首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Current understanding of the functional roles of individual dopamine D1-like [D1, D5] and D2-like [D2L/S, D3, D4] receptor subtypes remains incomplete. In particular, the lack of pharmacological agonists and antagonists able to distinguish between D1 and D5 receptors means that any differential roles in the regulation of behavior are poorly understood. Mutant mice with targeted gene deletion (“knockout”) of individual dopamine receptor subtypes offer an important alternative approach to resolving these functional roles. In congenic D1 mutants examined ethologically, progressive increases in specific topographies of behavior over wildtypes were considerably greater than those in D1 mutants on a mixed genetic background; D1 knockout appears to influence the neuronal substrate(s) of habituation to disrupt sculpture of the changing topography of behavior from initial exploration through to quiescence. Similarly, the D1 receptor appears to regulate specific topographies of orofacial movement in the mouse as these are “sculpted” in a time-dependent manner. Although the well-recognized role of the D1-like family in regulating several aspects of behavioral topography has been assumed to involve primarily D1 receptors, this presumption may require modification to accommodate a subtle but not negligible role for their D5 counterparts as evidenced in the phenotype of congenic D5 mutants.  相似文献   

2.
Allen AT  Maher KN  Wani KA  Betts KE  Chase DL 《Genetics》2011,188(3):579-590
Dopamine acts through two classes of G protein-coupled receptor (D1-like and D2-like) to modulate neuron activity in the brain. While subtypes of D1- and D2-like receptors are coexpressed in many neurons of the mammalian brain, it is unclear how signaling by these coexpressed receptors interacts to modulate the activity of the neuron in which they are expressed. D1- and D2-like dopamine receptors are also coexpressed in the cholinergic ventral-cord motor neurons of Caenorhabditis elegans. To begin to understand how coexpressed dopamine receptors interact to modulate neuron activity, we performed a genetic screen in C. elegans and isolated mutants defective in dopamine response. These mutants were also defective in behaviors mediated by endogenous dopamine signaling, including basal slowing and swimming-induced paralysis. We used transgene rescue experiments to show that defects in these dopamine-specific behaviors were caused by abnormal signaling in the cholinergic motor neurons. To investigate the interaction between the D1- and D2-like receptors specifically in these cholinergic motor neurons, we measured the sensitivity of dopamine-signaling mutants and transgenic animals to the acetylcholinesterase inhibitor aldicarb. We found that D2 signaling inhibited acetylcholine release from the cholinergic motor neurons while D1 signaling stimulated release from these same cells. Thus, coexpressed D1- and D2-like dopamine receptors act antagonistically in vivo to modulate acetylcholine release from the cholinergic motor neurons of C. elegans.  相似文献   

3.
The neurotransmitter dopamine plays an important role in the regulation of behavior in both vertebrates and invertebrates. In mammals, dopamine binds and activates two classes of dopamine receptors, D1-like and D2-like receptors. However, D2-like dopamine receptors in Caenorhabditis elegans have not yet been characterized. We have cloned a cDNA encoding a putative C. elegans D2-like dopamine receptor. The deduced amino acid sequence of the cloned cDNA shows higher sequence similarities to vertebrate D2-like dopamine receptors than to D1-like receptors. Two splice variants that differ in the length of their predicted third intracellular loops were identified. The receptor heterologously expressed in cultured cells showed high affinity binding to [125I]iodo-lysergic acid diethylamide. Dopamine showed the highest affinity for this receptor among several amine neurotransmitters tested. Activation of the heterologously expressed receptor led to the inhibition of cyclic AMP production, confirming that this receptor has the functional property of a D2-like receptor. We have also analyzed the expression pattern of this receptor and found that the receptor is expressed in several neurons including all the dopaminergic neurons in C. elegans.  相似文献   

