首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Abstract. We studied gradients in field layer vegetation across ecotone‐type borderlines between 12 ancient woodlands and adjacent secondary deciduous woodlands on former arable land. The aim of the study was to determine how distance from the borderline influences species distributions as compared with soil factors and degree of canopy closure. Correspondence Analysis showed that distance from the borderline is closely related to the first ordination axis at all study sites. Canonical Correspondence Analysis with variation partitioning revealed that distance from the borderline was the single most important factor in explaining vegetation variation. In general, the results suggest the following order of decreasing importance: Distance from the borderline < Soil reaction < Soil nitrogen < Soil moisture < Canopy cover. However, the sum of soil variables, as estimated by weighted averages of Ellenberg indicator values for moisture, reaction and nitrogen, accounted for as much as ca. 50–70% of the total variation explained by environmental variables. Important gradients in field layer vegetation are due to a decrease in typical woodland species and an increase in other species with increasing distance from the ancient woodland. The results suggest dispersal limitation of woodland species as an important determinant of secondary forest succession. However, the importance of distance to species distributions decreases with increasing stand age as most woodland species gradually colonize the recent woodlands. After 70 yr, ca. 50 % of the woodland species present at a site showed complete colonization within 50 m from the ancient woodland border.  相似文献   

2.
Historically, large areas of forest in Europe were managed as coppice woodland to produce wood‐based fuel for the smelting industry. We hypothesized that this practice produced a legacy effect on current forest ecosystem properties. Specifically, we hypothesized that the historical form of coppicing may have produced a legacy of elevated stocks of soil organic carbon (SOC), nutrients and black carbon (BC) in soil as fire was routinely used in coppiced woodland to clear land. We further hypothesized that these changes in soil properties would result in increased biodiversity. To test these hypotheses, we sampled the surface soil (0–5, 5–10 and 10–20 cm) from a chronosequence of forest sites found in the Siegerland (Germany) that had been coppiced and burned 1, 2, 3.5, 6, 8, 11 and 17 years before present. Mature beech and spruce forests (i.e., >60 years) were also sampled as reference sites: to provide a hint of what might occur in the absence of human intervention. We measured stocks of SOC, BC, NO3‐N, P, K, Mg, as well as cation exchange and water‐holding capacity, and we mapped plant composition to calculate species richness and evenness. The results showed that coppicing in combination with burning soil and litter improved soil nutrient availability, enhanced biodiversity and increased SOC stocks. The SOC stocks and biodiversity were increased by a factor of three relative to those in the mature beech and spruce forests. This study shows that traditional coppicing practice may facilitate net C accrual rates of 20 t ha?1 yr?1 and maintain high biodiversity, indicating that aspects of traditional practice could be applied in current forest management to foster biodiversity and to mitigate climate change.  相似文献   

3.
The break‐up of the Soviet Union in 1991 triggered cropland abandonment on a continental scale, which in turn led to carbon accumulation on abandoned land across Eurasia. Previous studies have estimated carbon accumulation rates across Russia based on large‐scale modelling. Studies that assess carbon sequestration on abandoned land based on robust field sampling are rare. We investigated soil organic carbon (SOC) stocks using a randomized sampling design along a climatic gradient from forest steppe to Sub‐Taiga in Western Siberia (Tyumen Province). In total, SOC contents were sampled on 470 plots across different soil and land‐use types. The effect of land use on changes in SOC stock was evaluated, and carbon sequestration rates were calculated for different age stages of abandoned cropland. While land‐use type had an effect on carbon accumulation in the topsoil (0–5 cm), no independent land‐use effects were found for deeper SOC stocks. Topsoil carbon stocks of grasslands and forests were significantly higher than those of soils managed for crops and under abandoned cropland. SOC increased significantly with time since abandonment. The average carbon sequestration rate for soils of abandoned cropland was 0.66 Mg C ha?1 yr?1 (1–20 years old, 0–5 cm soil depth), which is at the lower end of published estimates for Russia and Siberia. There was a tendency towards SOC saturation on abandoned land as sequestration rates were much higher for recently abandoned (1–10 years old, 1.04 Mg C ha?1 yr?1) compared to earlier abandoned crop fields (11–20 years old, 0.26 Mg C ha?1 yr?1). Our study confirms the global significance of abandoned cropland in Russia for carbon sequestration. Our findings also suggest that robust regional surveys based on a large number of samples advance model‐based continent‐wide SOC prediction.  相似文献   

