首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The segregation pattern and chromosomal location of a slender glume mutation, induced by gamma-ray irradiation, was investigated. The mutation is genetically unstable: in the selfed progenies of slender glumed plants, not only plants with normal glumes but also plants that are chimeric for glume shape almost always appear at low frequency. The results showed that the mutation is controlled by a single recessive, mutable mutant gene slg. The frequency of reversion of slg to its wild-type state was little affected by crossing, backcrossing, genetic background or cytoplasmic factors. Conventional trisomic and linkage analyses revealed that the slg locus was located close to the rfs (rolled fine stripe leaf) locus on chromosome 7. In a subsequent RFLP analysis, slg was found to be located between the two RFLP loci XNpb20 and XNpb33, with recombination values of 3.0 and 3.2%, respectively. Southern analysis indicated that the mutability of slg is caused by none of the known transposable elements in rice. From these results, we infer that slg has a novel transposable DNA insert in its vicinity, which was possibly activated by gamma-ray irradiation. Received: 28 September 1998 / Accepted: 18 December 1998  相似文献   

4.
Z X Wang  N Iwata 《Génome》1996,39(2):307-313
Four rice (Oryza sativa L.) deficiencies, involving chromosomes 4 (Df4), 8 (Df8), and 11 (Df11-1, Df11-2), were studied. The deficiencies were induced by means of the pseudodominance technique, i.e., strains carrying one or more recessive marker genes were fertilized with irradiated pollen of a strain carrying normal alleles at corresponding loci. No characteristic morphological features were found in the deficiencies, as compared with the normal F1 plants in the progeny. The deficiencies showed high or complete seed sterility. Genetic and cytological studies indicated deficiencies in chromosomes 4, 8, and 11. The fragment chromosomes in Df4, Df8, and Df11-2 were short, possibly being derived from the heterochromatin regions of the chromosomes, including kinetochores, and the fragment chromosome in Df11-1 was long, with about 75% of the long arm missing. At metaphase I, Df4, Df8, and Df11-2 showed only the chromosome configuration of 11 II (bivalents) + 2I (univalents), and Df11-1 only that of 12 II. It seems that the short fragments tend to stay as univalents in meiosis, probably because of their shortness. On the other hand, long fragments act as normal chromosomes and associate with their homologues. The deficiencies were not transmitted to the progenies, although only a few offspring were examined. By using the induced deficiencies Df4 and Df11-1, two morphological marker genes, lg (liguleless) and la (lazy growth habit), were located on the long arm of chromosomes 4 and 11, respectively. This is the first report in rice utilizing induced chromosome deficiencies to locate a gene on a specific arm of a chromosome. The use of induced deficiencies for studying the structure of the rice genome is discussed. Key words : rice, chromosome, deficiencies, cytology, transmission.  相似文献   

5.
Association of morphological and RFLP markers in rice (Oryza sativa L.).   总被引:1,自引:0,他引:1  
Seventeen morphological marker genes were associated with restriction fragment length polymorphism markers in rice by using four F2 populations, each segregating for a few observable traits, and 14 near isogenic lines (NILs), each containing one morphological mutant gene. The location of five genes was confirmed on the basis of F2 analysis: Purple hull (Pr) (16.8 +/- 7.9 cM away from RG163 on chromosome 4); Phenol staining (Ph) (20.8 +/- 8.4 cM away from RG163 on chromosome 4); glabrous leaf and hull (gl-1) (14.3 +/- 7.4 cM away from RG182, and 20.9 +/- 8.3 cM from RG403 on chromosome 5); Brown pericarp (Rc) (12.5 +/- 7.2 cM away from RG30 on chromosome 7); and lazy growth habit (la) (28.8 +/- 9.4 cM away from RG118 on chromosome 11). In addition, 12 other morphological markers, including the agronomically important genes semi-dwarf (sd-1) and Pollen restoring factor (Rf-1) were tentatively associated with mapped DNA clones based on screening pairs of NILs.  相似文献   

6.
7.
We analyzed the function of a rice sucrose transporter, OsSUT1, by using antisense rice. There was no difference between antisense and wild-type plants in carbohydrate content and photosynthetic ability of the flag leaves in the vegetative growth stage, suggesting that OsSUT1 may not play an important role in carbon metabolism, at least in these materials.  相似文献   

8.
9.
The limit dextrinases from ungerminated oats and rice have been purified, and their substrate specificity compared with a bacterial isoamylase preparation. Both cereal enzymes could hydrolyse (1 yields6)-alpha-D-glucosidic linkages in oligosaccharide alpha-dextrins, pullulan, amylopectin, and the beta-limit dextrins of amylopectin and glycogen. However, under comparable conditions, they were unable to attack glycogens.  相似文献   

