首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In highly impaired watersheds, it is critical to identify both areas with desirable habitat as conservation zones and impaired areas with the highest likelihood of improvement as restoration zones. We present how detailed riparian vegetation mapping can be used to prioritize conservation and restoration sites within a riparian and instream habitat restoration program targeting 3 native fish species on the San Rafael River, a desert river in southeastern Utah, United States. We classified vegetation using a combination of object‐based image analysis (OBIA) on high‐resolution (0.5 m), multispectral, satellite imagery with oblique aerial photography and field‐based data collection. The OBIA approach is objective, repeatable, and applicable to large areas. The overall accuracy of the classification was 80% (Cohen's κ = 0.77). We used this high‐resolution vegetation classification alongside existing data on habitat condition and aquatic species' distributions to identify reaches' conservation value and restoration potential to guide management actions. Specifically, cottonwood (Populus fremontii) and tamarisk (Tamarix ramosissima) density layers helped to establish broad restoration and conservation reach classes. The high‐resolution vegetation mapping precisely identified individual cottonwood trees and tamarisk thickets, which were used to determine specific locations for restoration activities such as beaver dam analogue structures in cottonwood restoration areas, or strategic tamarisk removal in high‐density tamarisk sites. The site prioritization method presented here is effective for planning large‐scale river restoration and is transferable to other desert river systems elsewhere in the world.  相似文献   

2.
Questions: Exotic plant invasion may be aided by facilitation and broad tolerance of environmental conditions, yet these processes are poorly understood in species‐rich ecosystems such as riparian zones. In the southwestern United States (US) two plant species have invaded riparian zones: tamarisk (Tamarix ramosissima, T. chinensis, and their hybrids) and Russian olive (Elaeagnus angustifolia). We addressed the following questions: (1) is Russian olive able to tolerate drier and shadier conditions than cottonwood and tamarisk? (2) Can tamarisk and cottonwood facilitate Russian olive invasion? Location: Arid riparian zones, southwestern US. Methods: We analyzed riparian tree seedling requirements in a controlled experiment, performed empirical field studies, and analyzed stable oxygen isotopes to determine the water sources used by Russian olive. Results: Russian olive survival was significantly higher in dense shade and low moisture conditions than tamarisk and cottonwood. Field observations indicated Russian olive established where flooding cannot occur, and under dense canopies of tamarisk, cottonwood, and Russian olive. Tamarisk and native riparian plant species seedlings cannot establish in these dry, shaded habitats. Russian olive can rely on upper soil water until 15 years of age, before utilizing groundwater. Conclusions: We demonstrate that even though there is little evidence of facilitation by cottonwood and tamarisk, Russian olive is able to tolerate dense shade and low moisture conditions better than tamarisk and cottonwood. There is great potential for continued spread of Russian olive throughout the southwestern US because large areas of suitable habitat exist that are not yet inhabited by this species.  相似文献   

3.
Aim Ecoregions represent biophysical zones where environmental factors enable the development of particular plant communities. Ecoregions are generally large but abrupt transitions occur in areas with rapid physical change. A particularly abrupt transitional sequence occurs in the Rocky Mountain region of south‐western Alberta where fescue prairie, aspen parkland and mountain ecoregions occur within 15 km. To investigate plant adaptation across ecoregions, our study investigated the influences of a natural disturbance (flooding) and an artificial disturbance (cattle grazing) on reproductive and population processes of black cottonwood (Populus balsamifera subsp. trichocarpa, Torr. & Gray), the dominant riparian tree. Location We studied cottonwoods throughout their elevational range along two free‐flowing, first‐order streams, Yarrow and Drywood creeks. Cottonwood was the only prominent tree in the prairie ecoregion, the dominant riparian tree in the parkland and extended upward through the montane ecoregion where it was a pioneer species for the mixed coniferous–deciduous woodland. Cottonwoods did not occur in the higher elevation sub‐alpine ecoregion. Methods Thirty‐six cross‐sectional sampling transects were located across the three ecoregions with cottonwoods, and in ungrazed and grazed areas of each ecoregion. Rectangular 100 m2 tree and 2 m2 seedling quadrats were positioned along the transects, and substrate and vegetation were assessed. Historic hydrological data were analysed relative to flood recurrences and seasonal flow patterns. Results Overall, the cottonwoods displayed a sawtooth shaped ‘punctuated progressive age structure’ with many young trees, progressively fewer older trees, and about four pulses of increased recruitment over the past century. This was considered to provide a healthy cottonwood population and recruitment pulses were apparently associated with flood events with appropriate peak timing and magnitude and a gradual post‐flood stage recession. However, analyses of tree, sapling and seedling data indicated that flood‐associated seedling recruitment was less important and clonal processes were more important for cottonwood recruitment in the montane ecoregion, the highest ecoregion with cottonwoods. The correlation between flood events and cottonwood recruitment was strongest in the mid‐elevation parkland ecoregion suggesting greater reliance on flood‐associated seedling recruitment. There was little correlation with flooding and limited recruitment in the fescue prairie ecoregion in recent decades and the disturbed age structure probably results from cattle impacts that have prevented recruitment and produced a decrepit cottonwood forest population. Main conclusions These analyses suggested that a healthy cottonwood population displayed a sawtooth shaped ‘punctuated progressive age structure’ and that cottonwood reproduction processes varied across ecoregions with increased clonality in the highest montane ecoregion. Cattle grazing impacts on reproduction were most severe in the lowest prairie ecoregion that is treeless except for the riparian zone. We conclude that appropriate strategies of instream flow regulation, land‐use policies and practices, and conservation and restoration efforts should be refined according to ecoregion to recognize the differences in cottonwood reproductive and population ecology.  相似文献   