4.
The sympathetic nervous system plays an important role in the regulation of blood pressure. There is increasing evidence for positive and negative interactions between dopamine and adrenergic receptors; the activation of the alpha-adrenergic receptor induces vasoconstriction, whereas the activation of dopamine receptor induces vasorelaxation. We hypothesize that the D1-like receptor and/or D3 receptor also inhibit alpha1-adrenergic receptor-mediated proliferation in vascular smooth muscle cells (VSMCs). In this study, VSMC proliferation was determined by measuring [3H]thymidine incorporation, cell number, and uptake of 3-(4,5-dimethylthiazol-2-yl)-diphenyltetrazolium bromide (MTT). Norepinephrine increased VSMC number and MTT uptake, as well as [3H]thymidine incorporation via the alpha1-adrenergic receptor in aortic VSMCs from Sprague-Dawley rats. The proliferative effects of norepinephrine were attenuated by the activation of D1-like receptors or D3 receptors, although a D1-like receptor agonist, fenoldopam, and a D3 receptor agonist, PD-128907, by themselves, at low concentrations, had no effect on VSMC proliferation. Simultaneous stimulation of both D1-like and D3 receptors had an additive inhibitory effect. The inhibitory effect of D3 receptor was via protein kinase A, whereas the D1-like receptor effect was via protein kinase C-zeta. The interaction between alpha1-adrenergic and dopamine receptors, especially D1-like and D3 receptors in VSMCs, could be involved in the pathogenesis of hypertension.  相似文献   

5.
Abstract

The sub-family of dopamine D1-like receptors is now known to be comprised of at least two members: the originally cloned D1 receptor (herein referred to as the D1a receptor) and a related receptor referred to as the D1b, D1β or D5 dopamine receptor (herein referred to as the D1b/D5 receptor). Here, we characterize the D1b/D5 receptor expressed transiently in COS-7 cells and permanently in Ltk? cells.

Transiently expressed human D1b/D5 receptors bind the D1 specific ligand [125I]SCH 23982 saturably and with high affinity (KD = 500 pM). Competition for [125I]SCH 23982 binding to rat D1b/D5 and human D1a and D1b/D5 receptors supports the contention that the two D1b/D5 receptors are species homologues. Furthermore, in COS-7 cells, as previously observed, dopamine competes for the binding of [125I]SCH 23982 to human D1b/D5 receptors with a higher affinity than that seen at the human D1a receptor. These results are similar to those seen in Ltk? cells permanently transfected with the human D1b/D5 receptor. In these cells, dopamine competition for [125I]SCH 23982 binding is complex, sensitive to guanine nucleotides and of a higher affinity than that observed for dopamine binding to the human D1a receptor expressed in these same cells. In both D1a and D1b/D5 expressing Ltk? cells, dopamine stimulates adenylyl cyclase with an EC50 of = 200 nM. Furthermore, preincubation of Ltk? cells expressing the D1a and D1b/D5 receptors with dopamine results in desensitization of the response of adenylyl cyclase to subsequent agonist stimulation.  相似文献   

6.
Mammalian D1 and D2 dopamine receptors were stably expressed in Drosophila Schneider-2 (S2) cells and screened for their pharmacological properties. Saturable, dose-dependent, high affinity binding of the D1-selective antagonist [3H]SCH-23390 was detected only in membranes from S2 cells induced to express rat dopamine D1 receptors, while saturable, dose-dependent, high affinity binding of the D2-selective antagonist [3H]methylspiperone was detected only in membranes from S2 cells induced to express rat dopamine D2 receptors. No specific binding of either radioligand could be detected in membranes isolated from uninduced or untransfected S2 cells. Both dopamine D1 and D2 receptor subtypes displayed the appropriate stereoselective binding of enantiomers of the nonselective antagonist butaclamol. Each receptor subtype also displayed the appropriate agonist stereoselectivities. The dopamine D1 receptor bound the (+)-enantiomer of the D1-selective agonist SKF38393 with higher affinity than the (-)-enantiomer, while the dopamine D2 receptor bound the (-)-enantiomer of the D2-selective agonist norpropylapomorphine with higher affinity than the (+)-enantiomer. At both receptor subtypes, dopamine binding was best characterized as occurring to a single low affinity site. In addition, the low affinity dopamine binding was also found to be insensitive to GTPgammaS and magnesium ions. Overall, the pharmacological profiles of mammalian dopamine D1 and D2 receptors expressed in Drosophila S2 cells is comparable to those observed for these same receptors when they are expressed in mammalian cell lines. A notable distinction is that there is no evidence for the coupling of insect G proteins to mammalian dopamine receptors. These results suggest that the S2 cell insect G system may provide a convenient source of pharmacologically active mammalian D1 and D2 dopamine receptors free of promiscuous G protein contaminants.  相似文献   

