首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
2.
3.
Recent genetic studies of human hair disorders have suggested a critical role of lysophosphatidic acid (LPA) signalling in hair follicle development, mediated by an LPA-producing enzyme, phosphatidic acid-selective phospholipase A(1)α (PA-PLA(1)α, also known as LIPH), and a recently identified LPA receptor, P2Y5 (also known as LPA(6)). However, the underlying molecular mechanism is unknown. Here, we show that epidermal growth factor receptor (EGFR) signalling underlies LPA-induced hair follicle development. PA-PLA(1)α-deficient mice generated in this study exhibited wavy hairs due to the aberrant formation of the inner root sheath (IRS) in hair follicles, which resembled mutant mice defective in tumour necrosis factor α converting enzyme (TACE), transforming growth factor α (TGFα) and EGFR. PA-PLA(1)α was co-localized with TACE, TGFα and tyrosine-phosphorylated EGFR in the IRS. In PA-PLA(1)α-deficient hair follicles, cleaved TGFα and tyrosine-phosphorylated EGFR, as well as LPA, were significantly reduced. LPA, P2Y5 agonists and recombinant PA-PLA(1)α enzyme induced P2Y5- and TACE-mediated ectodomain shedding of TGFα through G12/13 pathway and consequent EGFR transactivation in vitro. These data demonstrate that a PA-PLA(1)α-LPA-P2Y5 axis regulates differentiation and maturation of hair follicles via a TACE-TGFα-EGFR pathway, thus underscoring the physiological importance of LPA-induced EGFR transactivation.  相似文献   

4.
Background information. Interconnections between the Ca2+ and cAMP signalling pathways can determine the specificity and diversity of the cellular effects mediated by these second messengers. Most cAMP effects are mediated by PKA (protein kinase A), which is anchored close to its membranous substrates by AKAPs (A kinase‐anchoring proteins). In many cell types, the activation of InsP3R (inositol 1,4,5‐trisphosphate receptor), an endoplasmic reticulum Ca2+ channel, is a key event of Ca2+ signalling. The phosphorylation of InsP3R1 by PKA stimulates Ca2+ mobilization. This control is thought to be tight, involving the association of PKA with InsP3R1. The InsP3R1 isoform predominates in central nervous tissue and its concentration is highest in the cerebellar microsomes. We investigated the complex formed by InsP3R1 and PKA in this fraction, vith a view to identifying its components and determining its distribution in the cerebellar cortex. Results. Immunoprecipitation experiments showed that InsP3R1 associated with PKA type IIβ and AKAP450, the longer variant of AKAP9, in sheep cerebellar microsomes. The co‐purification of AKAP450 with InsP3R1 on heparin‐agarose provided further evidence of the association of these proteins. Immunohistofluorescence experiments on slices of cerebellar cortex showed that AKAP450 was colocalized with InsP3R1 and RIIβ (regulatory subunit of PKA IIβ) in granule cells, but not in Purkinje cells. AKAP450 was localized in the Golgi apparatus of these two cell types whereas InsP3R1 was detected in this organelle only in granule cells. Conclusions. Taken together these results suggest that InsP3R1 forms a complex with AKAP450 and PKAIIβ, localized in the Golgi apparatus of cerebellar granule cells. In contrast, the association of InsP3R1 with PKA in Purkinje cells would require a different macromolecular complex.  相似文献   

5.
A‐kinase anchoring proteins (AKAPs) regulate cAMP‐dependent protein kinase (PKA) signaling in space and time. Dual‐specific AKAP2 (D‐AKAP2/AKAP10) binds with high affinity to both RI and RII regulatory subunits of PKA and is anchored to transporters through PDZ domain proteins. Here, we describe a structure of D‐AKAP2 in complex with two interacting partners and the exact mechanism by which a segment that on its own is disordered presents an α‐helix to PKA and a β‐strand to PDZK1. These two motifs nucleate a polyvalent scaffold and show how PKA signaling is linked to the regulation of transporters. Formation of the D‐AKAP2: PKA binary complex is an important first step for high affinity interaction with PDZK1, and the structure reveals important clues toward understanding this phenomenon. In contrast to many other AKAPs, D‐AKAP2 does not interact directly with the membrane protein. Instead, the interaction is facilitated by the C‐terminus of D‐AKAP2, which contains two binding motifs—the D‐AKAP2AKB and the PDZ motif—that are joined by a short linker and only become ordered upon binding to their respective partner signaling proteins. The D‐AKAP2AKB binds to the D/D domain of the R‐subunit and the C‐terminal PDZ motif binds to a PDZ domain (from PDZK1) that serves as a bridging protein to the transporter. This structure also provides insights into the fundamental question of why D‐AKAP2 would exhibit a differential mode of binding to the two PKA isoforms.  相似文献   

