首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shade avoidance is a syndrome of plastic responses to light signals encountered in crowded plant communities and is a crucial component of competitive strategy in higher plants. The responses are mediated via signal perception by specific members of the phytochrome family of photoreceptors, which detect the relative proportions of red (R) and far‐red (FR) radiation within dense communities. We analysed two aspects of shade avoidance, the acceleration of flowering and the enhancement of elongation growth, displayed by more than 100 accessions of Arabidopsis thaliana (Heyn.) in response to FR‐proximity signals. Both traits showed wide variation between accessions, which was unrelated to the latitude of the location of original collection. Flowering acceleration is a major feature of shade avoidance in rosette plants such as Arabidopsis, and most accessions showed dramatic responses, but several were identified as being recalcitrant to the proximity signal. These accessions are likely to be informative in the analysis of quantitative variation in shade avoidance. Hypocotyl elongation, treated here as an indicator of elongation growth responses, also varied widely amongst accessions. The variations in flowering acceleration and elongation were not correlated, indicating that microevolution in the downstream pathways from signal perception has occurred separately.  相似文献   

2.
3.
Loss of a blue-light photoreceptor in the hy4 mutants of Arabidopsis thaliana (L.) Heynh substantially delayed flowering (>100 d to flower vs. 40–50 d), especially with blue light exposure from lamps lacking much red (R) and/or far-red (FR) light. Red night breaks were promotory but flowering was still later for the hy4-101 mutant. However, with exposure to light from FR-rich lamps, flowering of all mutants was early and no different from the wild type. Thus, flowering of Arabidopsis involves a blue-light photoreceptor and other, often more effective photoreceptors. The latter may involve phytochrome photoresponses to R and FR, but with little or no phytochrome response to blue wavelengths.Abbreviations HIR high irradiance response - FR far-red - R red - WT wild type  相似文献   

4.
Shade avoidance in higher plants is regulated by the action of multiple phytochrome (phy) species that detect changes in the red/far-red ratio (R/FR) of incident light and initiate a redirection of growth and an acceleration of flowering. The phyB mutant of Arabidopsis is constitutively elongated and early flowering and displays attenuated responses to both reduced R/FR and end-of-day far-red light, conditions that induce strong shade-avoidance reactions in wild-type plants. This indicates that phyB plays an important role in the control of shade avoidance. In Arabidopsis phyB and phyD are the products of a recently duplicated gene and share approximately 80% identity. We investigated the role played by phyD in shade avoidance by analyzing the responses of phyD-deficient mutants. Compared with the monogenic phyB mutant, the phyB-phyD double mutant flowers early and has a smaller leaf area, phenotypes that are characteristic of shade avoidance. Furthermore, compared with the monogenic phyB mutant, the phyB-phyD double mutant shows a more attenuated response to a reduced R/FR for these responses. Compared with the phyA-phyB double mutant, the phyA-phyB-phyD triple mutant has elongated petioles and displays an enhanced elongation of internodes in response to end-of-day far-red light. These characteristics indicate that phyD acts in the shade-avoidance syndrome by controlling flowering time and leaf area and that phyC and/or phyE also play a role.  相似文献   

5.
Plants detect the presence of neighbouring vegetation by monitoring changes in the ratio of red (R) to far‐red (FR) wavelengths (R:FR) in ambient light. Reductions in R:FR are perceived by the phytochrome family of plant photoreceptors and initiate a suite of developmental responses termed the shade avoidance syndrome. These include increased elongation growth of stems and petioles, enabling plants to overtop competing vegetation. The majority of shade avoidance experiments are performed at standard laboratory growing temperatures (>20°C). In these conditions, elongation responses to low R:FR are often accompanied by reductions in leaf development and accumulation of plant biomass. Here we investigated shade avoidance responses at a cooler temperature (16°C). In these conditions, Arabidopsis thaliana displays considerable low R:FR‐mediated increases in leaf area, with reduced low R:FR‐mediated petiole elongation and leaf hyponasty responses. In Landsberg erecta, these strikingly different shade avoidance phenotypes are accompanied by increased leaf thickness, increased biomass and an altered metabolite profile. At 16°C, low R:FR treatment results in the accumulation of soluble sugars and metabolites associated with cold acclimation. Analyses of natural genetic variation in shade avoidance responses at 16°C have revealed a regulatory role for the receptor‐like kinase ERECTA.  相似文献   