4.
We evaluated the “4 per 1000” initiative for increasing soil organic carbon (SOC) by analysing rates of SOC increase in treatments in 16 long‐term experiments in southeast United Kingdom. The initiative sets a goal for SOC stock to increase by 4‰ per year in the 0–40 cm soil depth, continued over 20 years. Our experiments, on three soil types, provided 114 treatment comparisons over 7–157 years. Treatments included organic additions (incorporated by inversion ploughing), N fertilizers, introducing pasture leys into continuous arable systems, and converting arable land to woodland. In 65% of cases, SOC increases occurred at >7‰ per year in the 0–23 cm depth, approximately equivalent to 4‰ per year in the 0–40 cm depth. In the two longest running experiments (>150 years), annual farmyard manure (FYM) applications at 35 t fresh material per hectare (equivalent to approx. 3.2 t organic C/ha/year) gave SOC increases of 18‰ and 43‰ per year in the 23 cm depth during the first 20 years. Increases exceeding 7‰ per year continued for 40–60 years. In other experiments, with FYM applied at lower rates or not every year, there were increases of 3‰–8‰ per year over several decades. Other treatments gave increases between zero and 19‰ per year over various periods. We conclude that there are severe limitations to achieving the “4 per 1000” goal in practical agriculture over large areas. The reasons include (1) farmers not having the necessary resources (e.g. insufficient manure); (2) some, though not all, practices favouring SOC already widely adopted; (3) practices uneconomic for farmers—potentially overcome by changes in regulations or subsidies; (4) practices undesirable for global food security. We suggest it is more realistic to promote practices for increasing SOC based on improving soil quality and functioning as small increases can have disproportionately large beneficial impacts, though not necessarily translating into increased crop yield.  相似文献   

5.
生态恢复对红壤侵蚀地土壤有机碳组成及稳定性的影响   总被引:1,自引:0,他引:1  
为了研究红壤侵蚀区生态恢复过程中土壤有机碳的组成与动态变化,选择红壤侵蚀区生态恢复10 a和30 a的马尾松林为对象,以侵蚀裸地和次生林为对照,应用土壤有机碳物理分组方法,研究了侵蚀地植被恢复过程中表层土壤粗颗粒态有机碳(cPOC)、细颗粒态有机碳(f POC)和矿质结合有机碳(MOC)含量及POC/MOC比值的变化。结果表明:生态恢复显著提高了土壤有机碳含量(P0.05),土壤中不同组分有机碳含量也相应增加。生态恢复10 a,土壤有机碳主要以f POC形式积累,cPOC和MOC没有显著变化,其中0—10 cm土层POC占总土壤有机碳(SOC)比例高达64.1%,但稳定性较差。与恢复10 a相比,生态恢复至30 a时,0—10 cm土壤f POC含量相对不变,cPOC和MOC含量均显著增加(P0.05),10—20 cm土壤f POC和MOC增加量达到显著水平,而cPOC含量仍未显著增加,说明生态恢复过程中土壤固碳模式符合SOC饱和理论。生态恢复过程中土壤POC/MOC比值呈先升高后降低的趋势,且表层土壤大于亚表层土壤,说明随着生态恢复时间的增加,土壤有机碳稳定性逐渐提高,且亚表层土壤高于表层。因此,生态恢复对于侵蚀地碳固定的长期有效性具有重要意义。  相似文献   

