首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 101 毫秒
1.
The present study concerns the simulation and analysis of the flow field in the upper human respiratory system in order to gain an improved understanding of the complex flow field with respect to the process affecting drug delivery for medical treatment of the human air system. For this purpose, large eddy simulation (LES) is chosen because of its powerful performance in the transitional range of laminar and turbulent flow fields. The average gas velocity in a constricted tube is compared with experimental data (Ahmed and Giddens, 1983) and numerical data from Reynolds-averaged Navier-Stokes (RANS) equations coupled with low Reynolds number (LRN) κ-ω model (Zhang and Kleinstreuer, 2003) and LRN shear-stress transport κ-ω model (Jayaraju et al., 2007), for model validation. The present study emphasizes on the instantaneous flow field, where the simulations capture different scales of secondary vortices in different flow zones including recirculation zones, the laryngeal jet zone, the mixing zone, and the wall shear layer. It is observed that the laryngeal jet tail breaks up, and the unsteady motion of laryngeal jet is coupled with the unsteady distribution of secondary vortices in the jet boundary. The present results show that it is essential to study the unsteady flow field since it strongly affects the particle flow in the human upper respiratory system associated with drug delivery for medical treatment.  相似文献   

2.
3.
Aortic arch aneurysm is a complex pathology which requires coverage of one or more aortic arch vessels. In this study we explore the hemodynamic behavior of the aortic arch in aneurysmatic and treated cases with three currently available treatment approaches: Surgery Graft, hybrid Stent-Graft and chimney Stent Graft. The analysis included four models of the time-dependent fluid domains of aneurysmatic arch and of the surgery, hybrid and chimney endovascular techniques. Dimensions of the models are based on typical anatomy, and boundary conditions are based on typical physiological flow.The simulations used computational fluid dynamics (CFD) methods to delineate the time-dependent flow dynamics in the four geometric models.Results of velocity vectors, flow patterns, blood pressure and wall shear stress distributions are presented.The results delineate disturbed and recirculating flow in the aortic arch aneurysm accompanied with low wall shear stress and velocities, compared to a uniformly directed flow and nominal wall shear stress (WSS) in the model of Surgery graft. Out of the two endograft procedures, the hybrid procedure clearly exhibits better hemodynamic performances over the chimney model, with lower WSS, lower pressure drop and less disturbed and vortical flow regions. Although the chimney procedure requires less manufacturing time and cost, it is associated with higher risk rates, and therefore, it is recommended only for emergency cases. This study may shed light on the hemodynamic factors for these complications and provide insight into ways to improve the procedure.  相似文献   

4.
Pulsatile flow inside a moderately elastic circular conduit with a smooth expansion is studied as a model to understand the influence of wall elasticity in artery flow. The solution of the simultaneous fluid-wall evolution is evaluated by a perturbative method, where the zeroth order solution is represented by the flow in a rigid vessel; the first order correction gives the wall motion and induced flow modification without the need to solve the difficult coupled problem. Such an approach essentially assumes a locally infinite celerity, therefore it represent a good approximation for the fluid-wall interaction in sites of limited extent (branches, stenosis, aneurism, etc.), which include typical situations associated with vascular diseases. The problem is solved numerically in the axisymmetric approximation; the influence of wall elasticity on the flow and on the unsteady wall shear stress is studied in correspondence of parameters taken from realistic artery flow. Attention is posed to the role of phase difference between the incoming pressure and flow pulses.  相似文献   

5.
Total cavopulmonary connection is the result of a series of palliative surgical repairs performed on patients with single ventricle heart defects. The resulting anatomy has complex and unsteady hemodynamics characterized by flow mixing and flow separation. Although varying degrees of flow pulsatility have been observed in vivo, non-pulsatile (time-averaged) boundary conditions have traditionally been assumed in hemodynamic modeling, and only recently have pulsatile conditions been incorporated without completely characterizing their effect or importance. In this study, 3D numerical simulations with both pulsatile and non-pulsatile boundary conditions were performed for 24 patients with different anatomies and flow boundary conditions from Georgia Tech database. Flow structures, energy dissipation rates and pressure drops were compared under rest and simulated exercise conditions. It was found that flow pulsatility is the primary factor in determining the appropriate choice of boundary conditions, whereas the anatomic configuration and cardiac output had secondary effects. Results show that the hemodynamics can be strongly influenced by the presence of pulsatile flow. However, there was a minimum pulsatility threshold, identified by defining a weighted pulsatility index (wPI), above which the influence was significant. It was shown that when wPI<30%, the relative error in hemodynamic predictions using time-averaged boundary conditions was less than 10% compared to pulsatile simulations. In addition, when wPI<50, the relative error was less than 20%. A correlation was introduced to relate wPI to the relative error in predicting the flow metrics with non-pulsatile flow conditions.  相似文献   

