首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Litter inputs can influence soil respiration directly through labile C availability and, indirectly, through the activity of soil microorganisms and modifications in soil microclimate; however, their relative contributions and the magnitude of any effect remain poorly understood. We synthesized 66 recently published papers on forest ecosystems using a meta‐analysis approach to investigate the effect of litter inputs on soil respiration and the underlying mechanisms involved. Our results showed that litter inputs had a strong positive impact on soil respiration, labile C availability, and the abundance of soil microorganisms, with less of an impact related to soil moisture and temperature. Overall, soil respiration was increased by 36% and 55%, respectively, in response to natural and doubled litter inputs. The increase in soil respiration induced by litter inputs showed a tendency for coniferous forests (50.7%)> broad‐leaved forests (41.3%)> mixed forests (31.9%). This stimulation effect also depended on stand age with 30‐ to 100‐year‐old forests (53.3%) and ≥100‐year‐old forests (50.2%) both 1.5 times larger than ≤30‐year‐old forests (34.5%). Soil microbial biomass carbon and soil dissolved organic carbon increased by 21.0%‐33.6% and 60.3%‐87.7%, respectively, in response to natural and doubled litter inputs, while soil respiration increased linearly with corresponding increases in soil microbial biomass carbon and soil dissolved organic carbon. Natural and doubled litter inputs increased the total phospholipid fatty acid (PLFA) content by 6.6% and 19.7%, respectively, but decreased the fungal/bacterial PLFA ratio by 26.9% and 18.7%, respectively. Soil respiration also increased linearly with increases in total PLFA and decreased linearly with decreases in the fungal/bacterial PLFA ratio. The contribution of litter inputs to an increase in soil respiration showed a trend of total PLFA > fungal/bacterial PLFA ratio > soil dissolved organic carbon > soil microbial biomass carbon. Therefore, in addition to forest type and stand age, labile C availability and soil microorganisms are also important factors that influence soil respiration in response to litter inputs, with soil microorganisms being more important than labile C availability.  相似文献   

2.
Abstract: Both species and community‐level investigations are important for understanding the biotic impacts of climate change, because current evidence suggests that individual species responses are idiosyncratic. However, few studies of climate change impacts have been conducted on entire terrestrial arthropod communities living in the same habitat in the southern Hemisphere, and the effects of precipitation changes on them are particularly poorly understood. Here we investigate the species‐ and community‐level responses of microarthropods inhabiting a keystone plant species, on sub‐Antarctic Marion Island, to experimental reduction in precipitation, warming and shading. These climate manipulations were chosen based on observed climate trends and predicted indirect climate change impacts on this system. The dry‐warm and shade inducing treatments that were imposed effected significant species‐ and community‐level responses after a single year. Although the strongest community‐level trends included a dramatic decline in springtail abundance and total biomass under the dry‐warm and shade treatments, species responses were generally individualistic, that is, springtails responded differently to mites, and particular mite and springtail species responded differently to each other. Our results therefore provide additional support for the dynamic rather than static model for community responses to climate change, in the first such experiment in the sub‐Antarctic. In conclusion, these results show that an ongoing decline in precipitation and increase in temperature is likely to have dramatic direct and indirect effects on this microarthropod community. Moreover, they indicate that while at a broad scale it may be possible to make generalizations regarding species responses to climate change, these generalizations are unlikely to translate into predictable effects at the community level.  相似文献   

