首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding the factors that shape community structure, and whether those factors vary geographically, has a long history in ecology. Because the abiotic environment often varies in predictable ways along elevational gradients, montane systems are ideal to study geographic variation in the determinants of community structure. In this study, we first examined the relative importance of environmental gradients, microclimate, and food resources in driving spatial variation in the structure of detrital communities in forests of the southeastern USA. Then, in order to assess whether the determinants of detrital community structure varied along a climatic gradient, we manipulated resource availability and microclimatic conditions at 15 sites along a well‐studied elevational gradient. We found that arthropod abundance and richness generally declined with increasing elevation, though the shape of the relationship varied among taxa. Overall community composition and species evenness also varied systematically along the climatic gradient, suggesting that broad‐scale variation in the abiotic environment drives geographic variation in both patterns of diversity and community composition. After controlling for the effect of climatic variation along the elevational gradient, food resource addition and microclimate alteration influenced the richness and abundance of some taxa. However, the effect of food resource addition and microclimate alteration on the richness and abundance of arthropods did not vary with elevation. In addition, the degree of community similarity between control plots and either resource‐added or microclimate‐altered plots did not vary with elevation suggesting a consistent influence of microclimate and food addition on detrital arthropod community structure. We conclude that using manipulative experiments along environmental gradients can help tease apart the relative importance and detect the interactive effects of local‐scale factors and broad‐scale climatic variation in shaping communities.  相似文献   

2.
Although stochastic and deterministic processes have been found to jointly shape structure of natural communities, the relative importance of both forces may vary across different environmental conditions and across levels of biological organization. We tested the effects of abiotic environmental conditions, altered trophic interactions and dispersal limitation on the structure of aquatic microfauna communities in Costa Rican tank bromeliads. Our approach combined natural gradients in environmental conditions with experimental manipulations of bottom-up interactions (resources), top-down interactions (predators) and dispersal at two spatial scales in the field. We found that resource addition strongly increased the abundance and reduced the richness of microfauna communities. Community composition shifted in a predictable way towards assemblages dominated by flagellates and ciliates but with lower abundance and richness of algae and amoebae. While all functional groups responded strongly and predictably to resource addition, similarity among communities at the species level decreased, suggesting a role of stochasticity in species-level assembly processes. Dispersal limitation did not affect the communities. Since our design excluded potential priority effects we can attribute the differences in community similarity to increased demographic stochasticity of resource-enriched communities related to erratic changes in population sizes of some species. In contrast to resources, predators and environmental conditions had negligible effects on community structure. Our results demonstrate that bromeliad microfauna communities are strongly controlled by bottom-up forces. They further suggest that the relative importance of stochasticity may change with productivity and with the organizational level at which communities are examined.  相似文献   

3.
Integrating multiple facets of biodiversity to describe spatial and temporal distribution patterns is one way of revealing the mechanisms driving community assembly. We assessed the species, functional, and phylogenetic composition and structure of passerine bird communities along an elevational gradient both in wintering and breeding seasons in the Ailao Mountains, southwest China, in order to identify the dominant ecological processes structuring the communities and how these processes change with elevation and season. Our research confirms that the highest taxonomic diversity, and distinct community composition, was found in the moist evergreen broadleaf forest at high elevation in both seasons. Environmental filtering was the dominant force at high elevations with relatively cold and wet climatic conditions, while the observed value of mean pairwise functional and phylogenetic distances of low elevation was constantly higher than expectation in two seasons, suggested interspecific competition could play the key role at low elevations, perhaps because of relative rich resource result from complex vegetation structure and human‐induced disturbance. Across all elevations, there was a trend of decreasing intensity of environmental filtering whereas increasing interspecific competition from wintering season to breeding season. This was likely due to the increased resource availability but reproduction‐associated competition in the summer months. In general, there is a clear justification for conservation efforts to protect entire elevational gradients in the Ailao Mountains, given the distinct taxonomic, functional, and phylogenetic compositions and also elevational migration pattern in passerine bird communities.  相似文献   

