phytochrome, although near wild-type levels of the phytochrome apoprotein were present in all three mutants. When photoregulation of chlorophyll a/b binding protein (cab) gene expression was examined, results obtained depended dramatically on the light regime employed. Using the red/far-red photoreversibility assay on etiolated plants, the accumulation of cab mRNAs was considerably less in the phytochrome-deficient mutants than in wild-type A. thaliana seedlings. When grown in high-fluence rate white light, however, the mutants accumulated wild-type levels of cab mRNAs and other mRNAs thought to be regulated by phytochrome. An examination of the light-grown phenotypes of the phytochrome-deficient mutants, using biochemical, molecular, and morphological techniques, revealed that the mutants displayed incomplete chloroplast and leaf development under conditions where wild-type chloroplasts developed normally. Thus, although phytochrome may play a role in gene expression in etiolated plants, a primary role for phytochrome in green plants is likely to be in modulating the amount of chloroplast development, rather than triggering the initiation of events (e.g., gene expression) associated with chloroplast development.  相似文献   

16.
Elongated mesocotyl1, a phytochrome-deficient mutant of maize   总被引:3,自引:0,他引:3       下载免费PDF全文
To begin the functional dissection of light signal transduction pathways of maize (Zea mays), we have identified and characterized the light-sensing mutant elm1 (elongated mesocotyl1). Seedlings homozygous for elm1 are pale green, show pronounced elongation of the mesocotyl, and fail to de-etiolate under red or far-red light. Etiolated elm1 mutants contain no spectrally active phytochrome and do not deplete levels of phytochrome A after red-light treatment. High-performance liquid chromatography analyses show that elm1 mutants are unable to convert biliverdin IX alpha to 3Z-phytochromobilin, preventing synthesis of the phytochrome chromophore. Despite the impairment of the phytochrome photoreceptors, elm1 mutants can be grown to maturity in the field. Mature plants retain aspects of the seedling phenotype and flower earlier than wild-type plants under long days. Thus, the elm1 mutant of maize provides the first direct evidence for phytochrome-mediated modulation of flowering time in this agronomically important species.  相似文献   

17.
Etiolated Avena seedlings grown in the presence of 4-amino-5-hexynoic acid, an inhibitor of 5-aminolevulinic acid synthesis in plants, contain less than 10% of the spectrally detectable levels of phytochrome found in untreated seedlings (Elich, T.D., and Lagarias, J.C. (1988) Plant Physiol. 88, 747-751). In this study, incubation of explants from such seedlings with [14C]biliverdin IX alpha led to rapid covalent incorporation of radiolabel into a single 124-kDa polypeptide in soluble protein extracts. Immunoprecipitation experiments confirmed that this protein was phytochrome. Parallel experiments were performed with four unlabeled linear tetrapyrroles, the naturally occurring biliverdin IX alpha isomer, two non-natural isomers, biliverdin XIII alpha and biliverdin III alpha, and phycocyanobilin-the cleaved prosthetic group of the light-harvesting antenna protein C-phycocyanin. In all cases, except for the III alpha isomer of biliverdin, a time-dependent recovery of photoreversible phytochrome was observed. The newly formed phytochrome obtained after incubation with biliverdin IX alpha exhibited spectral characteristics identical with those of the native protein. In contrast, the spectral properties of phytochromes formed during incubation with biliverdin XIII alpha and phycocyanobilin differed significantly from those of the native chromoprotein. These results indicate that biliverdin IX alpha is an intermediate in the biosynthesis of the phytochrome chromophore and that phytochromes with prosthetic groups derived from bilatrienes having non-natural D-ring substituents are photochromic.  相似文献   

18.
We have investigated the involvement of phytochrome B in the early-flowering response of Arabidopsis thaliana L. seedlings to low red:far-red (R/FR) ratio light conditions. The phytochrome B-deficient hy3 (phyB) mutant is early flowering, and in this regard it resembles the shade-avoidance phenotype of its isogenic wild type. Seedlings carrying the hy2 mutation, resulting in a deficiency of phytochrome chromophore and hence of active phytochromes, also flower earlier than wild-type plants. Whereas hy3 or hy2 seedlings show only a slight acceleration of flowering in response to low R/FR ratio, seedlings that are doubly homozygous for both mutations flower earlier than seedlings carrying either phytochrome-related mutation alone. This additive effect clearly indicates the involvement of one or more phytochrome species in addition to phytochrome B in the flowering response as well as indicating the presence of some functional phytochrome B in hy2 seedlings. Seedlings that are homozygous for the hy3 mutation and one of the fca, fwa, or co late-flowering mutations display a pronounced early-flowering response to low R/FR ratio. A similar response to low R/FR ratio is displayed by seedlings doubly homozygous for the hy2 mutation and any one of the late-flowering mutations. Thus, placing the hy3 or hy2 mutations into a late-flowering background has the effect of uncovering a flowering response to low R/FR ratio. Seedlings that are triply homozygous for the hy3, hy2 mutations and a late-flowering mutation flower earlier than the double mutants and do not respond to low R/FR ratio. Thus, the observed flowering responses to low R/FR ratio in phytochrome B-deficient mutants can be attributed to the action of at least one other phytochrome species.  相似文献   

19.
20.
The HY1 locus of Arabidopsis is necessary for phytochrome chromophore biosynthesis and is defined by mutants that show a long hypocotyl phenotype when grown in the light. We describe here the molecular cloning of the HY1 gene by using chromosome walking and mutant complementation. The product of the HY1 gene shows significant similarity to animal heme oxygenases and contains a possible transit peptide for transport to plastids. Heme oxygenase activity was detected in the HY1 protein expressed in Escherichia coli. Heme oxygenase catalyzes the oxygenation of heme to biliverdin, an activity that is necessary for phytochrome chromophore biosynthesis. The predicted transit peptide is sufficient to transport the green fluorescent protein into chloroplasts. The accumulation of the HY1 protein in plastids was detected by using immunoblot analysis with an anti-HY1 antiserum. These results indicate that the Arabidopsis HY1 gene encodes a plastid heme oxygenase necessary for phytochrome chromophore biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号