3.
A future higher risk of severe flooding of streams and rivers has been projected to change riparian plant community composition and species richness, but the extent and direction of the expected change remain uncertain. We conducted a meta‐analysis to synthesize globally available experimental evidence and assess the effects of increased flooding on (1) riparian adult plant and seedling survival, (2) riparian plant biomass and (3) riparian plant species composition and richness. We evaluated which plant traits are of key importance for the response of riparian plant species to flooding. We identified and analysed 53 papers from ISI Web of Knowledge which presented quantitative experimental results on flooding treatments and corresponding control situations. Our meta‐analysis demonstrated how longer duration of flooding, greater depth of flooding and, particularly, their combination reduce seedling survival of most riparian species. Plant height above water level, ability to elongate shoots and plasticity in root porosity were decisive for adult plant survival and growth during longer periods of flooding. Both ‘quiescence’ and ‘escape’ proved to be successful strategies promoting riparian plant survival, which was reflected in the wide variation in survival (full range between 0 and 100%) under fully submerged conditions, while plants that protrude above the water level (>20 cm) almost all survive. Our survey confirmed that the projected increase in the duration and depth of flooding periods is sufficient to result in species shifts. These shifts may lead to increased or decreased riparian species richness depending on the nutrient, climatic and hydrological status of the catchment. Species richness was generally reduced at flooded sites in nutrient‐rich catchments and sites that previously experienced relatively stable hydrographs (e.g. rain‐fed lowland streams). Species richness usually increased at sites in desert and semi‐arid climate regions (e.g. intermittent streams).  相似文献   

4.
Anthropogenic activities have increased nitrogen (N) deposition by threefold to fivefold over the last century, which may considerably affect soil respiration (Rs). Although numerous individual studies and a few meta‐analyses have been conducted, it remains controversial as to how N addition affects Rs and its components [i.e., autotrophic (Ra) and heterotrophic respiration (Rh)]. To reconcile the difference, we conducted a comprehensive meta‐analysis of 295 published studies to examine the responses of Rs and its components to N addition in terrestrial ecosystems. We also assessed variations in their responses in relation to ecosystem types, environmental conditions, and experimental duration (DUR). Our results show that N addition significantly increased Rs by 2.0% across all biomes but decreased by 1.44% in forests and increased by 7.84% and 12.4% in grasslands and croplands, respectively (P < 0.05). The differences may largely result from diverse responses of Ra to N addition among biomes with more stimulation of Ra in croplands and grasslands compared with no significant change in forests. Rh exhibited a similar negative response to N addition among biomes except that in croplands, tropical and boreal forests. Methods of partitioning Rs did not induce significant differences in the responses of Ra or Rh to N addition, except that Ra from root exclusion and component integration methods exhibited the opposite responses in temperate forests. The response ratios (RR) of Rs to N addition were positively correlated with mean annual temperature (MAT), with being more significant when MAT was less than 15 °C, but negatively with DUR. In addition, the responses of Rs and its components to N addition largely resulted from the changes in root and microbial biomass and soil C content as indicated by correlation analysis. The response patterns of Rs to N addition as revealed in this study can be benchmarks for future modeling and experimental studies.  相似文献   

5.
Fire is widely used for conservation management in the savannah landscapes of northern Australia, yet there is considerable uncertainty over the ecological effects of different fire regimes. The responses of insects and other arthropods to fire are especially poorly known, despite their dominant roles in the functioning of savannah ecosystems. Fire often appears to have little long‐term effect on ordinal‐level abundance of arthropods in temperate woodlands and open forests of southern Australia, and this paper addresses the extent to which such ordinal‐level resilience also occurs in Australia’s tropical savannahs. The data are from a multidisciplinary, landscape‐scale fire experiment at Kapalga in Kakadu National Park. Arthropods were sampled in the two major savannah habitats (woodland and open forest) using pitfall traps and sweep nets, in 15–20 km2 compartments subjected to one of three fire regimes, each with three replicates: ‘early’ (annual fires lit early in the dry season), ‘late’ (annual fires lit late in the dry season), and ‘unburnt’ (fires absent during the five‐year experimental period 1990–94). Floristic cover, richness and composition were also measured in each sampling plot, using point quadrats. There were substantial habitat differences in floristic composition, but fire had no measured effect on plant richness, overall composition, or cover of three of the four dominant species. Of the 11 ordinal arthropod taxa considered from pitfall traps, only four were significantly affected by fire according to repeated‐measures ANOVA . There was a marked reduction in ant abundance in the absence of fire, and declines in spiders, homopterans and silverfish under late fires. Similarly, the abundances of only four of the 10 ordinal taxa from sweep catches were affected by fire, with crickets and beetles declining in the absence of fire, and caterpillars declining under late fires. Therefore, most of the ordinal taxa from the ground and grass‐layer were unaffected by the fire treatments, despite the treatments representing the most extreme fire regimes possible in the region. This indicates that the considerable ordinal‐level resilience to fire of arthropod assemblages that has previously been demonstrated in temperate woodlands and open forests of southern Australia, also occurs in tropical savannah woodlands and open forests of northern Australia.  相似文献   