4.
Both top‐down (grazing) and bottom‐up (resource availability) forces can determine the strength of priority effects, or the effects of species arrival history on the structure and function of ecological communities, but their combined influences remain unresolved. To test for such influences, we assembled experimental communities of wood‐decomposing fungi using a factorial manipulation of fungivore (Folsomia candida) presence, nitrogen availability, and fungal assembly history. We found interactive effects of all three factors on fungal species composition and wood decomposition 1 year after the fungi were introduced. The strength of priority effects on community structure was affected primarily by nitrogen availability, whereas the strength of priority effects on decomposition rate was interactively regulated by nitrogen and fungivores. These results demonstrate that top‐down and bottom‐up forces jointly determine how strongly assembly history affects community structure and function.  相似文献   

5.
Negative relationships between species richness and elevation are common and attributed to changes in single environmental properties associated to elevation, such as temperature and habitat area. However, research has lacked taxonomic breadth and comprehensive elevation studies that consider multiple groups from different trophic levels are rare. We thus analysed 24 groups of plants, arthropods, and microorganisms grouped into six trophic guilds (predators, detritivores, herbivores, plants, bacteria and fungi) along a relatively short elevational gradient (~600 m) in a subtropical forest in south‐east China. The total species richness of all organisms was not related to elevation, nor was the richness of plants, herbivores or microorganisms. However, species richness and abundance in two major trophic guilds of arthropods changed with elevation, which was mediated by changes in elevation‐associated habitat properties. Specifically, deadwood mass increased with elevation, which increased detritivore richness indirectly via detritivore abundance, thus supporting the ‘more individuals hypothesis’. In contrast, lower predator richness at higher elevations was directly related to lower mean temperatures, which had no effect on abundance. Our study demonstrates that even along relatively short gradients, elevation can have strong direct and abundance‐mediated effects on species richness, but with effects varying from positive to negative signs depending on local resource availability and the characteristics of groups or trophic guilds. If elevation positively influences local environmental properties that benefit a given group, richness can increase towards higher elevations. Thus, the effect of global change in mountainous regions should be evaluated within the local environmental context using multi‐taxon approaches.  相似文献   

6.
Changes in species richness along elevational gradients are well documented. However, little is known about how trophic interactions between species and, in particular, the food webs that these interactions comprise, change with elevation. Here we present results for the first comparison of quantitative food webs in forest understorey and canopy along an elevational gradient. Replicate quantitative food webs were constructed for assemblages involving 23 species of cavity‐nesting Hymenoptera and 12 species of their parasitoids and kleptoparasites in subtropical rainforest in Australia. A total of 1589 insects were collected using trap nests across 20 plots distributed at sites ranging from 300 to 1100 m a.s.l. Insect abundance, insect diversity and parasitism rate generally decreased with increasing elevation. Food web structure significantly changed with elevation. In particular, weighted quantitative measures of linkage density, interaction evenness, nestedness (weighted NODF) and potential for enemy mediated interactions (PAC) decreased with increasing elevation, and network specialisation (H2′) increased with increasing elevation, even after controlling for matrix size; but there was no change in weighted connectance. Changes in forest type and temperature along the elevational gradient are likely to be, at least partly, responsible for the patterns observed. We found no significant differences in insect abundance, insect diversity or parasitism rate between canopy and understorey. Furthermore, there were no differences in food web structure between strata. These results contribute further evidence to studies revealing changes in food web structure along natural environmental gradients and provide information that can potentially be used for predicting how communities may respond to climate change.  相似文献   