7.
Estrogen induces lordosis through, in part, estrogen receptor (ER)-mediated synthesis of progesterone receptors (PR) in the ventromedial nucleus (VMN). In vitro, PR is activated by the neurotransmitter dopamine through D1-like receptors (1). In vivo, lordosis is induced by dopamine, an effect mediated in part by PR and D(5) dopamine receptors. The purpose of the present study was to determine mRNA distribution of D1-like receptors in the female rat brain using RT-PCR combined with punchout microdissection techniques. Employing specific primers to D(5) and D(1) dopamine receptors, we found detectable expression levels of D(5) dopamine receptor mRNA in VMN as well as the arcuate nucleus/median eminence (ArcN/ME). In contrast, D(1) dopamine receptor mRNA was detected only in VMN. By using this highly sensitive and specific RT-PCR methodology, we have confirmed the presence of D(5) dopamine receptor mRNA in an area of the brain that regulates reproductive behavior through PR. The data support the previous observation that D(5) dopamine receptors in VMN contribute to facilitation of female reproductive behavior by D1-like agonists.  相似文献   

8.
Abstract: Although members of the multiple vertebrate/mammalian dopamine D1 receptor gene family can be selectively classified on the basis of their molecular/phylogenetic, structural, and tissue distribution profiles, no subtype-specific discriminating agents have yet been identified that can functionally differentiate these receptors. To define distinct pharmacological/functional attributes of multiple D1-like receptors, we analyzed the ligand binding profiles, affinity, and functional activity of 12 novel NNC compounds at mammalian/vertebrate D1/D1A and D5/D1B, as well as vertebrate D1C/D1D, dopamine receptors transiently expressed in COS-7 cells. Of all the compounds tested, only NNC 01-0012 displayed preferential selectivity for vertebrate D1C receptors, inhibiting [3H]SCH-23390 binding with an estimated affinity (∼0.6 n M ) 20-fold higher than either mammalian/vertebrate D1/D1A or D5/D1B receptors or the D1D receptor. Functionally, NNC 01-0012 is a potent antagonist at D1C receptors, inhibiting to basal levels dopamine (10 µ M )-stimulated adenylyl cyclase activity. In contrast, NNC 01-0012 (10 µ M ) exhibits weak antagonist activity at D1A receptors, inhibiting only 60% of maximal cyclic AMP production by dopamine, while acting as a partial agonist at vertebrate D1B and D1D receptors, stimulating adenylyl cyclase activity by ∼33% relative to the full agonist dopamine (10 µ M ), an effect that was blocked by the selective D1 receptor antagonist NNC 22-0010. These data clearly suggest that the benzazepine NNC 01-0012, despite lacking the N -methyl residue in the R3 position, is a selective and potent D1C receptor antagonist. Moreover, the differential signal transduction properties exhibited by NNC 01-0012 at these receptor subtypes provide further evidence, at least in vertebrates, for the classification of the D1C receptor as a distinct D1 receptor subtype.  相似文献   

9.
Dopamine receptors include the D1- (D1 and D5 subtypes) and D2-like (D2, D3, and D4 subtypes) families. D1-like receptors are positively and D2-like receptors negatively coupled to the adenylyl cyclase. Dopamine D2-like (D4 subtype) receptors have been identified in human and rat hearts. However the presence of D2 and D3 receptor subtypes is unclear. Furthermore, their role in cardiac functions is unknown. By autoradiographic studies of guinea pig hearts, we identified D3 and D4 receptors, using the selective radioligands [3H]-7-OH-DPAT and [3H]emonapride (YM-09151-2 plus raclopride). Western blot analysis confirmed D3 and D4 receptors in the right and left ventricle of the same species. Selective agonists of D3 and D4 receptors (+/-)-7-OH-DPAT and PD 168 077 (10(-9) to 10(-5) M, respectively) induced a significant negative chronotropic and inotropic effect in the isolated guinea pig heart preparation. Negative inotropic effect induced by PD 168 077 was associated with an inhibition in cyclase activity. No changes in cyclase activity were found with (+/-)-7-OH-DPAT. The aim of this study is to support the presence of D3 and D4 receptors in the heart. Although our results suggest that D3 and D4 receptors are functionally active in the heart, we need additional information with an antagonist and an agonist of improved potency and selectivity to understand the respective roles of D3 and D4 receptors in the cardiac functions.  相似文献   