6.
Connective tissue growth factor (CTGF/CCN2) is a matricellular protein induced by transforming growth factor (TGF)‐β and intimately involved with tissue repair and overexpressed in various fibrotic conditions. We previously showed that keratinocytes in vitro downregulate TGF‐β‐induced expression of CTGF in fibroblasts by an interleukin (IL)‐1 α‐dependent mechanism. Here, we investigated further the mechanisms of this downregulation by both IL‐1α and β. Human dermal fibroblasts and NIH 3T3 cells were treated with IL‐1α or β in presence or absence of TGF‐β1. IL‐1 suppressed basal and TGF‐β‐induced CTGF mRNA and protein expression. IL‐1α and β inhibited TGF‐β‐stimulated CTGF promoter activity, and the activity of a synthetic minimal promoter containing Smad 3‐binding CAGA elements. Furthermore, IL‐1α and β inhibited TGF‐β‐stimulated Smad 3 phosphorylation, possibly linked to an observed increase in Smad 7 mRNA expression. In addition, RNA interference suggested that TGF‐β activated kinase1 (TAK1) is necessary for IL‐1 inhibition of TGF‐β‐stimulated CTGF expression. These results add to the understanding of how the expression of CTGF in human dermal fibroblasts is regulated, which in turn may have implications for the pathogenesis of fibrotic conditions involving the skin. J. Cell. Biochem. 110: 1226–1233, 2010. Published 2010 Wiley‐Liss, Inc.  相似文献   

7.
Transforming growth factor (TGF)‐β1 is a known factor in angiotensin II (Ang II)‐mediated cardiac fibrosis after myocardial infarction (MI). Hypoxia inducible factor‐1 (Hif‐1α) was recently demonstrated to involve in the tissue fibrosis and influenced by Ang II. However, whether Hif‐1α contributed to the Ang II‐mediated cardiac fibrosis after MI, and whether interaction or synergetic roles between Hif‐1α and TGF‐β pathways existed in the process was unclear. In vitro, cardiac cells were incubated under hypoxia or Ang II to mimic ischaemia. In vivo, valsartan was intravenously injected into Sprague–Dawley rats with MI daily for 1 week; saline and hydralazine (another anti‐hypertensive agent like valsartan) was used as control. The fibrosis‐related proteins were detected by Western blotting. Cardiac structure and function were assessed with multimodality methods. We demonstrated in vitro that hypoxia would induce the up‐regulation of Ang II, TGF‐β/Smad and Hif‐1α, which further induced collagen accumulation. By blocking with valsartan, a blocker of Ang II type I (AT1) receptor, we confirmed that the up‐regulation of TGF‐β/Smad and Hif‐1α was through the Ang II‐mediated pathway. By administering TGF‐β or dimethyloxalylglycine, we determined that both TGF‐β/Smad and Hif‐1α contributed to Ang II‐mediated collagen accumulation and a synergetic effect between them was observed. Consistent with in vitro results, valsartan significantly attenuated the expression of TGF‐β/Smad, Hif‐1α and fibrosis‐related protein in rats after MI. Heart function, infarcted size, wall thickness as well as myocardial vascularization of ischaemic hearts were also significantly improved by valsartan compared with saline and hydralazine. Our study may provide novel insights into the mechanisms of Ang II‐induced cardiac fibrosis as well as into the cardiac protection of valsartan.  相似文献   