6.
Photoperiodic lighting can promote flowering of long‐day plants (LDPs) and inhibit flowering of short‐day plants (SDPs). Red (R) and far‐red (FR) light regulate flowering through phytochromes, whereas blue light does so primarily through cryptochromes. In contrast, the role of green light in photoperiodic regulation of flowering has been inconsistent in previous studies. We grew four LDP species (two petunia cultivars, ageratum, snapdragon and Arabidopsis) and two SDP species (three chrysanthemum cultivars and marigold) in a greenhouse under truncated 9‐h short days with or without 7‐h day‐extension lighting from green light (peak = 521 nm) at 0, 2, 13 or 25 μmol m?2 s?1 or R + white (W) + FR light at 2 μmol m?2 s?1. Increasing the green photon flux density from 0 to 25 μmol m?2 s?1 accelerated flowering of all LDPs and delayed flowering of all SDPs. Petunia flowered similarly fast under R + W + FR light and moderate green light but was shorter and developed more branches under green light. To be as effective as R + W + FR light, saturation green photon flux densities were 2 μmol m?2 s?1 for LDP ageratum and SDP marigold and 13 μmol m?2 s?1 for LDP petunia. Snapdragon was the least sensitive to green light. In Arabidopsis, cryptochrome 2 mediated promotion of flowering under moderate green light, whereas both phytochrome B and cryptochrome 2 mediated that under R + W + FR light. We conclude that 7‐h day‐extension lighting from green light‐emitting diodes can control flowering of photoperiodic ornamentals and that in Arabidopsis, cryptochrome 2 mediates promotion of flowering under green light.  相似文献   

7.
8.
9.
We investigated the response to increasing intensity of red (R) and far‐R (FR) light and to a decrease in R:FR ratio in Pinus sylvestris L. (Scots pine) seedling. The results showed that FR high‐irradiance response for hypocotyl elongation may be present in Scots pine and that this response is enhanced by increasing light intensity. However, both hypocotyl inhibition and pigment accumulation were more strongly affected by the R light compared with FR light. This is in contrast to previous reports in Arabidopsis thaliana (L.) Heynh. In the angiosperm, A. thaliana R light shows an overall milder effect on inhibition of hypocotyl elongation and on pigment biosynthesis compared with FR suggesting conifers and angiosperms respond very differently to the different light regimes. Scots pine shade avoidance syndrome with longer hypocotyls, shorter cotyledons and lower chlorophyll content in response to shade conditions resembles the response observed in A. thaliana. However, anthocyanin accumulation increased with shade in Scots pine, which again differs from what is known in angiosperms. Overall, the response of seedling development and physiology to R and FR light in Scots pine indicates that the regulatory mechanism for light response may differ between gymnosperms and angiosperms.  相似文献   

10.
Sessile plants must continuously adjust their growth and development to optimize photosynthetic activity under ever-fluctuating light conditions. Among such light responses in plants, one of the best-characterized events is the so-called shade avoidance, for which a low ratio of the red (R):far-red (FR) light intensities is the most prominent stimulus. Such shade avoidance responses enable plants to overtop their neighbors, thereby enhancing fitness and competitiveness in their natural habitat. Considerable progress has been achieved during the last decade in understanding the molecular mechanisms underlying the shade avoidance responses in the model rosette plant, Arabidopsis thaliana. We characterize here the fundamental aspects of the shade avoidance responses in the model legume, Lotus japonicus, based on the fact that its phyllotaxis (or morphological architecture) is quite different from that of A. thaliana. It was found that L. japonicus displays the characteristic shade avoidance syndrome (SAS) under defined laboratory conditions (a low R:FR ratio, low light intensity, and low blue light intensity) that mimic the natural canopy. In particular, the outgrowth of axillary buds (i.e., both aerial and cotyledonary shoot branching) was severely inhibited in L. japonicus grown in the shade. These results are discussed with special emphasis on the unique aspects of SAS observed with this legume.  相似文献   