10.
Dopamine plays an important role in the pathogenesis of hypertension by regulating epithelial sodium transport and by interacting with vasoactive hormones/humoral factors, such as aldosterone, angiotensin, catecholamines, endothelin, oxytocin, prolactin pro-opiomelancortin, reactive oxygen species, renin, and vasopressin. Dopamine receptors are classified into D(1)-like (D(1) and D(5)) and D(2)-like (D(2), D(3), and D(4)) subtypes based on their structure and pharmacology. In recent years, mice deficient in one or more of the five dopamine receptor subtypes have been generated, leading to a better understanding of the physiological role of each of the dopamine receptor subtypes. This review summarizes the results from studies of various dopamine receptor mutant mice on the role of individual dopamine receptor subtypes and their interactions with other G protein-coupled receptors in the regulation of blood pressure.  相似文献   

11.
Information concerning the cellular localization of dopamine receptor subtypes in the nucleus accumbens (NAcc) was obtained using receptor autoradiographic analysis. Unilateral, stereotaxic injection of the axon-sparing neurotoxin, quinolinic acid, into the NAcc resulted in a prominent loss of dopamine D1 receptors (as labeled by [3H]SCH 23390). Contrarily, no appreciable decrement in D2 receptors (labeled by [3H]raclopride) could be identified within the same region of the NAcc. The findings support the view that accumbens D1 receptors are located postsynaptically on neurons or their processes, while D2 receptors within this nucleus are primarily located on afferent terminals.  相似文献   

12.
Dopamine plays an important role in cellular processes controlling the functional and structural plasticity of neurons, as well as their generation and proliferation, both in the developing and the adult brain. The precise roles of individual dopamine receptors subtypes in adult neurogenesis remain poorly defined, although D3 receptors are known to be involved in neurogenesis in the subventricular zone. By contrast, very few studies have addressed the influence of dopamine and D3 receptors upon neurogenesis in the subgranular zone of the hippocampus, an issue addressed herein employing constitutive D3 receptor knockout mice, or chronic exposure to the preferential D3 receptor antagonist, S33138. D3 receptor knockout mice revealed increased baseline levels of cell proliferation and ongoing neurogenesis, as measured both using Ki‐67 and doublecortin, whereas there was no difference in cell survival as measured by BrdU (5‐bromo‐2′‐deoxyuridine). Chronic administration of S33138 was shown to be functionally active in enhancing levels of the plasticity‐related molecule, delta‐FosB, in the D3 receptor‐rich nucleus accumbens. In accordance with the stimulated neurogenesis seen in D3 receptor knockout mice, S33138 increased proliferation in wild‐type mice. These observations suggest that D3 receptors exert a tonic, constitutive inhibitory influence upon adult hippocampal neurogenesis.  相似文献   

13.
A series of indole compounds have been prepared and evaluated for affinity at D2-like dopamine receptors using stably transfected HEK cells expressing human D2, D3, or D4 dopamine receptors. These compounds share structural elements with the classical D2-like dopamine receptor antagonists, haloperidol, N-methylspiperone, and benperidol. The compounds that share structural elements with N-methylspiperone and benperidol bind non-selectively to the D2 and D3 dopamine receptor subtypes. However, several of the compounds structurally similar to haloperidol were found to (a) bind to the human D2 receptor subtype with nanomolar affinity, (b) be 10- to 100-fold selective for the human D2 receptor compared to the human D3 receptor, and (c) bind with low affinity to the human D4 dopamine receptor subtype. Binding at sigma (sigma) receptor subtypes, sigma1 and sigma2, were also examined and it was found that the position of the methoxy group on the indole was pivotal in both (a) D2 versus D3 receptor selectivity and (b) affinity at sigma1 receptors. Adenylyl cyclase studies indicate that our indole compounds with the greatest D2 receptor selectivity are neutral antagonists at human D2 dopamine receptor subtypes. With stably transfected HEK cells expressing human D2 (hD2-HEK), these compounds (a) have no intrinsic activity and (b) attenuated quinpirole inhibition of adenylyl cyclase. The D2 receptor selective compounds that have been identified represent unique pharmacological tools that have potential for use in studies on the relative contribution of the D2 dopamine receptor subtypes in physiological and behavioral situations where D2-like dopaminergic receptor involvement is indicated.  相似文献   