8.
Tyrphostin AG1478 is known as a specific and reversible inhibitor of TK (tyrosine kinase) activity of the EGFR [EGF (epidermal growth factor) receptor]. It is attractive as an anticancer agent for cancers with elevated EGFR TK levels. However, post‐application effects of AG1478 are not well studied. We have analysed EGFR phosphorylation after termination of AG1478 application using human epidermoid carcinoma A431 cells. It was found that AG1478 inhibitory action is fast, but not fully reversible: removal of tyrphostin resulted in incomplete restoration of the overall EGFR phosphorylation. Analysing the state of two individual autophosphorylation sites of internalized EGFR, Tyr1045 and Tyr1173, we demonstrated that phosphorylation of Tyr1173 involved in stimulation of the MAPK (mitogen‐activated protein kinase) cascade was restored much more efficiently than that in position 1045, which binds the ubiquitin ligase c‐Cbl and is necessary for targeting the receptor for lysosomal degradation. c‐Cbl association with EGFR abolished by AG1478 was not reestablished after tyrphostin cessation. As a consequence, ubiquitination‐dependent EGFR delivery to lysosomes was blocked, while phosphorylation of ERK1/2 (extracellular‐signal‐regulated kinase 1/2) was even increased. Thus, after termination of AG1478, the intracellular level of the inhibitor can be reached at which mitogenic signalling will be restored, whereas the EGFR negative regulation due to lysosomal degradation will not.  相似文献   

9.
Background and aims: Transforming growth factor-beta (TGFβ) is known to potently inhibit cell growth. Loss of responsiveness to TGFβ inhibition on cell growth is a hallmark of many types of cancer, yet its mechanism is not fully understood. Membrane-anchored heparin-binding EGF-like growth factor (proHB-EGF) ectodomain is cleaved by a disintegrin and metalloproteinase (ADAM) members and is implicated in epidermal growth factor receptor (EGFR) transactivation. Recently, nuclear translocation of the C-terminal fragment (CTF) of pro-HB-EGF was found to induce cell growth. We investigated the association between TGFβ and HB-EGF signal transduction via ADAM activation.Materials and methods: The CCK-8 assay in two gastric cancer cell lines was used to determine the effect for cell growth by TGFβ. The effect of two ADAM inhibitors was also evaluated. Induction of EGFR phosphorylation by TGFβ was analyzed and the effect of the ADAM inhibitors was also examined. Nuclear translocation of HB-EGF-CTF by shedding through ADAM activated by TGFβ was also analyzed. EGFR transactivation, HB-EGF-CTF nuclear translocation, and cell growth were examined under the condition of ADAM17 knockdown.Result: TGFβ-induced EGFR phosphorylation of which ADAM inhibitors were able to inhibit. TGFβ induced shedding of proHB-EGF allowing HB-EGF-CTF to translocate to the nucleus. ADAM inhibitors blocked this nuclear translocation. TGFβ enhanced gastric cancer cell growth and ADAM inhibitors suppressed this effect. EGFR phosphorylation, HB-EGF-CTF nuclear translocation, and cell growth were suppressed in ADAM17 knockdown cells.Conclusion: HB-EGF-CTF nuclear translocation and EGFR transactivation from proHB-EGF shedding mediated by ADAM17 activated by TGFβ might be an important pathway of gastric cancer cell proliferation by TGFβ.  相似文献   

10.
In Chinese hamster ovary cells expressing rabbit sodium‐dependent glucose transporter (rbSGLT1) protein kinase A (PKA) activators (forskolin and 8‐Br‐cAMP) stimulated α‐methyl D ‐glucopyranoside uptake. Kinetic analysis revealed an increase in both Vmax and affinity of the transport. Immunohistochemistry and biotinylation experiments showed that this stimulation was accompanied by an increased amount of SGLT1 localized into the plasma membrane, which explains the higher Vmax of the transport. Cytochalasin D only partly attenuated the effect of forskolin as did deletion of the PKA phosphorylation site of SGLT1 in transient transfection studies. Experiments using an anti‐phosphopeptide antibody revealed that forskolin also increased the extent of phosphorylation of SGLT1 in the membrane fraction. These results suggested that regulation of SGLT1 mediated glucose transport involves an additional direct effect on SGLT1 by phosphorylation. To evaluate this assumption further, phosphorylation studies of recombinant human SGLT1 (hSGLT1) in vitro were performed. In the presence of the catalytic subunit PKA and [32P] ATP 1.05 mol of phosphate were incorporated/mol of hSGLT1. Additionally, phosphorylated hSGLT1 demonstrated a reduction in tryptophan fluorescence intensity and a higher quenching by the hydrophilic Trp quencher acrylamide, particularly in the presence of D ‐glucose. These results indicate that PKA‐mediated phosphorylation of SGLT1 changes the conformation of the empty carrier and the glucose carrier complex, probably causing the increase in transport affinity. Thus, PKA‐mediated phosphorylation of the transporter represents a further mechanism in the regulation of SGLT1‐mediated glucose transport in epithelial cells, in addition to a change in surface membrane expression. J. Cell. Biochem. 106: 444–452, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