6.
Extracellular enzymes catalyze rate‐limiting steps in soil organic matter decomposition, and their activities (EEAs) play a key role in determining soil respiration (SR). Both EEAs and SR are highly sensitive to temperature, but their responses to climate warming remain poorly understood. Here, we present a meta‐analysis on the response of soil cellulase and ligninase activities and SR to warming, synthesizing data from 56 studies. We found that warming significantly enhanced ligninase activity by 21.4% but had no effect on cellulase activity. Increases in ligninase activity were positively correlated with changes in SR, while no such relationship was found for cellulase. The warming response of ligninase activity was more closely related to the responses of SR than a wide range of environmental and experimental methodological factors. Furthermore, warming effects on ligninase activity increased with experiment duration. These results suggest that soil microorganisms sustain long‐term increases in SR with warming by gradually increasing the degradation of the recalcitrant carbon pool.  相似文献   

7.
The importance of herbivore–plant and soil biota–plant interactions in terrestrial ecosystems is amply recognized, but the effects of aboveground herbivores on soil biota remain challenging to predict. To find global patterns in belowground responses to vertebrate herbivores, we performed a meta‐analysis of studies that had measured abundance or activity of soil organisms inside and outside field exclosures (areas that excluded herbivores). Responses were often controlled by climate, ecosystem type, and dominant herbivore identity. Soil microfauna and especially root‐feeding nematodes were negatively affected by herbivores in subarctic sites. In arid ecosystems, herbivore presence tended to reduce microbial biomass and nitrogen mineralization. Herbivores decreased soil respiration in subarctic ecosystems and increased it in temperate ecosystems, but had no net effect on microbial biomass or nitrogen mineralization in those ecosystems. Responses of soil fauna, microbial biomass, and nitrogen mineralization shifted from neutral to negative with increasing herbivore body size. Responses of animal decomposers tended to switch from negative to positive with increasing precipitation, but also differed among taxa, for instance Oribatida responded negatively to herbivores, whereas Collembola did not. Our findings imply that losses and gains of aboveground herbivores will interact with climate and land use changes, inducing functional shifts in soil communities. To conceptualize the mechanisms behind our findings and link them with previous theoretical frameworks, we propose two complementary approaches to predict soil biological responses to vertebrate herbivores, one focused on an herbivore body size gradient, and the other on a climate severity gradient. Major research gaps were revealed, with tropical biomes, protists, and soil macrofauna being especially overlooked.  相似文献   

8.
Climate‐smart agriculture (CSA) management practices (e.g., conservation tillage, cover crops, and biochar applications) have been widely adopted to enhance soil organic carbon (SOC) sequestration and to reduce greenhouse gas emissions while ensuring crop productivity. However, current measurements regarding the influences of CSA management practices on SOC sequestration diverge widely, making it difficult to derive conclusions about individual and combined CSA management effects and bringing large uncertainties in quantifying the potential of the agricultural sector to mitigate climate change. We conducted a meta‐analysis of 3,049 paired measurements from 417 peer‐reviewed articles to examine the effects of three common CSA management practices on SOC sequestration as well as the environmental controlling factors. We found that, on average, biochar applications represented the most effective approach for increasing SOC content (39%), followed by cover crops (6%) and conservation tillage (5%). Further analysis suggested that the effects of CSA management practices were more pronounced in areas with relatively warmer climates or lower nitrogen fertilizer inputs. Our meta‐analysis demonstrated that, through adopting CSA practices, cropland could be an improved carbon sink. We also highlight the importance of considering local environmental factors (e.g., climate and soil conditions and their combination with other management practices) in identifying appropriate CSA practices for mitigating greenhouse gas emissions while ensuring crop productivity.  相似文献   