14.
Behavioral sensitization to psychostimulants manifests as an increased locomotor response with repeated administration. Dopamine systems are accepted to play a fundamental role in sensitization, but the role of specific dopamine receptor subtypes has not been completely defined. This study used the combination of dopamine D2 receptor-deficient mice and a D1-like antagonist to examine dopamine D1 and D2 receptor involvement in acute and sensitized locomotor responses to methamphetamine. Absence of the dopamine D2 receptor resulted in attenuation of the acute stimulant effects of methamphetamine. Mutant and wild-type mice exhibited sensitization that lasted longer within the time period of the challenge test in the mutant animals. Pretreatment with the D1-like receptor antagonist SCH 23390 produced more potent reductions in the acute and sensitized locomotor responses to methamphetamine in D2 receptor-deficient mice than in wild-type mice; however, the expression of locomotor sensitization when challenged with methamphetamine alone was equivalently attenuated by previous treatment with SCH 23390. These data suggest that dopamine D2 receptors play a key role in the acute stimulant and sensitizing effects of methamphetamine and act in concert with D1-like receptors to influence the acquisition of methamphetamine-induced behavioral sensitization, traits that may influence continued methamphetamine use.  相似文献   

15.
The effect of tyrosine-alkylating agents on the ligand-binding properties of bovine striatal dopamine D1 and D2 receptors was investigated. The tyrosine-alkylating agents, p-nitrobenzenesulphonylfluoride (pNBSF) and tetranitromethane (TNM) caused a time-and dose-dependent loss of the binding of [3H]SCH-23390 and [3H]spiroperidol, ligands specific for dopamine D1 and D2 receptors, respectively. The two dopamine receptors, however, showed a differential sensitivity to inactivation by these agents. The mechanism of inhibition of the two receptors appears to be complex as treatment of membranes with pNBSF and TNM resulted in a decrease of both the Kd and the Bmax of ligand binding. Spiroperidol almost completely protected the TNM-induced inhibition of [3H]spiroperidol binding to dopamine D2 receptors whereas SCH-23390 afforded only partial protection of the [3H]SCH-23390 binding by TNM suggesting that more than one tyrosine groups may be involved in the D1 receptor binding activity.  相似文献   

16.
We have directly observed the effects of activating presynaptic D1-like and D2-like dopamine receptors on Ca2+ levels in isolated nerve terminals (synaptosomes) from rat striatum. R-(+)-SKF81297, a selective D1-like receptor agonist, and (-)-quinpirole, a selective D2-like receptor agonist, induced increases in Ca2+ levels in different subsets of individual striatal synaptosomes. The SKF81297- and quinpirole-induced effects were blocked by R-(+)-SCH23390, a D1-like receptor antagonist, and (-)-sulpiride, a D2-like receptor antagonist, respectively. SKF81297- or quinpirole-induced Ca2+ increases were inhibited following blockade of voltage-gated calcium channels or sodium channels. In a larger subset of synaptosomes, quinpirole decreased baseline Ca2+. Quinpirole also inhibited veratridine-induced increases in intrasynaptosomal Ca2+ level. Immunostaining confirmed the presynaptic expression of D1, D5, D2 and D3 receptors, but not D4 receptors. The array of neurotransmitter phenotypes of the striatal nerve endings expressing D1, D5, D2 or D3 varied for each receptor subtype. These results suggest that presynaptic D1-like and D2-like receptors induce increases in Ca2+ levels in different subsets of nerve terminals via Na+ channel-mediated membrane depolarization, which, in turn, induces the opening of voltage-gated calcium channels. D2-like receptors also reduce nerve terminal Ca2+ in a different but larger subset of synaptosomes, consistent with the predominant presynaptic action of dopamine in the striatum being inhibitory.  相似文献   