11.
Integrin-mediated cell adherence to extracellular matrix proteins results in stimulation of ERK1/2 activity, a mechanism involving focal adhesion tyrosine kinases (pp125FAK, Pyk-2) and epidermal growth factor receptors (EGFRs). G protein-coupled receptors (GPCRs) may also mediate ERK1/2 activation in an integrin-dependent manner, the underlying signaling mechanism of which still remains unclear. Here we demonstrate that the δ-opioid receptor (DOR), a typical GPCR, stimulates ERK1/2 activity in HEK293 cells via integrin-mediated transactivation of EGFR function. Inhibition of integrin signaling by RGDT peptides, cytochalasin, and by keeping the cells in suspension culture both blocked [D-Ala2, D-Leu5]enkephalin (DADLE)- and etorphine-stimulated ERK1/2 activity. Integrin-dependent ERK1/2 activation does not involve FAK/Pyk-2, because over-expression of the FAK/Pyk-2 inhibitor SOCS-3 failed to attenuate DOR signaling. Exposure of the cells to the EGFR inhibitors AG1478 and BPIQ-I blocked DOR-mediated ERK1/2 activation. Because RGDT peptides also prevented DOR-mediated EGFR activation, the present findings indicate that in HEK293 cells DOR-stimulated ERK1/2 activity is mediated by integrin-stimulated EGFRs. Further studies with the phospholipase C (PLC) inhibitors U73122 and ET-18-OCH3 revealed that opioid-stimulated integrin activation is sensitive to PLC. In contrast, integrin-mediated transactivation of EGFR function appears to be dependent on PKC-δ, as indicated by studies with rottlerin and siRNA knock-down. A similar ERK1/2 signaling pathway was observed for NG108-15 cells, a neuronal cell line endogenously expressing the DOR. In these cells, the nerve growth factor TrkA receptor replaces the EGFR in connecting DOR-activated integrins to the Ras/Raf/ERK1/2 pathway. Together, these data describe an alternative ERK1/2 signaling pathway in which the DOR transactivates the growth factor receptor associated mitogen-activated protein kinase cascade in an integrin-dependent manner.  相似文献   

12.
Fumonisin B1 is a mycotoxin produced by Fusarium verticillioides, frequently associated with corn. It produces species‐specific and organ‐specific toxicity, including equine leukoencephalomalacia, porcine pulmonary edema, and hepatic or renal damage in most animal species. Fumonisin B1 perturbs sphingolipid metabolism by inhibiting ceramide synthase. Our previous studies indicated that fumonisin B1 caused localized activation of cytokines in liver produced by macrophages and other cell types that modulate fumonisin B1 induced hepatic apoptosis in mice. The role of tumor necrosis factor α (TNFα) in fumonisin B1 mediated hepatocyte apoptosis has been established; not much is known about the downstream events leading to apoptosis. In the current study, fumonisin B1 induced apoptosis in primary culture of liver cells. In consistence with previous reports, fumonisin B1 caused accumulation of sphingoid bases and led to increase in TNFα expression. Phosphorylated and total c‐Jun NH2‐terminal kinase (JNK) activities were increased after 24 h fumonisin B1 treatment. JNK inhibitor (SP600125) and anti‐TNFα reduced the apoptosis induced by fumonisin B1. The role of JNK signaling in fumonisin B1 induced apoptosis is downstream of TNFα production, as fumonisin B1‐mediated activation of JNK was reduced by the presence of anti‐TNFα in the medium, whereas the presence of JNK inhibitor did not change the fumonisin B1 induced TNFα expression. Results of this study imply that generation of fumonisin B1 induced TNFα results in modulation of mitogen activated protein kinases, particularly of JNK, and provides a possible mechanism for apoptosis in murine hepatocytes. © 2005 Wiley Periodicals, Inc. J Biochem Mol Toxicol 19:359‐367, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20102  相似文献   