6.
Restoration of Biodiversity and Ecosystem Services on Agricultural Land   总被引:3,自引:0,他引:3  
Cultivation and cropping are major causes of destruction and degradation of natural ecosystems throughout the world. We face the challenge of maintaining provisioning services while conserving or enhancing other ecosystem services and biodiversity in agricultural landscapes. There is a range of possibilities within two types of intervention, namely “land sharing” and “land separation”; the former advocates the enhancement of the farmed environment, but the latter a separation between land designated for farming versus conservation. Land sharing may involve biodiversity-based agricultural practices, learning from traditional farming, changing from conventional to organic agriculture and from “simple” crops and pastures to agro-forestry systems, and restoring or creating specific elements to benefit wildlife and particular services without decreasing agricultural production. Land separation in the farmland context involves restoring or creating non-farmland habitat at the expense of field-level agricultural production—for example, woodland on arable land. Restoration by land sharing has the potential to enhance agricultural production, other ecosystem services and biodiversity at both the field and landscape scale; however, restoration by land separation would provide these benefits only at the landscape scale. Although recent debate has contrasted these approaches, we suggest they should be used in combination to maximize benefits. Furthermore, we suggest “woodland islets”, an intermediate approach between land abandonment and farmland afforestation, for ecological restoration in extensive agricultural landscapes. This approach allows reconciliation of farmland production, conservation of values linked to cultural landscapes, enhancement of biodiversity, and provision of a range of ecosystem services. Beyond academic research, restoration projects within agricultural landscapes are essential if we want to halt environmental degradation and biodiversity loss.  相似文献   

7.
Land‐use changes are the second largest source of human‐induced greenhouse gas emission, mainly due to deforestation in the tropics and subtropics. CO2 emissions result from biomass and soil organic carbon (SOC) losses and may be offset with afforestation programs. However, the effect of land‐use changes on SOC is poorly quantified due to insufficient data quality (only SOC concentrations and no SOC stocks, shallow sampling depth) and representativeness. In a global meta‐analysis, 385 studies on land‐use change in the tropics were explored to estimate the SOC stock changes for all major land‐use change types. The highest SOC losses were caused by conversion of primary forest into cropland (?25%) and perennial crops (?30%) but forest conversion into grassland also reduced SOC stocks by 12%. Secondary forests stored less SOC than primary forests (?9%) underlining the importance of primary forests for C stores. SOC losses are partly reversible if agricultural land is afforested (+29%) or under cropland fallow (+32%) and with cropland conversion into grassland (+26%). Data on soil bulk density are critical in order to estimate SOC stock changes because (i) the bulk density changes with land‐use and needs to be accounted for when calculating SOC stocks and (ii) soil sample mass has to be corrected for bulk density changes in order to compare land‐use types on the same basis of soil mass. Without soil mass correction, land‐use change effects would have been underestimated by 28%. Land‐use change impact on SOC was not restricted to the surface soil, but relative changes were equally high in the subsoil, stressing the importance of sufficiently deep sampling.  相似文献   

8.
退化红壤不同植被恢复方式对蚯蚓种群的影响   总被引:5,自引:0,他引:5  
对4种人工林(小叶栎、木荷、马尾松及木荷.马尾松混交林)和2种荒草地(保护荒地、轻度干扰荒地)及疏草荒地对照进行了蚯蚓种群的季节动态调查.结果表明,退化红壤植被恢复10年后蚯蚓种群有了明显的发展,但仅1种天锡杜拉蚓存在.蚯蚓密度和生物量的季节平均值顺序为:保护荒地>干扰荒地>小叶栎>木荷>马尾松>混交林>疏草荒地,其中前三者显著高于其余植被类型(P<0.05).蚯蚓种群季节波动明显,夏季干热有强烈的抑制作用.就季节变异系数所体现的种群稳定性而言,小叶栎最高,而马尾松最低.荒草地也较低.鉴别分析从整体上刻画了不同恢复植被下蚯蚓种群的分异.由植被类型决定的归还土壤的有机物数量和质量是蚯蚓种群分异的主要驱动因子.另外.联系蚯蚓种群发展,讨论了退化红壤恢复中选择适宜植被类型的重要性.  相似文献   