7.
The distribution, diversity, and assembly of tropical insects have long intrigued ecologists, and for tropical ants, can be affected by competitive interactions, microhabitat requirements, dispersal, and availability and diversity of nesting sites. Arboreal twig‐nesting ants are limited by the number of hollow twigs available, especially in intensive agricultural systems. Ant diversity and abundance may shift along elevation gradients, but no studies have examined if the proportion of occupied twigs or richness of arboreal twig‐nesting ants vary with elevation. In coffee agroecosystems, there are over 40 species of arboreal twig‐nesting ants. We examined communities of twig‐nesting ants in coffee plants along an elevational gradient to answer the following questions: (1) Do species richness and colony abundance decline with elevation or show a mid‐elevation peak? (2) Does community composition change with elevation? (3) Is elevation an important predictor of change in ant abundance, richness, and relative abundance of common species? We surveyed 42 10 × 10 m plots in 2013 from 450 to1550 m elevation across a coffee landscape in Chiapas, Mexico. We sampled a total of 2211 hollow coffee twigs, 77.1 percent of which were occupied by one of 28 species of ants. Pseudomyrmex simplex was more abundant in lower elevations, whereas Pseudomyrmex ejectus dominated in high elevations. Species richness and the percent of occupied hollow twigs both peaked at mid‐elevations (800–1050 m). In sum, we found that species richness, abundance, and composition of arboreal twig‐nesting ants shift with elevation. These findings may provide important insights for understanding ant communities in coffee agroecosystems.  相似文献   

8.
Theory suggests that communities should be more open to the establishment of regional species following disturbance because disturbance may make more resources available to dispersers. However, after an initial period of high invasibility, growth of the resident community may lead to the monopolization of local resources and decreased probability of successful colonist establishment. During press disturbances (i.e., directional environmental change), it remains unclear what effect regional dispersal will have on local community structure if the establishment of later arriving species is affected by early arriving species (i.e., if priority effects are important). To determine the relationship between time‐since‐disturbance and invasibility, we conducted a fully factorial field mesocosm experiment that exposed tundra zooplankton communities to two emerging stressors – nutrient and salt addition, and manipulated the arrival timing of regional dispersers. Our results demonstrate that invasibility decreases with increasing time‐since‐disturbance as abundance (nutrient treatments) or species richness (salt treatments) increases in the resident community. Results suggest that the relative timing of dispersal and environmental change will modify the importance of priority effects in determining species composition after a press disturbance.  相似文献   

9.
Aim We evaluated the structure of metacommunities for each of three vertebrate orders (Chiroptera, Rodentia and Passeriformes) along an extensive elevational gradient. Using elevation as a proxy for variation in abiotic characteristics and the known elevational distributions of habitat types, we assessed the extent to which variation in those factors may structure each metacommunity based on taxon‐specific characteristics. Location Manu Biosphere Reserve in the Peruvian Andes. Methods Metacommunity structure is an emergent property of a set of species distributions across geographic or environmental gradients. We analysed elements of metacommunity structure (coherence, range turnover and range boundary clumping) to determine the best‐fit structure for each metacommunity along an elevational gradient comprising 13 250‐m elevational intervals and 58 species of rodent, 92 species of bat or 586 species of passerine. Results For each taxon, the environmental gradient along which the metacommunity was structured was highly correlated with elevation. Clementsian structure (i.e. groups of species replacing other such groups along the gradient) characterized rodents, with a group of species that was characteristic of rain forests and a group of species that was characteristic of higher elevation habitats (i.e. above 1500 m). Distributions of bats were strongly nested, with more montane communities comprising subsets of species at lower elevations. The structure of the passerine metacommunity was complex and most consistent with a quasi‐Clementsian structure. Main conclusions Each metacommunity exhibited a different structure along the same elevational gradient, and each structure can be accounted for by taxon‐specific responses to local environmental factors that vary predictably with elevation. The structures of rodent and bird metacommunities suggest species sorting associated with habitat specializations, whereas structure of the bat metacommunity is probably moulded by a combination of species‐specific tolerances to increasingly cold, low‐productivity environs of higher elevations and the diversity and abundance of food resources associated with particular habitat types.  相似文献   

10.
11.
Along elevational gradients, phylogenetic relatedness patterns constitute a considerable source of information and may shed light on ecological processes that structure communities. This study focuses on community phylogenetic structure of planthoppers, specifically the species-rich and abundant Fulgoromorpha families (Hemiptera, Auchenorrhyncha), Cixiidae and Derbidae + Achilidae, along an elevational gradient on Mount Wilhelm (Papua New Guinea). In order to assess the factors driving planthoppers community composition, we recorded abundance data for planthoppers species at each elevation and we generated a molecular phylogeny of the local species, using Bayesian inference. We analyzed 168 individuals representing 59 local morphospecies. Using a fully resolved and well-supported phylogeny, we then investigated the phylogenetic structure of the communities by performing a Spatial Analysis of Community Diversity. We show that Cixiidae are phylogenetically clustered along the elevational gradient, whereas Derbidae + Achilidae harbor a random structure, suggesting that local adaptation to elevation shapes community structure of Cixiidae, but not that of Derbidae + Achilidae. Our findings highlight the importance of phylogenies in the study of tropical elevational gradients.  相似文献   