6.
目的:对应用三维重构得到的人体真实椎动脉进行血液两相流数值模拟,与经典单相流牛顿血液模型对比,分析动脉粥样硬化等病因与椎动脉狭窄处的血流动力学关系。方法:把考虑血细胞和血浆的两相流血液模型应用到逆向工程方法构建的基于人体生理解剖特征的椎动脉三维几何模型中去进行数值模拟,分析血细胞分布情况等血流动力学参数,并与单相流模型的模拟结果进行对比。结果:通过瞬态模拟计算,得到了椎动脉在心动周期内不同时刻的两相流和单相流模型的血流动力学参数。结论:通过对比单相流数值模拟结果,得出血管狭窄处血细胞出现聚集,血流更加复杂和低壁面切应力分布等与动脉粥样硬化及血栓的形成相关的结论。并且与两相流模型相比,单相流模型存在如无法获得如血细胞分布等不足,为进一步深入研究椎动脉等疾病的发病机理提供方法和理论支持。  相似文献   

7.

Pulsatile flow inside a moderately elastic circular conduit with a smooth expansion is studied as a model to understand the influence of wall elasticity in artery flow. The solution of the simultaneous fluid-wall evolution is evaluated by a perturbative method, where the zeroth order solution is represented by the flow in a rigid vessel; the first order correction gives the wall motion and induced flow modification without the need to solve the difficult coupled problem. Such an approach essentially assumes a locally infinite celerity, therefore it represent a good approximation for the fluid-wall interaction in sites of limited extent (branches, stenosis, aneurism, etc.), which include typical situations associated with vascular diseases. The problem is solved numerically in the axisymmetric approximation; the influence of wall elasticity on the flow and on the unsteady wall shear stress is studied in correspondence of parameters taken from realistic artery flow. Attention is posed to the role of phase difference between the incoming pressure and flow pulses.  相似文献   

8.
Tadjfar M  Himeno R 《Biorheology》2002,39(3-4):379-384
A parallel, time-accurate flow solver is devised to study the human cardio-vascular system. The solver is capable of dealing with moving boundaries and moving grids. It is designed to handle complex, three-dimensional vascular systems. The computational domain is divided into multiple block subdomains. At each cross section the plane is divided into twelve sub-zones to allow flexibility for handling complex geometries and, if needed, appropriate parallel data partitioning. The unsteady, three-dimensional, incompressible Navier-Stokes equations are solved numerically. A second-order in time and third-order upwind finite volume method for solving time-accurate incompressible flows based on pseudo-compressibility and dual time-stepping technique is used. For parallel execution, the flow domain is partitioned. Communication between the subdomains of the flow on Riken's VPP/700E supercomputer is implemented using MPI message-passing library. A series of numerical simulations of biologically relevant flows is used to validate this code.  相似文献   

9.
Blood flow functional imaging is widely applied in biological research to provide vascular morphological and statistical parameters. It relies on the absorption difference and is, therefore, easily affected by complex biological structures, and it cannot accommodate abundant functional information. We propose a full-field multi-functional angiography method to classify arteriovenous vessels and to display flow velocity and vascular diameter distribution simultaneously. Unlike previous methods, an under-sampled laser Doppler acquisition mode is used to record the low-coherence speckle, and multi-functional angiography is achieved by modulating the endogenous hemodynamic characteristics from low-coherence speckle. To demonstrate the combination of classified angiography, blood flow velocity measurement, and vascular diameter measurement realized using our method, we performed experiments on the flow phantom and living chicken embryos and generated multi-functional angiograms. The proposed method can be used as a label-free multi-functional angiography technique in which red blood cells provide a strong endogenous source of naturally hemodynamic characteristics.  相似文献   

10.
A numerical method is developed for simulating unsteady, 3-D, laminar flow through a bileaflet mechanical heart valve with the leaflets fixed. The method employs a dual-time-stepping artificial-compressibility approach together with overset (Chimera) grids and is second-order accurate in space and time. Calculations are carried out for the full 3-D valve geometry under steady inflow conditions on meshes with a total number of nodes ranging from 4 x 10(5) to 1.6 x 10(6). The computed results show that downstream of the leaflets the flow is dominated by two pairs of counter-rotating vortices, which originate on either side of the central orifice in the aortic sinus and rotate such that the common flow of each pair is directed away from the aortic wall. These vortices intensify with Reynolds number, and at a Reynolds number of approximately 1200 their complex interaction leads to the onset of unsteady flow and the break of symmetry with respect to both geometric planes of symmetry. Our results show the highly 3-D structure of the flow; question the validity of computationally expedient assumptions of flow symmetry; and demonstrate the need for highly resolved, fully 3-D simulations if computational fluid dynamics is to accurately predict the flow in prosthetic mechanical heart valves.  相似文献   