4.
Mechanisms of Riparian Cottonwood Decline Along Regulated Rivers   总被引:1,自引:1,他引:0  
Decline of riparian forests has been attributed to hydrologic modifications to river flows. However, little is known about the physiological and structural adjustments of riparian forests subject to modified flow regimes, and the potential for forest restoration using historic flow regimes is poorly understood. In this paired river study, we compared hydrology, water relations, and forest structure in cottonwood-dominated floodplains of the regulated Green River to those of the unregulated Yampa River. We measured floodplain groundwater levels, soil water availability, cottonwood xylem pressure (Ψxp), and leaf-level stomatal conductance (gs) to assess current impacts of river regulation on the water status of adult cottonwoods. We also simulated a flood on the former floodplain of the regulated river to evaluate its impact on cottonwood water relations. Canopy and root structure were quantified with estimates of cottonwood leaf area and percent live canopy and root density and biomass, respectively. Regulation of the Green River has lowered the annual peak flow yet raised minimum flows in most years, resulting in a 60% smaller stage change, and lowered soil water availability by as much as 70% compared to predam conditions. Despite differences in water availability, daily and seasonal trends in Ψxp and gs were similar for cottonwoods on the regulated and unregulated rivers. In addition, soil water added with the experimental flood had little effect on cottonwood water relations, contrary to our expectations of alleviated water stress. Green River cottonwoods had 10%–30% lower stand leaf area, 40% lower root density, and 25% lower root biomass compared with those for Yampa River cottonwoods. Our results suggest that water relations at the leaf and stem level are currently similar for Yampa and Green River trees due to structural adjustments of cottonwood forests along the Green River, triggered by river regulation.  相似文献   

5.
To investigate climatic influence on floodplain trees, we analysed interannual correspondences between the Pacific Decadal Oscillation (PDO), river and groundwater hydrology, and growth and wood 13C discrimination (Δ13C) of narrowleaf cottonwoods (Populus angustifolia) in a semi‐arid prairie region. From the Rocky Mountain headwaters, river discharge (Q) was coordinated with the PDO (1910–2008: r2 = 0.46); this pattern extended to the prairie and was amplified by water withdrawal for irrigation. Floodplain groundwater depth was correlated with river stage (r2 = 0.96), and the cottonwood trunk basal area growth was coordinated with current‐ and prior‐year Q (1992–2008: r2 = 0.51), increasing in the mid‐1990s, and decreasing in 2000 and 2001. Annual Δ13C decreased during low‐flow years, especially in trees that were higher or further from the river, suggesting drought stress and stomatal closure, and male trees were more responsive than females (?0.86 versus ?0.43‰). With subsequently increased flows, Δ13C increased and growth recovered. This demonstrated the linkages between hydroclimatic variation and cottonwood ecophysiology, and we conclude that cottonwoods will be vulnerable to drought from declining river flows due to water withdrawal and climate change. Trees further from the river could be especially affected, leading to narrowing of floodplain forests along some rivers.  相似文献   