12.
13.
Ecosystems are often arranged in naturally patchy landscapes with habitat patches linked by dispersal of species in a metacommunity. The size of a metacommunity, or number of patches, is predicted to influence community dynamics and therefore the structure and function of local communities. However, such predictions have yet to be experimentally tested using full food webs in natural metacommunities. We used the natural mesocosm system of aquatic macroinvertebrates in bromeliad phytotelmata to test the effect of the number of patches in a metacommunity on species richness, abundance, and community composition. We created metacommunities of varying size using fine mesh cages to enclose a gradient from a single bromeliad up to the full forest. We found that species richness, abundance, and biomass increased from enclosed metacommunities to the full forest size and that diversity and evenness also increased in larger enclosures. Community composition was affected by metacommunity size across the full gradient, with a more even detritivore community in larger metacommunities, and taxonomic groups such as mosquitoes going locally extinct in smaller metacommunities. We were able to divide the effects of metacommunity size into aquatic and terrestrial habitat components and found that the importance of each varied by species; those with simple life cycles were only affected by local aquatic habitat whereas insects with complex life cycles were also affected by the amount of terrestrial matrix. This differential survival of obligate and non‐obligate dispersers allowed us to partition the beta‐diversity between metacommunities among functional groups. Our study is one of the first tests of metacommunity size in a natural metacommunity landscape and shows that both diversity and community composition are significantly affected by metacommunity size. Synthesis Natural food webs are sensitive to meta‐community size, i.e. the number of patches connected through dispersal. We provide an empirical test using the aquatic foodweb associated within bromeliads as a model system. When we reduced the number of bromeliad patches connect through dispersal, we found a clear change of the foodweb in terms of population sizes, beta diversity, community composition and predator‐prey ratios. The response of individual taxa was predictable based on species traits including dispersal modes, life cycle, and adult resource requirements. Our study demonstrates that community structure is strongly influenced by the interplay of species traits and landscape properties.  相似文献   

14.
Evenness is an important property of communities. Species richness alone does not capture the fact that one or a few species may dominate total abundance and biomass of a community. This in turn has important consequences for ecosystem functioning and species interactions. Evenness has been observed to vary systematically along environmental and productivity gradients. However, a truly general theory about which factors control evenness in a community has yet to emerge. Prior research on evenness has suggested that high richness, biomass and abundance should lead to lower community evenness in our study system of bats in Panama. However, only few empirical studies examine the simultaneous effects of species richness, biomass or abundance on evenness. For the first time, we applied path analysis in the study of evenness to tease apart the relative importance and direction (positive or negative) of causality among these three factors. As predicted, we found that evenness decreases with increasing species richness, abundance and biomass. The negative effect of abundance was mediated by the positive joint effect of biomass and richness. The selected models varied in the strength of the correlation between the three variables with evenness but their direction was consistent. Overall, we argue that rarity, high mobility and differences in resource availability at sites with lower environmental stress can explain the negative effects of richness on evenness.  相似文献   