13.
14.
Amyloid‐β peptides generated by proteolysis of the β‐amyloid precursor protein (APP) play an important role in the pathogenesis of Alzheimer's disease. The present study aimed to determine whether cytosolic phospholipase A2α (cPLA2α) plays a role in elevated APP protein expression induced by aggregated amyloid‐β1‐42 (Aβ) in cortical neurons and to elucidate its specific role in signal events leading to APP induction. Elevated cPLA2α and its activity determined by phosphorylation on serine 505 as well as elevated APP protein expression, were detected in primary rat cortical neuronal cultures exposed to Aβ for 24 h and in cortical neuron of human amyloid‐β1‐42 brain infused mice. Prevention of cPLA2α up‐regulation and its activity by oligonucleotide antisense against cPLA2α (AS) prevented the elevation of APP protein in cortical neuronal cultures and in mouse neuronal cortex. To determine the role of cPLA2α in the signals leading to APP induction, increased cPLA2α expression and activity induced by Aβ was prevented by means of AS in neuronal cortical cultures. Under these conditions, the elevated cyclooxygenase‐2 and the production of prostaglandin E2 (PGE2) were prevented. Addition of PGE2 or cyclic AMP analogue (dbcAMP) to neuronal cultures significantly increased the expression of APP protein, while the presence protein kinase A inhibitor (H‐89) attenuated the elevation of APP induced by Aβ. Inhibition of elevated cPLA2α by AS prevented the activation of cAMP response element binding protein (CREB) as detected by its phosphorylated form, its translocation to the nucleus and its DNA binding induced by Aβ which coincided with cPLA2α dependent activation of CREB in the cortex of Aβ brain infused mice. Our results show that accumulation of Aβ induced elevation of APP protein expression mediated by cPLA2α, PGE2 release, and CREB activation via protein kinase A pathway.

  相似文献   


15.
16.
Cyclooxygenase‐2 (COX‐2) has been recently identified to be involved in the pathogenesis of Alzheimer's disease (AD). Yet, the role of an important COX‐2 metabolic product, prostaglandin (PG) I2, in the pathogenesis of AD remains unknown. Using human‐ and mouse‐derived neuronal cells as well as amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice as model systems, we elucidated the mechanism of anterior pharynx‐defective (APH)‐1α and pharynx‐defective‐1β induction. In particular, we found that PGI2 production increased during the course of AD development. Then, PGI2 accumulation in neuronal cells activates PKA/CREB and JNK/c‐Jun signaling pathways by phosphorylation, which results in APH‐1α/1β expression. As PGI2 is an important metabolic by‐product of COX‐2, its suppression by NS398 treatment decreases the expression of APH‐1α/1β in neuronal cells and APP/PS1 mice. More importantly, β‐amyloid protein (Aβ) oligomers in the cerebrospinal fluid (CSF) of APP/PS1 mice are critical for stimulating the expression of APH‐1α/1β, which was blocked by NS398 incubation. Finally, the induction of APH‐1α/1β was confirmed in the brains of patients with AD. Thus, these findings not only provide novel insights into the mechanism of PGI2‐induced AD progression but also are instrumental for improving clinical therapies to combat AD.  相似文献   