6.
With drainage from the Waterton‐Glacier International Peace Park, the Waterton River was dammed in 1964 to trap spring flow and permit offstream diversion for irrigation. Field observations in the 1980s indicated some decrepit riparian woodlands suggesting drought stress of the black and narrowleaf cottonwoods (Populus trichocarpa, P. angustifolia) due to insufficient in‐stream flows. Subsequently, an environmental flow regime commenced in 1991 and provided “functional flows,” deliberately regulating in‐stream flow components intended to restore ecological processes and particularly (1) an increase of the minimum flow from 0.93 to 2.27 m3/s (mean discharge 21.9 m3/s) and (2) flow ramping, gradual recession after the spring peak. This study investigated the historic flow patterns and the growth, population age structure, and spatial distributions of riparian cottonwoods along the free‐flowing upstream and regulated downstream reaches over four dam operations intervals: the free‐flowing pre‐dam condition; the initial dammed interval to the mid‐1970s; a post‐dam and drought interval in the 1980s; and with the environmental flow regime. Analyses of sapling, shrub‐, and tree‐sized cottonwoods included tree ring analyses to determine ages and growth patterns, and distributions were assessed relative to streamside elevations and sediment textures. These indicated that there has been progressive cottonwood colonization after damming but the colonization band dropped in elevation with the reduced flow regime and the future woodlands could become narrower. The tree ring analyses indicated that the growth of established trees benefited from the functional flows and the increase in minimum flow was probably particularly beneficial to the riparian cottonwoods.  相似文献   

7.
Plant root architecture reveals the sources of water and nutrients but tree root systems are large and difficult to analyze. With riparian (floodplain) trees, river cut-banks provide natural hydraulic excavation of root systems and this presents a unique study opportunity. Subsequently, we developed the ‘Cut-bank Root Method’, a simple, quantitative approach for analyzing the distribution of coarse roots, based on analyses of photographs of river cut-banks. These reveal the vertical extent of roots and median root depths (Rd). We applied this method along six rivers draining the Canadian Rocky Mountains and observed tenfold difference in Rd. The floodplain forests were dominated by cottonwoods and from mountain to prairie zones we observed progressively deeper roots of Populus trichocarpa (black cottonwood, Rd ~ 0.3 m), P. balsamifera (balsam poplar), P. angustifolia (narrowleaf cottonwood), and P. deltoides (prairie cottonwood, Rd ~ 0.9 m), which had Rd similar to P. fremontii (Fremont cottonwood) in Nevada, USA. Roots were shallower for co-occurring facultative riparian trees, with Rd ~ 0.1 m for P. tremuloides (trembling aspen) and Picea glauca (white spruce). Across the Canadian sites, Rd for cottonwoods were strongly associated with a growth season moisture index (May through September precipitation—potential evapotranspiration; R2 = 0.97, P < 0.001). Thus, in wetter climates, riparian cottonwoods were shallow-rooted and would be more dependent upon rain than stream flow. Conversely, in the drier semi-arid regions the cottonwoods were phreatophytic, with deeper root systems in the capillary fringe above the alluvial ground-water table. These phreatophytic cottonwoods would be highly dependent upon stream flow and vulnerable to declining river flows due to river regulation or climate change.  相似文献   

8.
Cottonwoods are poplars (Populus sp.) adapted to riparian (streamside) zones and an understanding of their growth within these zones will assist with river management for cottonwood conservation and in the recognition of superior parental genotypes for hybrid poplar breeding programs. In this study we analyzed cottonwood growth in native riparian zones and compared growth along three study reaches of the Oldman River in Alberta, Canada that differed in geomorphic context, particularly the extent that the river channel was constrained by steep banks and bedrock. We used dendrochronology to analyze trunk growth patterns, and measured annual radial increments (RI) and basal area increments (BAI) of 278 narrowleaf cottonwoods (P. angustifolia), black cottonwoods (P. trichocarpa), their intrasectional hybrids, and natural intersectional hybrids with prairie cottonwoods (P. deltoides). The trees displayed common growth patterns with four phases: (I) a 3–7-year establishment phase with RI of about 1–2 mm/year, (II) a growth acceleration phase of about 15 years with RI increasing to the (III) RI growth peak of about 3 mm/year, and then (IV) the mature growth phase with relatively constant BAI and progressively declining RI. This general pattern was consistent across study reaches but the durations and growth rates of the phases differed along with forest stand structure. Along the unconstrained alluvial reach with a broad floodplain and dynamic channel, extensive and dense forest groves occurred. This increased tree competition, as evidenced by reduced RI and BAI in the mature phase. In contrast, along a constrained reach trees were restricted to sparse, narrow bands and their increased growth rates in the mature phase probably reflected reduced competition. Cottonwoods along the intermediate reach demonstrated an intermediate combination of forest and growth characteristics. Genotypic effects were slight although P. angustifolia had reduced RI during the establishment phase. These results demonstrate that within native riparian zones cottonwoods display an inherent growth pattern that reflects the trees' life history, and that growth rates and transitions are influenced by the geomorphic context that influences forest structure.  相似文献   