15.
Top predator losses affect a wide array of ecological processes, and there is growing evidence that top predators are disproportionately vulnerable to environmental changes. Despite increasing recognition of the fundamental role that top predators play in structuring communities and ecosystems, it remains challenging to predict the consequences of predator extinctions in highly variable environments. Both biotic and abiotic drivers determine community structure, and manipulative experiments are necessary to disentangle the effects of predator loss from other co‐occurring environmental changes. To explore the consistency of top predator effects in ecological communities that experience high local environmental variability, we experimentally removed top predators from arid‐land stream pool mesocosms in southeastern Arizona, USA, and measured natural background environmental conditions. We inoculated mesocosms with aquatic invertebrates from local streams, removed the top predator Abedus herberti (Hemiptera: Belostomatidae) from half of the mesocosms as a treatment, and measured community divergence at the end of the summer dry season. We repeated the experiment in two consecutive years, which represented two very different biotic and abiotic environments. We found that some of the effects of top predator removal were consistent despite significant differences in environmental conditions, community composition, and colonist sources between years. As in other studies, top predator removal did not affect overall species richness or abundance in either year, and we observed inconsistent effects on community and trophic structure. However, top predator removal consistently affected large‐bodied species (those in the top 1% of the community body size distribution) in both years, increasing the abundance of mesopredators and decreasing the abundance of detritivores, even though the identity of these species varied between years. Our findings highlight the vulnerability of large taxa to top predator extirpations and suggest that the consistency of observed ecological patterns may be as important as their magnitude.  相似文献   

16.
Understanding causes of variation in multispecies assemblages along spatial environmental gradients is a long‐standing research topic in ecology and biogeography. Ecological networks comprising interacting species of plants and pollinators are particularly suitable for testing effects of environmental gradients on the functional structure and specialization in multispecies assemblages. In this study, we investigated patterns in functional assemblage structure and specialization of hummingbirds at the individual and species level along a tropical elevational gradient. We mist‐netted hummingbirds at three elevations in Costa Rica in seven temporally distinct sampling periods and used the pollen carried by hummingbird individuals to construct plant–hummingbird networks at each elevation. We measured four functional traits of hummingbird species and quantified different metrics of functional community structure. We tested the effect of elevation on functional metrics of hummingbird assemblages and specialization within the networks, employing the variability across sampling periods and hummingbird species to compare the respective metrics among elevations. Hummingbird species and individuals were more specialized at low and mid elevations than at the highest elevation. This pattern corresponded to a more even and over‐dispersed assemblage structure at the lower elevations throughout the year and suggests a high level of floral resource partitioning in functionally diversified communities. In contrast, an uneven and clustered functional structure of the highland assemblage across all sampling periods suggests that this assemblage was structured by environmental filtering and by niche expansion of hummingbird individuals and species at this elevation. We conclude that high degrees of specialization on specific floral resources might be crucial for the coexistence of hummingbird species in diversified lowland communities. Spatial variation in animal resource use may be an important crucial driver of spatial patterns in the functional structure of diversified species assemblages also in other types of ecological networks.  相似文献   

17.
Whether neutral or deterministic factors structure biotic communities remains an open question in community ecology. We studied the spatial structure of a desert grassland grasshopper community and tested predictions for species sorting based on niche differentiation (deterministic) and dispersal limitation (neutral). We contrasted the change in species relative abundance and community similarity along an elevation gradient (i.e., environmental gradient) against community change across a relatively homogeneous distance gradient. We found a significant decrease in pairwise community similarity along both elevation and distance gradients, indicating that dispersal limitation plays a role in structuring local grasshopper communities. However, the distance decay of similarity was significantly stronger across the elevational gradient, indicating that niche-based processes are important as well. To further investigate mechanisms underlying niche differentiation, we experimentally quantified the dietary preferences of two common species, Psoloessa texana and Psoloessa delicatula, for the grasses Bouteloua eriopoda and Bouteloua gracilis, which are the dominant plants (~75% of total cover) in our study area. Cover of the preferred host plant explained some of the variation in relative abundances of the two focal species, although much variance in local Psoloessa distribution remained unexplained. Our results, the first to examine these hypotheses in arid ecosystems, indicate that the composition of local communities can be influenced by both probabilistic processes and mechanisms based in the natural histories of organisms.  相似文献   