17.
The proximity of an enzyme to its substrate can influence rate and magnitude of catalysis. A-kinase anchoring protein 220 (AKAP220) is a multivalent anchoring protein that can sequester a variety of signal transduction enzymes. These include protein kinase A (PKA) and glycogen synthase kinase 3β (GSK3β). Using a combination of molecular and cellular approaches we show that GSK3β phosphorylation of Thr-1132 on AKAP220 initiates recruitment of this kinase into the enzyme scaffold. We also find that AKAP220 anchors GSK3β and its substrate β-catenin in membrane ruffles. Interestingly, GSK3β can be released from the multienzyme complex in response to PKA phosphorylation on serine 9, which suppresses GSK3β activity. The signaling scaffold may enhance this regulatory mechanism, as AKAP220 has the capacity to anchor two PKA holoenzymes. Site 1 on AKAP220 (residues 610–623) preferentially interacts with RII, whereas site 2 (residues 1633–1646) exhibits a dual specificity for RI and RII. In vitro affinity measurements revealed that site 2 on AKAP220 binds RII with ∼10-fold higher affinity than site 1. Occupancy of both R subunit binding sites on AKAP220 could provide a mechanism to amplify local cAMP responses and enable cross-talk between PKA and GSK3β.  相似文献   

18.
19.
Background information. Heat‐inducible Hsp72 is the founding member of the Hsp70 (heat shock proteins of 70 kDa) family of molecular chaperones. It is localized primarily in cytoplasm and nucleus but is also found extracellularly. The source of e‐Hsp72 (extracellular Hsp72) is not precisely identified and may not be the same in every situation. A number of studies demonstrated that e‐Hsp72 plays an important role in cell survival, tumour rejection and immune response. However, currently little is known about regulation of e‐Hsp72 function. In cells, Hsp72 is controlled by co‐chaperones. An abundant co‐chaperone, HspBP1 (Hsp72‐binding protein 1) was found extracellularly in the serum. In the present study we analysed the secretion and function of e‐HspBP1 (extracellular HspBP1). Results. A431 human squamous carcinoma cells accumulated Hsp72 and HspBP1 in chromogranin A‐positive granules following heat stress or in the presence of U73122, an inhibitor of phospholipase C. Following these treatments, A431 cells also increased the secretion of both proteins into the culture medium. The secreted e‐Hsp72 and e‐HspBP1 were co‐immunoprecipitated from the conditioned medium. Purified recombinant HspBP1 augmented e‐Hsp72‐mediated phosphorylation of EGFR (epidermal growth factor receptor) and its down‐stream targets, ERK1 (extracellular signal‐regulated kinase 1) and ERK2 in a concentration‐dependent manner. Finally, a HspBP1 N‐terminal domain deletion mutant and boiled recombinant HspBP1 did not affect the e‐Hsp72‐mediated activity. Conclusions. Heat stress and PLC (phospholipase C) inhibition result in the enhanced secretion of both Hsp72 and HspBP1. In an extracellular environment, the two chaperones interact both physically and functionally, leading to the activation of th EGFR—ERK1/2 signalling pathway. However, the magnitude of EGFR activation depends on the e‐HspBP1/e‐Hsp72 ratio in the medium. Extracellular chaperone‐mediated activation of EGFR can provide a survival advantage to cells under heat shock and other stresses.  相似文献   

20.
Cross talk between unrelated cell surface receptors, such as G-protein-coupled receptors (GPCR) and receptor tyrosine kinases (RTK), is a crucial signaling mechanism to expand the cellular communication network. We investigated the ability of the GPCR formyl peptide receptor-like 1 (FPRL1) to transactivate the RTK epidermal growth factor receptor (EGFR) in CaLu-6 cells. We observed that stimulation with WKYMVm, an FPRL1 agonist isolated by screening synthetic peptide libraries, induces EGFR tyrosine phosphorylation, p47phox phosphorylation, NADPH-oxidase-dependent superoxide generation, and c-Src kinase activity. As a result of EGFR transactivation, phosphotyrosine residues provide docking sites for recruitment and triggering of the STAT3 pathway. WKYMVm-induced EGFR transactivation is prevented by the FPRL1-selective antagonist WRWWWW, by pertussis toxin (PTX), and by the c-Src inhibitor PP2. The critical role of NADPH-oxidase-dependent superoxide generation in this cross-talk mechanism is corroborated by the finding that apocynin or a siRNA against p22phox prevents EGFR transactivation and c-Src kinase activity. In addition, WKYMVm promotes CaLu-6 cell growth, which is prevented by PTX and by WRWWWW. These results highlight the role of FPRL1 as a potential target of new drugs and suggest that targeting both FPRL1 and EGFR may yield superior therapeutic effects compared with targeting either receptor separately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号