10.
Summary A diallel study involving reciprocal crosses of four genotypes (IR8, 36, 54, and 64) was carried out to understand the genetic mechanism of plant regeneration from immature embryo-calli in rice. Regeneration frequency (% of calli that produced plants) varied from a high of 86% for IR54 to a low of 0% for IR36, while regenerated plants per embryo numbered from 0 to 7 when these same IR lines and the F1 hybrids were compared. Combining ability analysis revealed that both nuclear (with both additive and dominant effects) and cytoplasmic genes are important in controlling regeneration in rice. Parental lines and F1 hybrids with high ability to regenerate were identified.  相似文献   

11.
Summary Inheritance of waxy locus was studied in crosses of a waxy variety with four non-waxy parents having high-, intermediate-, low- or very low-amylose content. The analysis for amylose content was done on a single grain basis in parents, F1, F2, B1F1, and B2F1 seeds. The waxy parent lacking synthesis of amylose content was found to differ from the ones having high-, intermediate-, low- or very low-amylose content by one gene with major effect. Dosage effects for amylose content were observed to have great influence on segregation pattern and efficiency of selection. Selection efficiency for amylose content can be enhanced by selecting for endosperm appearance in early segregating generations.  相似文献   

12.
Genetic analysis of salinity tolerance in rice (Oryza sativa L.)   总被引:1,自引:0,他引:1  
Summary The genetics of salinity tolerance in rice was investigated by a nine-parent complete diallel including reciprocals. Test materials involved susceptible (IR28, IR29, and MI-48), moderately tolerant (IR4595-4-1-13, IR9884-54-3-1E-P1, and IR10206-29-2-1), and tolerant (Nona Bokra, Pokkali, and SR26B) parents. Twoweek-old seedlings were grown in a salinized (EC = 12 dS/m) culture solution for 19 days under controlled conditions in the IRRI phytotron. Typical characteristics of salinity tolerance in rice were found to be Na+ exclusion and an increased absorption of K+ to maintain a good Na-K balance in the shoot. Genetic component analysis (GCA) revealed that a low Na-K ratio is governed by both additive and dominance gene effects. The trait exhibited overdominance, and two groups of genes were detected. Environmental effects were large, and the heritability of the trait was low. Our findings suggest that when breeding for salt tolerance, selection must be done in a later generation and under controlled conditions in order to minimize environmental effects. Modified bulk and single-seed descent would be the suitable breeding methods. Combining ability analysis revealed that both GCA and specific combining ability (SCA) effects were important in the genetics of salt tolerance. Moderately tolerant parents — e.g., IR4595-4-1-13 and IR9884-54-3-1E-P1 — were the best general combiners. Most of the best combinations had susceptible parents crossed either to moderate or tolerant parents. The presence of reciprocal effects among crosses necessitates the use of susceptible parents as males in hybridization programs. Large heterotic effects suggest the potential of hybrid rice for salt-affected lands.  相似文献   

13.
Summary To develop a transposon tagging system in an important cereal plant, rice (Oryza sativa L.), the maize transposable element Ac (Activator) was introduced into rice protoplasts by electroporation. We employed a phenotypic assay for excision of Ac from the selectable hph gene encoding resistance to hygromycin B. Southern blot analysis of hygromycin B-resistant calli showed that the Ac element can transpose from the introduced hph gene into the rice chromosomes. Sequence analysis of several Ac excision sites in the hph gene revealed sequence alterations characteristic of the excision sites of this plant transposable element. The Ac element appears to be active during development of transgenic rice plants from calli. Moreover, hybridization patterns of different leaves from the same plant indicated that some Ac elements are stable whereas others are able to transpose further during development of leaves. The results indicate that the introduced Ac element can transpose efficiently in transgenic rice plants.  相似文献   