9.
Atmospheric nitrogen (N) deposition greatly affects ecosystem processes and properties. However, few studies have simultaneously examined the responses of both the above- and belowground communities to N deposition. Here, we investigated the effects of 8 years of simulated N deposition on soil microbial communities and plant diversity in a subtropical forest. The quantities of experimental N added (g of N m−2 year−1) and treatment codes were 0 (N0, control), 6 (N1), 12 (N2), and 24 (N3). Phospholipid fatty acids (PLFAs) analysis was used to characterize the soil microbial community while plant diversity and coverage were determined in the permanent field plots. Microbial abundance was reduced by the N3 treatment, and plant species richness and coverage were reduced by both N2 and N3 treatments. Declines in plant species richness were associated with decreased abundance of arbuscular mycorrhizal fungi, increased bacterial stress index, and reduced soil pH. The plasticity of soil microbial community would be more related to the different responses among treatments when compared with plant community. These results indicate that long-term N deposition has greater effects on the understory plant community than on the soil microbial community and different conservation strategies should be considered.  相似文献   

10.
作为环境中广泛存在的污染物,微塑料(microplastics)的相关研究备受关注。基于已有研究,本文综合分析了微塑料与土壤微生物(soil microorganisms)的互作关系,微塑料会通过直接或间接的方式影响微生物群落结构与多样性,影响的程度取决于微塑料的类型、剂量和形状。土壤微生物会通过形成表面生物膜和群落选择效应来适应微塑料这一外来物所引起的变化。本文还特别关注了微塑料的生物降解机理,同时探究了影响这一过程的因素,微生物首先会定殖在微塑料表面,分泌多种胞外酶在特定位点发挥作用,将聚合物转化成低聚物或单体,解聚的小分子进入胞内进一步分解代谢,而影响这一降解过程的因素除了分子量、密度、结晶度等微塑料自身理化性质,还包括一些生物因素和非生物因素对相关微生物生长代谢和酶活性的作用。未来研究应注重与实际环境的联系,在深入探究微塑料生物降解研究的同时,开发解决微塑料污染问题的新技术。  相似文献   

11.
The impact of animal manure application on soil organic carbon (SOC) stock changes is of interest for both agronomic and environmental purposes. There is a specific need to quantify SOC change for use in national greenhouse gas (GHG) emission inventories. We quantified the response of SOC stocks to manure application from a large worldwide pool of individual studies and determined the impact of explanatory factors such as climate, soil properties, land use and manure characteristics. Our study is based on a meta‐analysis of 42 research articles totaling 49 sites and 130 observations in the world. A dominant effect of cumulative manure‐C input on SOC response was observed as this factor explained at least 53% of the variability in SOC stock differences compared to mineral fertilized or unfertilized reference treatments. However, the effects of other determining factors were not evident from our data set. From the linear regression relating cumulative C inputs and SOC stock difference, a global manure‐C retention coefficient of 12% ± 4 (95% Confidence Interval, CI) could be estimated for an average study duration of 18 years. Following an approach comparable to the Intergovernmental Panel on Climate Change, we estimated a relative SOC change factor of 1.26 ± 0.14 (95% CI) which was also related to cumulative manure‐C input. Our results offer some scope for the refinement of manure retention coefficients used in crop management guidelines and for the improvement of SOC change factors for national GHG inventories by taking into account manure‐C input. Finally, this study emphasizes the need to further document the long‐term impact of manure characteristics such as animal species, especially pig and poultry, and manure management systems, in particular liquid vs. solid storage.  相似文献   

12.
Plant‐soil feedback (PSF) theory provides a powerful framework for understanding plant dynamics by integrating growth assays into predictions of whether soil communities stabilise plant–plant interactions. However, we lack a comprehensive view of the likelihood of feedback‐driven coexistence, partly because of a failure to analyse pairwise PSF, the metric directly linked to plant species coexistence. Here, we determine the relative importance of plant evolutionary history, traits, and environmental factors for coexistence through PSF using a meta‐analysis of 1038 pairwise PSF measures. Consistent with eco‐evolutionary predictions, feedback is more likely to mediate coexistence for pairs of plant species (1) associating with similar guilds of mycorrhizal fungi, (2) of increasing phylogenetic distance, and (3) interacting with native microbes. We also found evidence for a primary role of pathogens in feedback‐mediated coexistence. By combining results over several independent studies, our results confirm that PSF may play a key role in plant species coexistence, species invasion, and the phylogenetic diversification of plant communities.  相似文献   