9.
黄土高原沟壑区王东沟小流域土壤有机碳空间分布   总被引:4,自引:1,他引:3  
地貌和土地利用是影响土壤有机碳(Soil organic carbon,SOC)空间变异的重要因素。以黄土高原沟壑区王东沟小流域(8.3 km2)为对象,在考虑地貌单元和土地利用影响的基础上,采集0—20cm样品448个,0—200cm样品33个。研究了地貌单元(塬面、塬坡和沟道)和土地利用方式对SOC含量的影响。结果表明,地貌单元和土地利用对小流域表层和深层SOC的含量分布影响都有显著差异。0—20cm土层的SOC含量,沟道塬面塬坡;塬面表层SOC含量的变化平缓;塬坡和沟道SOC变异大于塬面。0—200cm土层SOC三地貌单元差异达极显著水平(P99.9%),塬面SOC含量最高(5.37g kg-1),塬坡(3.06 gkg-1)最低。不同地貌单元条件下土地利用方式对表层和剖面SOC含量分布的影响也存在明显差异。塬面区,人工草地SOC含量亦明显高于农田和果园,但仅40cm以上土层SOC达到显著差异。在塬坡上,不同土地利用类型间,发生显著差异深度达到140cm。沟道内,林草两种土地利用类型间的SOC含量无显著差异。在估算该地区SOC密度和储量时,需要充分考虑地貌单元和土地利用方式的影响。  相似文献   

10.
Determining the effect of perennial energy crop (PEC) cultivation on soil organic carbon (SOC) in marginal land soil is vital for carbon neutrality and bioeconomy development. However, a comprehensive and systematic evaluation of the response of SOC content to different PECs and its underlying drivers is still lacking. We used soil data collected from infertile red topsoil (0–20 cm) after 10 years of cultivation with Miscanthus (MS), Panicum virgatum (SG), and Saccharum arundinaceum (SA) to explore the changes in SOC stock induced by PEC. The roles of physical, chemical, and microbiological factors driving the increase in the SOC stock were investigated. Results revealed that SA and MS enhanced SOC stock by 87.97% and 27.52% relative to the uncultivated control. Conversely, PEC increased the percentage of soil mega-aggregates, geometric mean diameters, soil chelate iron (Fe), and aluminum (Al) oxides, and reduced soil acidity for the infertile red soils. In addition, fungal richness and diversity for PEC soils were enhanced compared to the unplanted soil. It is possible that PEC cultivation reduced the relative abundance of copiotrophic fungi but increased the relative abundance of oligotrophic fungi. Furthermore, variance partitioning analysis revealed that chemical and microbiological factors accounted for 80.54% of the total variation for the SOC stock. The partial least squares path model showed that PEC cultivation enhanced soil carbon (C) stock via soil deacidification and increased soil bacterial function. In conclusion, this study confirms the SOC sequestration potential of PEC cultivation in marginal land and the underlying mechanism driving SOC stock. The main positive factors controlling soil C sequestration included “pH,” while the negative factors were “bacterial community,” “fungal community,” and “bacterial function.” Our research may help encourage and support decision-makers of wasted marginal land conversion to PEC cultivation.  相似文献   