9.
10.
Avian Response to Bottomland Hardwood Reforestation: The First 10 Years   总被引:1,自引:0,他引:1  
Bottomland hardwood forests were planted on agricultural fields in Mississippi and Louisiana predominantly using either Quercus species (oaks) or Populus deltoides (eastern cottonwood). We assessed avian colonization of these reforested sites between 2 and 10 years after planting. Rapid vertical growth of cottonwoods (circa 2–3 m/year) resulted in sites with forest structure that supported greater species richness of breeding birds, increased Shannon diversity indices, and supported greater territory densities than on sites planted with slower‐growing oak species. Grassland birds (Spiza americana[Dickcissel] and Sturnella magna[Eastern Meadowlark]) were indicative of species breeding on oak‐dominated reforestation no more than 10 years old. Agelaius phoeniceus (Red‐winged Blackbird) and Colinus virginianus (Northern Bobwhite) characterized cottonwood reforestation no more than 4 years old, whereas 14 species of shrub‐scrub birds (e.g., Passerina cyanea[Indigo Bunting]) and early‐successional forest birds (e.g., Vireo gilvus[Warbling vireo]) typified cottonwood reforestation 5 to 9 years after planting. Rates of daily nest survival did not differ between reforestation strategies. Nest parasitism increased markedly in older cottonwood stands but was overwhelmed by predation as a cause of nest failure. Based on Partners in Flight prioritization scores and territory densities, the value of cottonwood reforestation for avian conservation was significantly greater than that of oak reforestation during their first 10 years. Because of benefits conferred on breeding birds, we recommend reforestation of bottomland hardwoods should include a high proportion of fast‐growing early successional species such as cottonwood.  相似文献   

11.
Populus deltoides is considered to be a weak resprouter and highly susceptible to wildfire, but few post‐wildfire studies have tracked P. deltoides response and resprouting within the Great Plains of North America. Following a wildfire in southwestern Kansas, U.S.A., we surveyed burned and unburned areas of a cottonwood riparian forest along the Cimarron River that included a major understory invader, tamarisk (Tamarix ramosissima Ledeb.). We tested the following hypotheses, which are consistent with the current understanding of P. deltoides response to wildfire in the Great Plains: (1) regeneration of P. deltoides will be low in areas burned by the wildfire; (2) the number of dead P. deltoides individuals will be greater in the wildfire than unburned areas; and (3) tamarisk regeneration will be higher than P. deltoides regeneration in the wildfire areas because tamarisk is considered a stronger resprouter. We found evidence contrary to two of our hypotheses 3 years following the wildfire. (1) P. deltoides regeneration was high following the wildfire, averaging 692 individuals/ha. (2) The number of dead mature cottonwood trees was greater in wildfire plots than in unburned plots. (3) There was more P. deltoides regeneration than tamarisk regeneration following wildfire. These findings, which diverge from the majority of studies examining P. deltoides regeneration in the Great Plains, suggest that differing local environmental and forest stand conditions, coupled with the timing and intensity of the fire, could be important determinants of riparian forest species' responses to wildfire.  相似文献   

12.
The narrowleaf cottonwood, Populus angustifolia, occurs in occasionally flooded, low elevation zones along river valleys near the North American Rocky Mountains. This small poplar has narrow leaves and fine branching and thus resembles willows, which are commonly flood-tolerant. We investigated the flood response of narrowleaf cottonwoods and a related native hybrid, jackii cottonwood (P. × jackii = P. balsamifera × P. deltoides), by studying saplings of 24 clones in a greenhouse, with some pots being inundated to provide the flood treatment. Flooding slightly reduced leaf numbers (−10%), and leaf sizes were reduced by about 21% in female P. angustifolia versus a 50% reduction in the female hybrids. Flooding-reduced stomatal conductance and net photosynthetic rate, and reduced transpiration particularly in P. × jackii. The effects on foliar gas exchange declined over a 5-week interval, suggesting compensation. The moderate impact of flooding supports the hypothesis that narrowleaf cottonwoods are flood-tolerant, and we anticipate that these trees could provide traits to increase the flood tolerance of fast-growing hybrid poplars. The results further indicate that female cottonwoods may be more flood-tolerant than males, and females could be more successful in lower, flood-prone sites.  相似文献   