11.
Blood flow dynamics in the human right coronary artery have not been adequately quantified despite the clinical significance of coronary atherosclerosis. In this study, a technique was developed to construct a rigid flow model from a cast of a human right coronary artery. A laser photochromic method was used to characterize the velocity and wall shear stress patterns. The flow conditions include steady flow at Reynolds numbers of 500 and 1000 as well as unsteady flow with Womersley parameter and peak Reynolds number of 1.82 and 750, respectively. Characterization of the three-dimensional geometry of the artery revealed that the largest spatial variation in curvature occurred within the almost branch-free proximal region, with the greatest curvature existing along the acute margin of the heart. In the proximal segment, high shear stresses were observed on the outer wall and lower, but not negative, stresses along the inner wall. Low shear stress on the inner wall may be related to the preferential localization of atherosclerosis in the proximal segment of the right coronary artery. However, it is possible that the large difference between the outer and inner wall shear stresses may also be involved.  相似文献   

12.

Background

Systolic blood flow has been simulated in the abdominal aorta and the superior mesenteric artery. The simulations were carried out using two different computational hemodynamic methods: the finite element method to solve the Navier Stokes equations and the lattice Boltzmann method.

Results

We have validated the lattice Boltzmann method for systolic flows by comparing the veloCity and pressure profiles of simulated blood flow between methods. We have also analyzed flow-specific characteristics such as the formation of a vortex at curvatures and traces of flow.

Conclusion

The lattice Boltzmann Method is as accurate as a Navier Stokes solver for computing complex blood flows. As such it is a good alternative for computational hemodynamics, certainly in situation where coupling to other models is required.  相似文献   

13.
This study aims to clarify the mechanisms by which unsteady hydrodynamic forces act on the hand of a swimmer during a crawl stroke. Measurements were performed for a hand attached to a robotic arm with five degrees of freedom independently controlled by a computer. The computer was programmed so the hand and arm mimicked a human performing the stroke. We directly measured forces on the hand and pressure distributions around it at 200 Hz; flow fields underwater near the hand were obtained via 2D particle image velocimetry (PIV). The data revealed two mechanisms that generate unsteady forces during a crawl stroke. One is the unsteady lift force generated when hand movement changes direction during the stroke, leading to vortex shedding and bound vortex created around it. This bound vortex circulation results in a lift that contributes to the thrust. The other occurs when the hand moves linearly with a large angle of attack, creating a Kármán vortex street. This street alternatively sheds clockwise and counterclockwise vortices, resulting in a quasi-steady drag contributing to the thrust. We presume that professional swimmers benefit from both mechanisms. Further studies are necessary in which 3D flow fields are measured using a 3D PIV system and a human swimmer.  相似文献   

14.
Numerical simulations of unsteady blood flow through a honeycomb network originating at multiple inlets and terminating at multiple outlets are presented and discussed under the assumption that blood behaves as a continuum with variable constitution. Unlike a tree network, the honeycomb network exhibits both diverging and converging bifurcations between branching capillary segments. Numerical results based on a finite difference method demonstrate that as in the case of tree networks considered in previous studies, the cell partitioning law at diverging bifurcations is an important parameter in both steady and unsteady flow. Specifically, a steady flow may spontaneously develop self-sustained oscillations at critical conditions by way of a Hopf bifurcation. Contrary to tree-like networks comprised entirely of diverging bifurcations, the critical parameters for instability in honeycomb networks depend weakly on the system size. The blockage of one or more network segments due to the presence of large cells or the occurrence of capillary constriction may cause flow reversal or trigger a transition to unsteady flow.  相似文献   

15.
Much effort has been undertaken for the estimation of propulsive force of swimmers in the front crawl. Estimation is typically based on steady flow theory: the so-called quasi-steady analysis. Flow fields around a swimmer, however, are extremely unsteady because the change direction of hand produces unsteady vortex motions. To evaluate the force correctly, it is necessary to know the unsteady properties determined from the vortex dynamics because that unsteadiness is known to make the force greater. Unsteady flow measurements were made for this study using a sophisticated technique called particle image velocimetry (PIV) in several horizontal planes for subjects swimming in a flume. Using that method, a 100 time-sequential flow fields are obtainable simultaneously. Each flow field was calculated from two particle images using the cross-correlation method. The intensity of vortices and their locations were identified. A strong vortex was generated near the hand and then shed by directional change of the hand in the transition phase from in-sweep to out-sweep. When the vortex was shed, a new vortex rotating in the opposite direction around the hand was created. The pair of vortices induced the velocity component in the direction opposite to the swimming. Results of this study show that the momentum change attributable to the increase in this velocity component is the origin of thrust force by the hand.  相似文献   