11.
Agricultural soils have tremendous potential to sequester soil organic carbon (SOC) and mitigate global climate change. However, agricultural land use has a profound impact on SOC dynamics, and few studies have explored how agricultural land use combined with soil conditions affect SOC changes throughout the soil profile. Based on a paired soil resampling campaign in the 1980s and 2010s, this study investigated the SOC changes of the soil profile caused by agricultural land use and the correlations with parent material and topography across the Chengdu Plain of China. The results showed that the SOC content increased by 3.78 g C/kg in the topsoil (0–20 cm), but decreased in the 20–40 cm and 40–60 cm soil layers by 0.90 and 1.26 g C/kg respectively. SOC increases in topsoil were observed for all types of agricultural land. Afforestation on former agricultural land also caused SOC decreases in the 20–60 cm soil layers, while SOC decreases only occurred in the 40–60 cm soil layer for agricultural land using a traditional crop rotation (i.e. traditional rice–wheat/rapeseed rotation) and with rice–vegetable rotations converted from the traditional rotations. For each agricultural land use, SOC decreases in deep soils only occurred in high relief areas and in soils formed from Q4 (Quaternary Holocene) grey‐brown alluvium and Q4 grey alluvium that had a relatively low soil bulk density and clay content. The results indicated that SOC change caused by agricultural land use was depth dependent and that the effects of agricultural land use on soil profile SOC dynamics varied with soil characteristics and topography. Subsoil SOC decreases were more likely to occur in high relief areas and in soils with low soil bulk density and low clay content.  相似文献   

12.
The present study quantifies changes in soil organic carbon (SOC) stocks in Belgium between 1960, 1990 and 2000 for 289 spatially explicit land units with unique soil association and land‐use type, termed landscape units (LSU). The SOC stocks are derived from multiple nonstandardized sets of field measurements up to a depth of 30 cm. Approximately half of the LSU show an increase in SOC between 1960 and 2000. The significant increases occur mainly in soils of grassland LSU in northern Belgium. Significant decreases are observed on loamy cropland soils. Although the largest SOC gains are observed for LSU under forest (22 t C ha?1 for coniferous and 29 t C ha?1 for broadleaf and mixed forest in the upper 30 cm of soil), significant changes are rare because of large variability. Because the number of available measurements is very high for agricultural land, most significant changes occur under cropland and grassland, but the corresponding average SOC change is smaller than for forests (9 t C ha?1 increase for grassland and 1 t C ha?1 decrease for cropland). The 1990 data for agricultural LSU show that the SOC changes between 1960 and 2000 are not linear. Most agricultural LSU show a higher SOC stock in 1990 than in 2000, especially in northern Belgium. The observed temporal and spatial patterns can be explained by a change in manure application intensity. SOC stock changes caused by land‐use change are estimated. The SOC change over time is derived from observed differences between SOC stocks in space. Because SOC stocks are continuously influenced by a number of external factors, mainly land‐use history and current land management and climate, this approach gives only an approximate estimate whose validity is limited to these conditions.  相似文献   

13.
To date, only few studies have compared the soil organic carbon (SOC) sequestration potential between perennial woody and herbaceous crops. The main objective of this study was to assess the effect of perennial woody (poplar, black locust, willow) and herbaceous (giant reed, miscanthus, switchgrass) crops on SOC stock and its stabilization level after 6 years from plantation on an arable field. Seven SOC fractions related to different soil stabilization mechanisms were isolated by a combination of physical and chemical fractionation methods: unprotected (cPOM and fPOM), physically protected (iPOM), physically and chemically protected (HC‐μs + c), chemically protected (HC‐ds + c), and biochemically protected (NHC‐ds + c and NHC‐μs + c). The continuous C input to the soil and the minimal soil disturbance increased SOC stocks in the top 10 cm of soil, but not in deeper soil layers (10–30; 30–60; and 60–100 cm). In the top soil layer, greater SOC accumulation rates were observed under woody species (105 g m?2 yr‐1) than under herbaceous ones (71 g m?2 yr‐1) presumably due to a higher C input from leaf‐litter. The conversion from an arable maize monoculture to perennial bioenergy crops increased the organic C associated to the most labile organic matter (POM) fractions, which accounted for 38% of the total SOC stock across bioenergy crops, while no significant increments were observed in more recalcitrant (silt‐ and clay‐sized) fractions, highlighting that the POM fractions were the most prone to land‐use change. The iPOM fraction increased under all perennial bioenergy species compared to the arable field. In addition, the iPOM was higher under woody crops than under herbaceous ones because of the additional C inputs from leaf‐litter that occurred in the former. Conversion from arable cropping systems to perennial bioenergy crops can effectively increase the SOC stock and enlarge the SOC fraction that is physically protected within soil microaggregates.  相似文献   