14.
We investigated the time-related changes of Chromosome Regions that Affect Traits (CRATs) for elongation rate in rice (Oryza sativa L.) using chromosome segment substitution lines (CSSLs) carrying a single chromosome segment of the cultivar Kasalath (indica) in a Koshihikari (japonica) genetic background. The growth period of rice was partitioned into eight stages (each lasting 5-7days) from 18days after transplanting, and the elongation rate was determined as the increase of total plant height per time at each growth stage. CRATs for plant elongation rate were determined based on graphical genotype data of CSSLs that showed a significantly higher or lower elongation rate than Koshihikari. In total, 23 CRATs for plant elongation rate were detected, and different CRATs acted at different growth stages. Fifteen CRATs increased the elongation rate through Kasalath alleles, and eight increased it through Koshihikari alleles. These results suggest that plant height in rice is regulated in a stage-specific manner by a variety of genetic mechanisms that control plant elongation rate. Kasalath alleles of PE1-9 increased the elongation rate at an early growth stage (18-25days after transplanting), while Koshihikari alleles of PE8-3 decreased the elongation rate at a late growth stage (68-74days after transplanting). In a line that contained both of these CRATs, the elongation rate at the early growth stage was increased without affecting plant height at harvesting. We conclude that stage-specific optimization of plant height in rice may be achieved by combining CRATs that control plant elongation at specific stages.  相似文献   

15.
Two new loci for hybrid sterility in cultivated rice (Oryza sativa L.)   总被引:17,自引:0,他引:17  
Female gamete abortion in Indica-Japonica crosses of rice was earlier identified to be due to an allelic interaction at the S-5 locus on chromosome 6. Recently, in other crosses of rice, similar allelic interactions were found at loci designated as S-7 and S-8, located on chromosomes 7 and 6 respectively. All of them are independent of each other. At the S-5 locus, Indica and Japonica rice have S-5 i and S-5 j alleles respectively and Javanicas, such as Ketan Nangka, have a neutral allele S-5 n .The S-5 i /S-5 j genotype is semi-sterile due to partial abortion of female gametes carrying S-5 j , but both the S-5 n /S-5 i and S-5 n /S-5 j genotypes are fertile. The S-5 n allele is thus a wide-compatibility gene (WCG), and parents homozygous for this allele are called wide-compatible varieties (WCV). Such parents when crossed with Indica or Japonica varieties do not show F1 hybrid sterility. Wide-compatible parents have been used to overcome sterility barriers in crosses between Indica and Japonica rice. However, a Javanica variety, Ketan Nangka (WCV), showed typical hybrid sterility when crossed to the Indian varieties N22 and Jaya. Further, Dular, another WCV from India, showed typical hybrid sterility when crossed to an IRRI line, IR2061-628-1-6-4-3(IR2061-628). By genetic analyses using isozyme markers, a new locus causing hybrid sterility in crosses between Ketan Nangka and the Indicas was located near isozyme loci Est-1 and Mal-1 on chromosome 4, and was designated as S-9. Another new locus for hybrid sterility in the crosses between Dular and the IR2061-628 was identified and was found linked to four isozyme loci, Sdh-1, Pox-2, Acp-1 and Acp-2, on chromosome 12. It was designated as S-15. On the basis of allelic interactions causing female-gamete abortion, two alleles were found at S-9, S-9 kn in Ketan Nangka and S-9 i in N22 and Jaya. In the heterozygote, S-9 kn /S-9 i , which was semisterile, female gametes carrying S-9 kn were aborted. The hybrid of Dular and IR2061-628, with a genetic constitution of S-15 Du /S-15 i , was semi-sterile and the female gametes carrying S-15 Du were aborted. A Japonica tester variety, Akihikari, and an Indica variety, IR36, were found to have neutral alleles, S-9 nand S-15 n, at these loci, in addition to S-7 nand at S-7. The accumulation of three neutral alleles into a breeding line should help solve the hybrid sterility problem in wide crosses of rice.  相似文献   

16.
A rice mutant, designated pse(t) (premature senescence, tentatively), was isolated from a T-DNA-inserted transgenic population. Senescence advanced more markedly in pse(t) than in wild-type ('Zhonghua 11', japonica) plants. Genetic analysis of pse(t) revealed that the premature senescence mutation was controlled by a single recessive nuclear gene, but that it was not induced by T-DNA insertion. In an effort to understand the genetic and molecular basis underlying premature senescence in rice, a map-based cloning strategy was used to localize Pse(t). High-resolution mapping of the Pse(t) locus was carried out using simple sequence repeat (SSR) and cleaved amplified polymorphic sequence (CAPS) markers. An F2 population, comprising 1691 pse(t) individuals derived from a cross of the pse(t) mutant with 'Longtepu' (indica), was constructed. Several new polymorphism markers were developed in this study. Genetic linkage analysis showed that the Pse(t) gene was located on the long arm of chromosome 7. It was found that the Pse(t) gene cosegregated with 3 markers and was flanked by markers SS22 and PP21. Thus, the Pse(t) gene is located within a genetic distance of 0.15 cM, corresponding to a physical distance of 220 kb. These findings provide the basic information that can be used for the final isolation of this gene in the rice premature-senescence pathway.  相似文献   