16.
In continuing the investigation of AAA hemodynamics, unsteady flow-induced stresses are presented for pulsatile blood flow through the double-aneurysm model described in Part I. Physiologically realistic aortic blood flow is simulated under pulsatile conditions for the range of time-average Reynolds numbers 50< or =Re(m) < or =300. Hemodynamic disturbance is evaluated for a modified set of indicator functions which include wall pressure (p(w)), wall shear stress (tau(w)), Wall Shear Stress Gradient (WSSG), time-average wall shear stress (tau(w)*), and time-average Wall Shear Stress Gradient WSSG*. At peak flow, the highest shear stress and WSSG levels are obtained at the distal end of both aneurysms, in a pattern similar to that of steady flow. The maximum values of wall shear stresses and wall shear stress gradients are evaluated as a function of the time-average Reynolds number resulting in a fourth order polynomial correlation. A comparison between numerical predictions for steady and pulsatile flow is presented, illustrating the importance of considering time-dependent flow for the evaluation of hemodynamic indicators.  相似文献   

17.
The analysis of hemodynamic parameters and functional reactivity of cerebral capillaries is still controversial. To assess the hemodynamic parameters in the cortical capillary network, a generic model was created using 2D voronoi tessellation in which each edge represents a capillary segment. This method is capable of creating an appropriate generic model of cerebral capillary network relating to each part of the brain cortex because the geometric model is able to vary the capillary density. The modeling presented here is based on morphometric parameters extracted from physiological data of the human cortex. The pertinent hemodynamic parameters were obtained by numerical simulation based on effective blood viscosity as a function of hematocrit and microvessel diameter, phase separation and plasma skimming effects. The hemodynamic parameters of capillary networks with two different densities (consistent with the variation of the morphometric data in the human cortical capillary network) were analyzed. The results show pertinent hemodynamic parameters for each model. The heterogeneity (coefficient variation) and the mean value of hematocrits, flow rates and velocities of the both network models were specified. The distributions of blood flow throughout the both models seem to confirm the hypothesis in which all capillaries in a cortical network are recruited at rest (normal condition). The results also demonstrate a discrepancy of the network resistance between two models, which are derived from the difference in the number density of capillary segments between the models.  相似文献   

18.

In continuing the investigation of AAA hemodynamics, unsteady flow-induced stresses are presented for pulsatile blood flow through the double-aneurysm model described in Part I. Physiologically realistic aortic blood flow is simulated under pulsatile conditions for the range of time-average Reynolds numbers 50 h Re m h 300. Hemodynamic disturbance is evaluated for a modified set of indicator functions which include wall pressure ( p w ), wall shear stress ( w ), Wall Shear Stress Gradient (WSSG), time-average wall shear stress ( w *), and time-average Wall Shear Stress Gradient WSSG *. At peak flow, the highest shear stress and WSSG levels are obtained at the distal end of both aneurysms, in a pattern similar to that of steady flow. The maximum values of wall shear stresses and wall shear stress gradients are evaluated as a function of the time-average Reynolds number resulting in a fourth order polynomial correlation. A comparison between numerical predictions for steady and pulsatile flow is presented, illustrating the importance of considering time-dependent flow for the evaluation of hemodynamic indicators.  相似文献   

19.
Abstract

Using a coupled Lagrangian dynamic leaflet model and an unsteady potential flow solver the motion of a polyurethane type heart valve is simulated in the aortic position. The simulations incorporate two flow domains; the first comprises only the leaflets which are embedded within an unsteady flow of infinite expanse, and the second incorporates the influence of the aortic geometry via a conformal mapping. Simulations are performed for a cardiac output of 51itres/min and a beat period of 72 b.p.m. corresponding to a typical aortic pulse. Resulting valve motions are computed for various leaflet bending stiffnesses in both flow domains. In addition both the bending stress and strain and their time rate of change are evaluated. Valve motion displays the characteristic rapid opening, stable opening and slow closing phases as detailed in the literature. The computed stress values along the leaflet surface are of the order of those found experimentally.  相似文献   

20.
Recently, it was reported that the offset of hemodynamic forces induces an unusual pattern of apoptosis in vascular endothelium (1). Although the apoptotic trigger covers all cells and is maintained for a longer time period, only few cells become apoptotic. So, in contrast to common apoptosis inducers, the lack of hemodynamic forces initiates only a low basal level of apoptosis, however steadily increases with time, this way preventing the complete vessel destruction upon an only transient offset of blood flow. The molecular means by which the mechanical stimulus and apoptosis are smoothly coupled have now been identified as an autocrine loop of thrombospondin-1 (TSP-1) and the alpha(v)beta(3) integrin/integrin-associated protein (IAP) complex as its receptor. Vascular EC (EC) secrete TSP-1 only in postconfluent static monolayers and not under flow. This also holds true for the IAP whereas the alpha(v)beta(3) integrin is present under static conditions, as well as under flow, assigning the IAP an essential and new switch function in the receptor complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号