14.
For centuries, Fennoscandian wooded meadows and woodland pastures (Habitats Directive habitat types *6530 and 9070 respectively) covered large areas of Northern Europe. In the Twentieth Century, abandonment-driven encroachment has led to the wooded grasslands changing into what may be considered as old-growth deciduous forests. The present paper examined whether the present stand structure and the composition of three contrasting functional groups (herbaceous layer vascular plants, epiphytic bryophytes, and earthworms) could serve as indicators of the historic origin of the forest patches, i.e. to what extent changes in ecological conditions in overgrown woodlands have shifted towards broad-leaved forests with ancient trees. Indicators were tested for the objective of restoration planning of habitat quality, i.e. whether semi-open woodlands could be restored or if it would be more appropriate to preserve them as broad-leaved forests. The study was carried out by comparing the composition of ancient forest cores, forest edges and overgrown wooded grasslands. The land use history of sample sites was examined from historical topographical maps and aerial photos.The results showed that as long as 60 years after abandonment, parts of the studied forests still retained some light-demanding plant species characteristic of historical wooded grasslands. The composition of earthworm communities was similar in all of the studied historical forest groups. Only some of the stand structure characteristics and epiphytic mosses indicated that there were differences between ancient forest cores and overgrown wooded grasslands. We conclude that the combination of various functional indicators should be used in the evaluation of successional woodlands for habitat restoration.  相似文献   

15.
The establishment of either forest or grassland on degraded cropland has been proposed as an effective method for climate change mitigation because these land use types can increase soil carbon (C) stocks. This paper synthesized 135 recent publications (844 observations at 181 sites) focused on the conversion from cropland to grassland, shrubland or forest in China, better known as the ‘Grain‐for‐Green’ Program to determine which factors were driving changes to soil organic carbon (SOC). The results strongly indicate a positive impact of cropland conversion on soil C stocks. The temporal pattern for soil C stock changes in the 0–100 cm soil layer showed an initial decrease in soil C during the early stage (<5 years), and then an increase to net C gains (>5 years) coincident with vegetation restoration. The rates of soil C change were higher in the surface profile (0–20 cm) than in deeper soil (20–100 cm). Cropland converted to forest (arbor) had the additional benefit of a slower but more persistent C sequestration capacity than shrubland or grassland. Tree species played a significant role in determining the rate of change in soil C stocks (conifer < broadleaf, evergreen < deciduous forests). Restoration age was the main factor, not temperature and precipitation, affecting soil C stock change after cropland conversion with higher initial soil C stock sites having a negative effect on soil C accumulation. Soil C sequestration significantly increased with restoration age over the long‐term, and therefore, the large scale of land‐use change under the ‘Grain‐for‐Green’ Program will significantly increase China's C stocks.  相似文献   