13.
14.
15.
No microorganisms could be isolated from chemostats or from a soil column fed with 4,5-dichloroguaiacol as the only carbon source. If guaiacol was added to chemostats with 4,5-dichloroguaiacol, either soil microbial consortia or guaiacol-degrading bacteria could dechlorinate the 4,5-dichloroguaiacol provided it was <0.2mm. A microbial consortium from farm soil removed 4,5-dichloroguaiacol under aerobic or anoxic conditions, with or without chlorolignin. Dichlorocatechol was the only 4,5-dichloroguaiacol-derived metabolite detected. In aerobic incubations, 4,5-dichlorocatechol was further degraded whereas under anoxic conditions it accumulated.  相似文献   

16.
The stability and decomposition of biochar are fundamental to understand its persistence in soil, its contribution to carbon (C) sequestration, and thus its role in the global C cycle. Our current knowledge about the degradability of biochar, however, is limited. Using 128 observations of biochar‐derived CO2 from 24 studies with stable (13C) and radioactive (14C) carbon isotopes, we meta‐analyzed the biochar decomposition in soil and estimated its mean residence time (MRT). The decomposed amount of biochar increased logarithmically with experimental duration, and the decomposition rate decreased with time. The biochar decomposition rate varied significantly with experimental duration, feedstock, pyrolysis temperature, and soil clay content. The MRTs of labile and recalcitrant biochar C pools were estimated to be about 108 days and 556 years with pool sizes of 3% and 97%, respectively. These results show that only a small part of biochar is bioavailable and that the remaining 97% contribute directly to long‐term C sequestration in soil. The second database (116 observations from 21 studies) was used to evaluate the priming effects after biochar addition. Biochar slightly retarded the mineralization of soil organic matter (SOM; overall mean: ?3.8%, 95% CI = ?8.1–0.8%) compared to the soil without biochar addition. Significant negative priming was common for studies with a duration shorter than half a year (?8.6%), crop‐derived biochar (?20.3%), fast pyrolysis (?18.9%), the lowest pyrolysis temperature (?18.5%), and small application amounts (?11.9%). In contrast, biochar addition to sandy soils strongly stimulated SOM mineralization by 20.8%. This indicates that biochar stimulates microbial activities especially in soils with low fertility. Furthermore, abiotic and biotic processes, as well as the characteristics of biochar and soils, affecting biochar decomposition are discussed. We conclude that biochar can persist in soils on a centennial scale and that it has a positive effect on SOM dynamics and thus on C sequestration.  相似文献   

17.
The effects of drought on soil dynamics after fire are poorly known, particularly its long‐term (i.e., years) legacy effects once rainfall returns to normal. Understanding this is particularly important for nutrient‐poor soils in semi‐arid regions affected by fire, in which rainfall is projected to decrease with climate change. Here, we studied the effects of post‐fire drought and its legacy on soil microbial community structure and functionality in a CistusErica shrubland (Spain). Rainfall total and patterns were experimentally modified to produce an unburned control (natural rainfall) and four burned treatments: control (natural rainfall), historical control (long‐term average rainfall), moderate drought (percentile 8 historical rainfall, 5 months of drought per year), and severe drought (percentile 2, 7 months of drought). Soil nutrients and microbial community composition (ester‐linked fatty acid approach) and functionality (enzyme activities and C mineralization rate) were monitored during the first 4 years after fire under rainfall treatments, plus two additional ones without them (six post‐fire years). We found that the recovery of burned soils was lower under drought. Post‐fire drought increased nitrate in the short term and reduced available phosphorus, exchangeable potassium, soil organic matter, enzyme activities, and carbon mineralization rate. Moreover, drought decreased soil total microbial biomass and fungi, with bacteria becoming relatively more abundant. Two years after discontinuing the drought treatments, the drought legacy was significant for available phosphorus and enzyme activities. Although microbial biomass did not show any drought legacy effect, the proportion of fungi and bacteria (mainly gram‐positive) did, being lower and higher, respectively, in former drought‐treated plots. We show that drought has an important impact on soil processes, and that some of its effects persist for at least 2 years after the drought ended. Therefore, drought and its legacy effects can be important for modeling biogeochemical processes in burned soils under future climate change.  相似文献   