11.
Flowering in Arabidopsis is accelerated by a reduced ratio of red light to far-red light (R/FR), which indicates the proximity of competitive vegetation. By exploiting the natural genetic variation in flowering time responses to low R/FR, we obtained further insight into the complex pathways that fine-tune the transition to flowering in Arabidopsis. The Bla-6 ecotype does not flower significantly earlier in response to low R/FR, but is still able to display other features of shade avoidance, suggesting branching of low R/FR signalling. Here we show that the muted flowering response of Bla-6 is due to high levels of the floral repressor FLOWERING LOCUS C (FLC), conferred by a combination of functional FLC and FRIGIDA ( FRI ) alleles with a 'weak' FY allele. The Bla-6 FY allele encodes a protein with a corrupted WW binding domain, and we provide evidence that this locus plays a key role in the natural variation in light quality-induced flowering in Arabidopsis. In Bla-6, FLC blocks promotion to flowering by reduced R/FR by inhibiting expression of the floral integrator FLOWERING LOCUS T ( FT ) in a dose-dependent manner. Reduction of FLC removes this obstruction, and Bla6 plants then exhibit strong induction of FT and flower early in response to a low R/FR signal. This paper illustrates the intricate interaction of environmental signals and genetic factors to regulate flowering in Arabidopsis.  相似文献   

12.
The expression of the Arabidopsis ATHB-2 gene is light-regulated both in seedlings and in adult plants. The gene is expressed at high levels in rapidly elongating etiolated seedlings and is down-regulated by a pulse of red light (R) through the action of a phytochrome other than phytochrome A or B, or by a pulse of far-red light (FR) through the action of phytochrome A. In green plants, the expression of the ATHB-2 gene is rapidly and strongly enhanced by lowering the R:FR ratio perceived by a phytochrome other than A or B. Returning the plant to a high R:FR ratio results in an equally rapid decrease of the ATHB-2 mRNA. Consistently, plants overproducing ATHB-2 show developmental phenotypes characteristic of plants grown in low R:FR: elongated petioles, reduced leaf area, early flowering, and reduced number of rosette leaves. Taken together, the data strongly suggest a direct involvement of ATHB-2 in light-regulated growth phenomena throughout Arabidopsis development.  相似文献   

13.
Early shade signals promote the shade avoidance syndrome (SAS) which causes, among others, petiole and shoot elongation and upward leaf position. In spite of its relevance, these photomorphogenic responses have not been deeply studied in rapeseed (Brassica napus). In contrast to other crops like maize and wheat, rapeseed has a complex developmental phenotypic pattern as it evolves from an initial rosette to the main stem elongation and an indeterminate growth of floral raceme. In this work, we analyzed (1) morphological and physiological responses at individual level due to low red/far‐red (R/FR) ratio during plant development, and (2) changes in biomass allocation, grain yield and composition at crop level in response to high R/FR ratio and low irradiance in two modern spring rapeseed genotypes. We carried out pot and field experiments modifying R/FR ratios and irradiance at vegetative or reproductive stages. In pot experiments, low R/FR ratio increased the petiole and lamina length, upward leaf position and also accelerated leaf senescence. Furthermore, low R/FR ratio reduced main floral raceme and increased floral branching with higher remobilization of soluble carbohydrates from the stems. In field experiments, low irradiance during post‐flowering reduced grain yield, harvest index and grain oil content, and high R/FR ratio reaching the crop partially alleviated such effects. We conclude that photomorphogenic signals are integrated early during the vegetative growth, and irradiance has stronger effects than R/FR signals at rapeseed crop level.  相似文献   