16.
Grassy woodlands have been extensively cleared for agricultural land uses; land managers need to know whether restoration of biodiversity on such sites requires further interventions beyond simply stopping agricultural land use. Cumberland Plain Woodland occurs on shale‐derived soils in western Sydney; former Cumberland Plain Woodland sites can range from grasslands cleared for agricultural use to regenerated woodlands. An experiment was established in Scheyville National Park to determine what effect repeated burning would have in this system. Four blocks were established (three in grassy areas, one in woodland) and plots in each block were either burnt in 2001 and 2005 or left unburnt. Native plant species richness was initially lower in the grassy blocks than in the woodland, and this ranking remained on unburnt plots over time. The first fire increased species richness of both natives and exotics on the grassy blocks, with the largest increases observed for native and exotic forbs, and lesser increases for grasses (native only), gramminoids and shrubs. Native species richness changed very little with burning in the woodland. Fire effects on species richness were still apparent 3 years later on the grassy blocks; the difference between the grassy blocks and the woodland was not significant on burnt plots at this stage. Changes in native species richness were far less after the second fire on the grassy blocks, with grasses and gramminoids showing increases; native species richness remained higher in the burnt treatment. The first fire reduced the initial differences in native species richness between the grassy blocks and the woodland, and the second fire maintained the benefit through time. Fire also increased exotic species richness; the proportion of total species as natives was not altered by the two fires. On unburnt grassy plots, native species richness and prior cumulative rainfall were positively related; a decline in native species richness on unburnt plots corresponded to increasingly drier conditions over the study.  相似文献   

17.
Quantifying ecosystem carbon stocks is vital for understanding the relationship between changes in land use and carbon dioxide emissions. Here, we estimate carbon stocks in an area of miombo woodland in Mozambique, by identifying the major carbon stocks and their variability. Data on the biomass of tree stems and roots, saplings, and soil carbon stocks are reported and compared with other savannas systems around the globe. A new allometric relationship between stem diameter and tree stem and root biomass is presented, based on the destructive harvest of 29 trees. These allometrics are combined with an inventory of 12,733 trees on 58 plots over an area of 27 ha. Ecosystem carbon stocks totaled 110 tC/ha, with 76 tC/ha in the soil carbon pool (to 50 cm depth), 21.2 tC/ha in tree stem biomass, 8.5 tC/ha in tree coarse root biomass, and 3.6 tC/ha in total sapling biomass. Plot‐level tree root:stem (R:S) ratio varied from 0.27 to 0.58, with a mean of 0.42, slightly higher than the mean reported for 18 other savanna sites with comparable aboveground biomass (R:S=0.35). Tree biomass (stem+root) ranged from 3.1 to 86.5 tC/ha, but the mean (32.1 tC/ha) was well constrained (95% CI 28–36.6). In contrast, soil carbon stocks were almost uniformly distributed and varied from 32 to 133 tC/ha. Soil carbon stocks are thus the major uncertainty in the carbon storage of these woodlands. Soil texture explained 53 percent of the variation in soil carbon content, but only 13 percent of the variation in woody carbon stocks. The history of disturbance (fire, elephants, logging/charcoal production, and shifting cultivation) is likely to decouple changes in woody carbon stocks from soil carbon stocks, mediated by tree–grass interactions. Abstract in Portuguese is available at http://www.blackwell‐synergy.com/loi/btp .  相似文献   

18.
植被恢复对土壤营养元素的存赋及其生态化学计量特征的影响广受关注,为了深入了解不同植被恢复类型下土壤碳、氮、磷储量与生态化学计量特征,选择滇中地区退化山地飒马场流域具有代表性的4种不同修复阶段的典型植被(荒坡灌草丛、云南松林、针阔混交林和次生常绿阔叶林)为研究对象,分析了不同植被类型下不同深度土壤中有机碳(SOC)、全氮(TN)、全磷(TP)储量和化学计量变化特征。结果表明,退化山地的植被恢复显著改变土壤碳氮磷储存能力和化学计量比,这种改变作用整体上随土壤深度增加而降低。其中,在0—60 cm土层上,SOC储量在次生常绿阔叶林最高,达123.41 t/hm~2,其次是针阔混交林(115.69 t/hm~2)和云南松林(93.08 t/hm~2),荒坡灌草丛(89.56 t/hm~2)最低;TN储量针阔混交林(4.91 t/hm~2)次生常绿阔叶林(4.58 t/hm~2)云南松林(4.43 t/hm~2)荒坡灌草丛(3.98 t/hm~2),4种植被类型间差异显著;TP储量云南松林最高(2.57 t/hm~2),次生常绿阔叶林(2.2 t/hm~2)最低;4种植被类型下土壤C/N介于15.77—30.18,C/P介于29.24—65.33,N/P介于1.28—2.68之间,在0—60 cm土层上均以次生常绿阔叶林最高。植被类型和土壤深度及其交互作用显著影响研究区的SOC、TN和TP储量和化学计量比。分析认为,退化山地不同植被类型对土壤碳氮磷储量和化学计量的影响过程复杂,修复演替进入到次生常绿阔叶林阶段土壤理化性质显著提升,该地区植被修复主要受到氮的限制。研究表征了滇中退化环境植被恢复过程中土壤主要元素变化特征,为揭示植被恢复与土壤生态功能演变关系提供数据支持。  相似文献   