18.
城市化对土壤生态环境的影响研究进展   总被引:6,自引:0,他引:6  
城市土壤是城市生态系统中最重要的组成部分之一,发挥着重要的生态系统服务功能。在全球快速城市化的背景下,城市土壤受到人类活动的强烈干扰,土壤物理、化学性质发生改变,土壤退化与污染日益加重。城市土壤退化导致土壤动物生态特征与行为模式发生变化,城市景观格局与土地利用类型的变化强烈影响了土壤动物的栖息地,为土壤动物的生存与生物多样性带来潜在威胁;另一方面,城市化过程改变了土壤微生物群落组成与功能特征。城市化直接影响了城市土壤维持植物生长、土壤自然消减能力以及碳储存功能等重要的生态系统服务功能。针对城市化过程对土壤生态环境产生的一系列影响,需要采用科学的管理方式,改善土壤理化性质,提高土壤环境质量,保护和恢复土壤生物多样性,从而增强城市土壤的生态系统服务功能。  相似文献   

19.
Arctic ecosystems are characterized by a wide range of soil moisture conditions and thermal regimes and contribute differently to the net methane (CH4) budget. Yet, it is unclear how climate change will affect the capacity of those systems to act as a net source or sink of CH4. Here, we present results of in situ CH4 flux measurements made during the growing season 2014 on Disko Island (west Greenland) and quantify the contribution of contrasting soil and landscape types to the net CH4 budget and responses to summer warming. We compared gas flux measurements from a bare soil and a dry heath, at ambient conditions and increased air temperature, using open‐top chambers (OTCs). Throughout the growing season, bare soil consumed 0.22 ± 0.03 g CH4‐C m?2 (8.1 ± 1.2 g CO2‐eq m?2) at ambient conditions, while the dry heath consumed 0.10 ± 0.02 g CH4‐C m?2 (3.9 ± 0.6 g CO2‐eq m?2). These uptake rates were subsequently scaled to the entire study area of 0.15 km2, a landscape also consisting of wetlands with a seasonally integrated methane release of 0.10 ± 0.01 g CH4‐C m?2 (3.7 ± 1.2 g CO2‐eq m?2). The result was a net landscape sink of 12.71 kg CH4‐C (0.48 tonne CO2‐eq) during the growing season. A nonsignificant trend was noticed in seasonal CH4 uptake rates with experimental warming, corresponding to a 2% reduction at the bare soil, and 33% increase at the dry heath. This was due to the indirect effect of OTCs on soil moisture, which exerted the main control on CH4 fluxes. Overall, the net landscape sink of CH4 tended to increase by 20% with OTCs. Bare and dry tundra ecosystems should be considered in the net CH4 budget of the Arctic due to their potential role in counterbalancing CH4 emissions from wetlands – not the least when taking the future climatic scenarios of the Arctic into account.  相似文献   

20.
Among the four insecticides under study, hexachlorocyclohexane (BHC) followed by phorate significantly stimulated the populations of (total) bacteria, actinomycetes, fungi, aerobic non-symbiotic N2-fixing bacteria and P-solubilizing microorganisms in soil. Carbofuran significantly stimulated total as well as N2-fixing bacteria. Fenvalerate had no effect on P-solubilizers. All the insecticides stimulated the proportion of Penicillium in soil. Similarly, Pseudomonas with BHC, Sarcina with phorate, Corynebacterium, Azotobacter and Streptomyces with fenvalerate were also stimulated. On the other hand, Erysipelothrix with BHC, Staphylococcus with phorate, Staphylococcus, Nocardia and Fusarium with fenvalerate were inhibited. Almost all the insecticides reduced the proportions of Micrococcus and Rhizopus in soil. Insecticides also augmented the non-symbiotic N2-fixing and P-solubilizing capacities of the soil and the augmentation was more pronounced with BHC followed by phorate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号