17.
Abstract: NNC 01-0012, a second-generation benzazepine compound, pharmacologically differentiates multiple vertebrate D1 receptor subtypes (D1A, D1B, D1C, and D1D) and displays high selectivity and affinity for dopamine D1C receptors. Functionally, whereas NNC 01-0012 acts as a full or poor antagonist at D1C and D1A receptor-mediated cyclic AMP production, respectively, it exhibits partial agonist activity at the D1B receptor. To define some of the structural motifs that regulate the pharmacological and functional differentiation of vertebrate dopamine D1 receptors by NNC 01-0012, a series of receptor chimeras were constructed in which the divergent carboxyl-terminal (CT) receptor tails were replaced with the corresponding sequences of D1A, D1B, or D1C receptors. Substitution of the vertebrate D1B carboxyl-terminal-tail at position Tyr345 with carboxyl-terminal-tail sequences of the D1A receptor abolished the partial agonist activity of NNC 01-0012 without affecting dopamine-stimulated cyclic AMP accumulation. At vertebrate D1B/D1Cct -tail receptor mutants, however, the intrinsic activity of the partial agonist NNC 01-0012 (10 µM) was markedly enhanced (~60% relative to 10 µM dopamine) with no concomitant alteration in the molecule's ligand binding affinity or constitutive activity of the chimeric receptor. Similar results were obtained with other benzazepines such as SKF-38393 and SCH-23390, which act as partial agonists at vertebrate D1B receptors. Substitution of D1A and D1C receptor carboxyl-terminal tails with sequences encoded by the D1B receptor carboxyl-terminal tail did not, however, produce receptors with functional characteristics significantly different from wild type. Taken together, these data clearly suggest that in addition to well-characterized domains and amino acid residues in the third cytoplasmic loop, partial agonist activity at the D1B receptor is modulated by sequence-specific motifs within the carboxyl-terminal tail, a region that may underlie the possible structural basis for functionally divergent roles of multiple dopamine D1-like receptors.  相似文献   

18.
Wang M  Lee FJ  Liu F 《Molecules and cells》2008,25(2):149-157
Dopamine is a major neurotransmitter in the mammalian central nervous system (CNS) that regulates neuroendocrine functions, locomotor activity, cognition and emotion. The dopamine system has been extensively studied because dysfunction of this system is linked to various pathological conditions including Parkinson's disease, schizophrenia, Tourette's syndrome, and drug addiction. Accordingly, intense efforts to delineate the full complement of signaling pathways mediated by individual receptor subtypes have been pursued. Dopamine D1-like receptors are of particular interest because they are the most abundant dopamine receptors in CNS. Recent work suggests that dopamine signaling could be regulated via dopamine receptor interacting proteins (DRIPs). Unraveling these DRIPs involved in the dopamine system may provide a better understanding of the mechanisms underlying CNS disorders related to dopamine system dysfunction and may help identify novel therapeutic targets.  相似文献   

19.
Abstract: Previous studies have suggested that activation of D2-like dopamine receptors inhibits catecholamine secretion from adrenal chromaffin cells. The purpose of this study was to determine whether the activation of D1-like receptors on chromaffin cells affects either catecholamine release from the cells or the inhibition of secretion by D2-like dopamine receptors. Both D1- and D2-selective agonists inhibited secretion elicited by dimethylphenylpiperazinium (DMPP), veratridine, and high K+ levels. The D1-selective agonists 6-chloro-7,8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (Cl-APB) and SKF-38393 inhibited DMPP-stimulated catecholamine secretion in a concentration-dependent manner; 50% inhibition was obtained with ~10 µM Cl-APB and ~100 µM SKF-38393. Of the D2-selective agonists, bromocriptine was a more potent inhibitor of DMPP-stimulated catecholamine release than was quinpirole. The inhibition of secretion caused by Cl-APB or SKF-38393 was additive with the inhibition caused by bromocriptine. Pertussis toxin treatment (50 ng/ml, 18 h) attenuated the inhibitory effect of D2-selective, but not D1-selective, dopamine agonists. In addition, forskolin-stimulated adenylyl cyclase activity was inhibited by D2-selective, but not D1-selective, agonists. Neither D1- nor D2-selective agonists stimulated adenylyl cyclase activity in the cells, although cyclase activity was stimulated by forskolin, carbachol, and vasoactive intestinal peptide. DMPP-stimulated Ca2+ uptake was inhibited by both D1- and D2-selective dopamine agonists. PCR analysis was used to determine which of the dopamine receptor subtypes within the D1-like and D2-like subfamilies was responsible for the observed inhibition. PCR analysis indicated that mRNA for only D4 and D5 dopamine receptor subtypes was present in chromaffin cells. These combined data suggest that D1- and D2-selective agonists inhibit Ca2+ uptake and catecholamine secretion by activating D4 and D5 dopamine receptors on chromaffin cells.  相似文献   

20.
A series of novel 1H-pyrazolo-[3,4-c]cyclophepta[1,2-c]thiophenes was prepared and screened at selected dopamine receptor subtypes. Compound 4 (NGB 4420) displayed high affinity and selectivity (>100-fold) for the D(4) over D(2) and other CNS receptors. This compound was identified as a D(4) antagonist via its attenuation of dopamine agonist-induced GTPgamma(35)S binding at D(4) receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号