13.
Summary Leaf area consumption rates, development rates, survivorship, and fecundity of the imported willow leaf beetle (Plagiodera versicolora Laich) were examined on two clones of eastern cottonwood which were previously exposed to ozone or charcoal-filtered air. P. versicolora consumed more ozone treated foliage, but were more fecund when reared on charcoal-filtered air treated plants. Beetle development rates and survivorship were not significantly different on treated and control cottonwoods. We concluded that: 1) Ozone fumigation of cottonwood reduced foliage quality, and the reproductive success and overall performance of P. versicolora. 2) increased foliage consumption by beetles was probably a mechanism compensating for decreases in foliage quality. 3) Reductions in beetle fecundity were due to an initial reduction in oviposition rates. 4) Beetle feeding preference did not correlate with the suitability of foliage for beetle performance. These results are discussed in relation to the impact of air pollution on plant-insect interactions.  相似文献   

14.
1. We examined the role of flooding on the leaf nutrient content of riparian trees by comparing the carbon : nitrogen : phosphorus (C : N : P) ratio of leaves and litter of Rio Grande cottonwood (Populus deltoides ssp. wislizenii) in flood and non‐flood sites along the Middle Rio Grande, NM, U.S.A. The leaf C : N : P ratio was also examined for two non‐native trees, saltcedar (Tamarix chinensis) and Russian olive (Elaeagnus angustifolia), and six species of dominant riparian arthropods. 2. Living leaves and leaf litter of cottonwoods at flood sites had a significantly lower leaf N : P ratio and higher %P compared with leaves and litter at non‐flood sites. A non‐flood site downstream from wastewater effluent had a significantly lower litter C : N ratio than all other sites, suggesting N fertilisation through ground water. The non‐native trees, saltcedar and Russian olive, had higher mean leaf N content, N : P ratio, and lower C : N ratio compared with cottonwoods across study sites. 3. Riparian arthropods ranged from 5.2 to 7.1 for C : N ratio, 56–216 for C : P ratio, and 8.9–34 for N : P ratio. C content ranged from 25 to 52% of dry mass, N content from 4.7 to 10.8%, and P content from 0.59 to 1.2%. Differences in stoichiometry between high C : nutrient leaf litter and low C : nutrient invertebrates suggests possible food‐quality constraints for detritivores. 4. These results suggest that spatial and temporal variation in the C : N : P ratio of cottonwood leaves and leaf litter is influenced by surface and subsurface hydrologic connection within the floodplain. Reach‐scale variation in the elemental composition of riparian organic matter inputs may have important implications for decomposition, nutrient cycling, and food webs in river floodplain systems.  相似文献   

15.
As part of a restoration project, multiple genotypes of two tree species, Fremont cottonwood (Populus fremontii) and Goodding's willow (Salix gooddingii), and one shrub species, Coyote willow (S. exigua), were experimentally planted in different proportions at the Palo Verde Ecological Reserve near Blythe, California, U.S.A. These common woody plant species are important to the endangered southwestern willow flycatcher, providing perch, nesting, and foraging habitat. We conducted this study to evaluate plant species proportion and plant genotype effects on the arthropod community, the prey base for the endangered southwestern willow flycatcher. Three patterns emerged. First, plant species proportions were important; the arthropod community had the greatest richness and diversity (H′) when Goodding's willow proportion was high and Fremont cottonwood proportion was lower; that is, fewer Fremont cottonwoods are required to positively affect overall arthropod diversity. Second, we found significant genotypic effects, for all three plant species, on arthropod species accumulation. Third, while both planting proportion and genotype effects were significant, we found that the effect of planting proportion on arthropod richness was about twice as large as the effect of plant genotype. This shows that both plant species proportions and genotype should be utilized in restoration projects to maximize habitat heterogeneity and arthropod richness. Similar studies can determine which planting proportion and specific genotypes may result in a more favorable arthropod prey base for the southwestern willow flycatcher and other species of concern. Greater attention to planting design and genotype can result in significant gains in diversity at little or no additional project cost.  相似文献   