19.
In the UK and other temperate regions, short rotation coppice (SRC) and Miscanthus x giganteus (Miscanthus) are two of the leading ‘second‐generation’ bioenergy crops. Grown specifically as a low‐carbon (C) fossil fuel replacement, calculations of the climate mitigation provided by these bioenergy crops rely on accurate data. There are concerns that uncertainty about impacts on soil C stocks of transitions from current agricultural land use to these bioenergy crops could lead to either an under‐ or overestimate of their climate mitigation potential. Here, for locations across mainland Great Britain (GB), a paired‐site approach and a combination of 30‐cm‐ and 1‐m‐deep soil sampling were used to quantify impacts of bioenergy land‐use transitions on soil C stocks in 41 commercial land‐use transitions; 12 arable to SRC, 9 grasslands to SRC, 11 arable to Miscanthus and 9 grasslands to Miscanthus. Mean soil C stocks were lower under both bioenergy crops than under the grassland controls but only significant at 0–30 cm. Mean soil C stocks at 0–30 cm were 33.55 ± 7.52 Mg C ha?1 and 26.83 ± 8.08 Mg C ha?1 lower under SRC (P = 0.004) and Miscanthus plantations (P = 0.001), respectively. Differences between bioenergy crops and arable controls were not significant in either the 30‐cm or 1‐m soil cores and smaller than for transitions from grassland. No correlation was detected between change in soil C stock and bioenergy crop age (time since establishment) or soil texture. Change in soil C stock was, however, negatively correlated with the soil C stock in the original land use. We suggest, therefore, that selection of sites for bioenergy crop establishment with lower soil C stocks, most often under arable land use, is the most likely to result in increased soil C stocks.  相似文献   

20.
The use of Technosols for the restoration of limestone quarries overcomes the usual “in situ” scarcity of soil and/or its poor quality. The use of mine spoils, improved with mineral and/or organic amendments, could be an efficient and environmentally friendly option. Properly treated sewage sludge from urban wastewater treatment plants could be a suitable organic amendment and fertilizer (rich in N and P) whenever its pollutant burden is low (heavy metals and/or organic pollutants). Its appropriate use could improve essential soil physical and chemical properties and, therefore, promote key ecosystem services of restored areas, such as biomass production and carbon sequestration, as well as biodiversity and landscape recovery. However, the mid‐term impacts of these restoration practices on soil functioning and their services have rarely been reported in the available literature. In this study we assess the mid‐term effects (10 years) of the use of sewage sludge as a Technosol amendment on soil organic carbon (SOC), nutrient status, and plant development in several restored quarries. Soils restored using sewage sludge showed a threefold increase in SOC compared to the corresponding unamended ones, despite the moderate sludge dosage applied (below 50 tonnes/ha). Plant cover was also higher in amended soils, and recruitment was not affected by sludge amendment at these doses. This study demonstrates that, used at an appropriate rate, sewage sludge is a good alternative for the valorization of mine spoils in quarry restoration, improving some important regulatory ecosystem services such as carbon sequestration, without compromising woody plant encroachment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号