14.
15.
Plants compete for photosynthesis light and induce a shade avoidance syndrome (SAS) that confers an important advantage in asymmetric competition for light at high canopy densities. Shade plasticity was studied in a greenhouse experiment cultivating Arabidopsis thaliana plants from 15 populations spread across an altitudinal gradient in the northeast area of Spain that contain a high genetic variation into a reduced geographical range. Plants were exposed to sunlight or simulated shade to identify the range of shade plasticity. Fourteen vegetative, flowering and reproductive traits were measured throughout the life cycle. Shade plasticity in flowering time and dry mass was significantly associated with the altitude of population origin. Plants from coastal populations showed higher shade plasticity indexes than those from mountains. The altitudinal variation in flowering leaf plasticity adjusted negatively with average and minimum temperatures, whereas dry mass plasticity was better explained by negative regressions with the average, maximum and minimum temperatures, and by a positive regression with average precipitation of the population origin. The lack of an altitudinal gradient for the widest number of traits suggests that shade light could be a driver explaining the distribution pattern of individuals in smaller geographical scales than those explored here.  相似文献   

16.
Shade‐avoider plants typically respond to shade‐light signals by increasing the rate of stem growth. CONSTITTUTIVE PHOTOMORPHOGENESIS 1 (COP1) is an E3 ligase involved in the ubiquitin labelling of proteins targeted for degradation. In dark‐grown seedlings, COP1 accumulates in the nucleus and light exposure causes COP1 migration to the cytosol. Here, we show that in Arabidopsis thaliana, COP1 accumulates in the nucleus under natural or simulated shade, despite the presence of far‐red light. In plants grown under white light, the transfer to shade‐light conditions triggers an unexpectedly rapid re‐accumulation of COP1 in the nucleus. The partial simulation of shade by lowering either blue or red light levels (maintaining far‐red light) caused COP1 nuclear re‐accumulation. Hypocotyl growth of wild‐type seedlings is more sensitive to afternoon shade than to morning shade. A residual response to shade was observed in the cop1 mutant background, but these seedlings showed inverted sensitivity as they responded to morning shade and not to afternoon shade. COP1 overexpression exaggerated the wild‐type pattern by enhancing afternoon sensitivity and making morning shade inhibitory of growth. COP1 nuclear re‐accumulation also responded more strongly to afternoon shade than to morning shade. These results are consistent with a signalling role of COP1 in shade avoidance. We propose a function of COP1 in setting the daily patterns of sensitivity to shade in the fluctuating light environments of plant canopies.  相似文献   

17.
18.
Shade avoidance in plants involves rapid shoot elongation to grow toward the light. Cell wall-modifying mechanisms are vital regulatory points for control of these elongation responses. Two protein families involved in cell wall modification are expansins and xyloglucan endotransglucosylase/hydrolases. We used an alpine and a prairie ecotype of Stellaria longipes differing in their response to shade to study the regulation of cell wall extensibility in response to low red to far-red ratio (R/FR), an early neighbor detection signal, and dense canopy shade (green shade: low R/FR, blue, and total light intensity). Alpine plants were nonresponsive to low R/FR, while prairie plants elongated rapidly. These responses reflect adaptation to the dense vegetation of the prairie habitat, unlike the alpine plants, which almost never encounter shade. Under green shade, both ecotypes rapidly elongate, showing that alpine plants can react only to a deep shade treatment. Xyloglucan endotransglucosylase/hydrolase activity was strongly regulated by green shade and low blue light conditions but not by low R/FR. Expansin activity, expressed as acid-induced extension, correlated with growth responses to all light changes. Expansin genes cloned from the internodes of the two ecotypes showed differential regulation in response to the light manipulations. This regulation was ecotype and light signal specific and correlated with the growth responses. Our results imply that elongation responses to shade require the regulation of cell wall extensibility via the control of expansin gene expression. Ecotypic differences demonstrate how responses to environmental stimuli are differently regulated to survive a particular habitat.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号