18.
Ecosystem engineers are organisms able to modulate environmental forces and, hence, may change the habitat conditions for other species. In so doing, ecosystem engineers may affect both species richness and evenness of communities and, in consequence, change species diversity. If these changes in community attributes are related to the magnitude of the habitat changes induced by the engineers, it seems likely that engineer species will have greater effects on diversity in sites where they cause larger habitat changes. We addressed this issue by evaluating the effects of three alpine cushion plants on species richness, evenness, and diversity of high-Andean plant communities. Given that the difference in microclimatic conditions between cushions and the external environment increases with elevation, we proposed that these organisms should have greater effects on community attributes at higher than at lower elevation sites. Results showed that the three cushion species had positive effects on species richness, diversity, and evenness of plant communities. It was also observed that the magnitude of these effects changed with elevation: positive effects on species richness and diversity increased towards upper sites for the three cushions species, whereas positive effects on evenness increased with elevation for one cushion species but decreased with elevation for other two cushion species. These results suggest that the presence of cushions is important to maintain plant diversity in high-Andean communities, but this positive effect on diversity seems to increase as the difference in environmental conditions between cushions and the external environment increases with elevation.  相似文献   

19.
Elevational gradients provide a natural experiment for assessing the extent to which the structure of animal metacommunities is molded by biotic and abiotic characteristics that change gradually, or is molded by aspects of plant community composition and physiognomy that change in a more discrete fashion. We used a metacommunity framework to integrate species‐specific responses to environmental gradients as an approach to detect emergent patterns at the mesoscale in the Luquillo Mountains of Puerto Rico. Elements of metacommunity structure (coherence, species turnover and range boundary clumping) formed the basis for distinguishing among random, checkerboard, Gleasonian, Clementsian, evenly spaced and nested patterns. Paired elevational transects (300–1000 m a.s.l.) were sampled at 50 m intervals to decouple underlying environmental mechanisms: a mixed forest transect reflected changes in abiotic and biotic conditions, including forest type (i.e. tabonuco, palo colorado and elfin forests), whereas another transect reflected changes in environmental conditions but not forest type, as its constituent plots were located within palm forest. Based on distributional data (presence versus absence of species), the mixed forest transect exhibited Clementsian structure, whereas the palm forest transect exhibited quasi‐Gleasonian structure. In contrast, the distribution of modes in species abundance was random with respect to the latent environmental gradient in the mixed forest transect and clumped with respect to the latent environmental gradient in the palm forest transect. Such contrasts suggest that the environmental factors affecting abundance differed in form or type from those affecting distributional boundaries. Variation among elevational strata with respect to the first axis of correspondence from reciprocal averaging was highly correlated with elevation along each transect, even though axis scores were not correlated between mixed forest and palm forest transects. This suggests that the identity of the environmental characteristics, or the form of response by the fauna to those characteristics, differed between the two elevational transects. Despite the proximity of the transects, the patchy configuration of palm forest, and the pervasive distribution of the dominant palm species, the relative importance of abiotic variables and habitat in structuring gastropod metacommunities differed between transects, which is remarkable and attests to the sensitivity of metacommunity structure to environmental variation.  相似文献   

20.
Unraveling elevational diversity patterns of plants and animals has long been attracting scientific interests. However, whether soil microorganisms exhibit similar elevational patterns remains largely less explored, especially for functional microbial communities, such as ammonia oxidizers. Here, we investigated the diversity and distribution pattern of ammonia-oxidizing archaea (AOA) in meadow soils along an elevation gradient from 4400 m to the grassline at 5100 m on the Tibetan Plateau using terminal restriction fragment length polymorphism (T-RFLP) and sequencing methods by targeting amoA gene. Increasing elevations led to lower soil temperature and pH, but higher nutrients and water content. The results showed that AOA diversity and evenness monotonically increased with elevation, while richness was relatively stable. The increase of diversity and evenness was attributed to the growth inhibition of warm-adapted AOA phylotypes by lower temperature and the growth facilitation of cold-adapted AOA phylotypes by richer nutrients at higher elevations. Low temperature thus played an important role in the AOA growth and niche separation. The AOA community variation was explained by the combined effect of all soil properties (32.6%), and 8.1% of the total variation was individually explained by soil pH. The total AOA abundance decreased, whereas soil potential nitrification rate (PNR) increased with increasing elevations. Soil PNR positively correlated with the abundance of cold-adapted AOA phylotypes. Our findings suggest that low temperature plays an important role in AOA elevational diversity pattern and niche separation, rising the negative effects of warming on AOA diversity and soil nitrification process in the Tibetan region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号