17.
Anthers of two rice (Oryza sativa L.) varieties, Lunhui 422 (P1) and Jinzao 5 (P2), their F1, F2 and first backcross generation-F1 x Lunhui 422 (B1), and F1 x Jinzao 5 (B2)-were cultured in L8 medium to study the inheritance of rice anther culturability using generation mean analysis. Significant effects of generation were observed for the four traits measured: anther response (%), frequency of callus induction (%), frequency of callus differentiation (%) and culture efficiency (%). Variation among the generations was similar for all traits: significant differences were found among six generations and the means of the P2 and B2 were significantly lower than those of the other generations. The frequency of callus differentiation showed a nonsignificant difference among the P1, F1, F2 and B1 generations which had slightly high values than the P2 and B2. Additive genetic variance (VA) was higher than non-additive genetic variance (VD) for anther response and frequency of callus induction. However, AV was lower than VD for frequence of callus differentiation and culture efficiency, VA was significant for all traits except for the culture efficiency, and VD was nonsignificant for all traits except for the frequency of callus differentiation. On the other hand, environmental variation (VE) was significant for the 4 traits. Narrow-sense heritability estimates were 95.52%, 82.19% and 13.54% for anther response, frequency of callus induction and culture efficiency, respectively.Abbreviations 2,4-d 2,4-dichlorophenoxyacetic acid - IAA indole-3-acetic acid  相似文献   

18.
In order to enhance the resolution of an existing genetic map of rice, and to obtain a comprehensive picture of marker utility and genomic distribution of microsatellites in this important grain species, rice DNA sequences containing simple sequence repeats (SSRs) were extracted from several small-insert genomic libraries and from the database. One hundred and eighty eight new microsatellite markers were developed and evaluated for allelic diversity. The new simple sequence length polymorphisms (SSLPs) were incorporated into the existing map previously containing 124 SSR loci. The 312 microsatellite markers reported here provide whole-genome coverage with an average density of one SSLP per 6 cM. In this study, 26 SSLP markers were identified in published sequences of known genes, 65 were developed based on partial cDNA sequences available in GenBank, and 97 were isolated from genomic libraries. Microsatellite markers with different SSR motifs are relatively uniformly distributed along rice chromosomes regardless of whether they were derived from genomic clones or cDNA sequences. However, the distribution of polymorphism detected by these markers varies between different regions of the genome. Received: 5 May 1999 / Accepted: 16 August 1999  相似文献   

19.
Summary The inheritance and biochemical basis of scent in rice was studied in the F2 population along with the F1 and its two parents, scented and non-scented Pokura rice strains. The F1 plants were found to be nonscented while the F2 plants seggregated into a 31 ratio (non-scented: scented). In scented F2 seggregants and in the scented parental strain, a fast moving esterase isozyme, Rf 0.9, is missing whereas it is present in all nonscented F2 seggregants, F1s, and in the non-scented parent. This suggests that the absence of a specific esterase isozyme is associated with the scent character in rice.  相似文献   

20.
Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.).   总被引:87,自引:0,他引:87  
A total of 2414 new di-, tri- and tetra-nucleotide non-redundant SSR primer pairs, representing 2240 unique marker loci, have been developed and experimentally validated for rice (Oryza sativa L.). Duplicate primer pairs are reported for 7% (174) of the loci. The majority (92%) of primer pairs were developed in regions flanking perfect repeats > or = 24 bp in length. Using electronic PCR (e-PCR) to align primer pairs against 3284 publicly sequenced rice BAC and PAC clones (representing about 83% of the total rice genome), 65% of the SSR markers hit a BAC or PAC clone containing at least one genetically mapped marker and could be mapped by proxy. Additional information based on genetic mapping and "nearest marker" information provided the basis for locating a total of 1825 (81%) of the newly designed markers along rice chromosomes. Fifty-six SSR markers (2.8%) hit BAC clones on two or more different chromosomes and appeared to be multiple copy. The largest proportion of SSRs in this data set correspond to poly(GA) motifs (36%), followed by poly(AT) (15%) and poly(CCG) (8%) motifs. AT-rich microsatellites had the longest average repeat tracts, while GC-rich motifs were the shortest. In combination with the pool of 500 previously mapped SSR markers, this release makes available a total of 2740 experimentally confirmed SSR markers for rice, or approximately one SSR every 157 kb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号