16.
Although hybridization in plants has been recognized as an important pathway in plant speciation, it may also affect the ecology and evolution of associated communities. Cottonwood species (Populus angustifolia and P. fremontii) and their naturally occurring hybrids are known to support different plant, animal, and microbial communities, but no studies have examined community structure within the context of phylogenetic history. Using a community composed of 199 arthropod species, we tested for differences in arthropod phylogenetic patterns within and among hybrid and parental tree types in a common garden. Three major patterns emerged. (1) Phylogenetic diversity (PD) was significantly different between arthropod communities on hybrids and Fremont cottonwood when pooled by tree type. (2) Mean phylogenetic distance (MPD) and net relatedness index (NRI) indicated that communities on hybrid trees were significantly more phylogenetically overdispersed than communities on either parental tree type. (3) Community distance (Dpw) indicated that communities on hybrids were significantly different than parental species. Our results show that arthropod communities on parental and hybrid cottonwoods exhibit significantly different patterns of phylogenetic structure. This suggests that arthropod community assembly is driven, in part, by plant–arthropod interactions at the level of cottonwood tree type. We discuss potential hypotheses to explain the effect of plant genetic dissimilarity on arthropod phylogenetic community structure, including the role of competition and environmental filtering. Our findings suggest that cottonwood species and their hybrids function as evolutionarily significant units (ESUs) that affect the assembly and composition of associated arthropod communities and deserve high priority for conservation.  相似文献   

17.
Plant genetic determinants of arthropod community structure and diversity   总被引:15,自引:0,他引:15  
To test the hypothesis that genes have extended phenotypes on the community, we quantified how genetic differences among cottonwoods affect the diversity, abundance, and composition of the dependent arthropod community. Over two years, five major patterns were observed in both field and common-garden studies that focused on two species of cottonwoods and their naturally occurring F1 and backcross hybrids (collectively referred to as four different cross types). We did not find overall significant differences in arthropod species richness or abundance among cottonwood cross types. We found significant differences in arthropod community composition among all cross types except backcross and narrowleaf cottonwoods. Thus, even though we found similar richness among cross types, the species that composed the community were significantly different. Using vector analysis, we found that the shift in arthropod community composition was correlated with percent Fremont alleles in the host plant, which suggests that the arthropod community responds to the underlying genetic differences among trees. We found 13 arthropod species representing different trophic levels that were significant indicators of the four different cross types. Even though arthropod communities changed in species composition from one year to the next, the overall patterns of community differences remained remarkably stable, suggesting that the genetic differences among cross types exert a strong organizing influence on the arthropod community. Together, these results support the extended phenotype concept. Few studies have observationally and experimentally shown that entire arthropod communities can be structured by genetic differences in their host plants. These findings contribute to the developing field of community genetics and suggest a strategy for conserving arthropod diversity by promoting genetic diversity in their host plants.  相似文献   

18.
In a cottonwood (Populus) hybrid zone, Chaitophorus aphids attract aphid-tending ants which subsequently reduce herbivory by the leaf-feeding beetle, Chrysomela confluens. Observations and experimental manipulations of aphids and beetle larvae on immature cottonwood trees demonstrated that: 1) via their recruitment of ants, aphids reduced numbers of beetle eggs and larvae on the host; 2) these interactions occurred within a few days of the host being colonized by aphids; and 3) although aphid colonies were ephemeral, their presence resulted in a 2-fold reduction in beetle herbivory. The aphid-ant interaction is most important in the hybrid zone where 93% of the beetle population is concentrated (for reasons unrelated to aphids and ants). Because beetle defoliation of immature trees is high (ca. 25%), the indirect effect of aphids in reducing herbivory is likely more beneficial to trees in the hybrid zone than in adjacent pure zones where beetle herbivory is virtually absent. Tree genotype likely affects the impact of the aphid-ant interaction on trees within the hybrid zone, since levels of herbivory differ between sympatric Fremont and hybrid cottonwoods.  相似文献   

19.
Altered hydrology of southwestern United States rivers has led to a decline in native cottonwood (Populus deltoides). Areas historically dominated by cottonwood have been replaced by invasive saltcedar (Tamarix chinensis). Restoration of historic hydrology through periodic flooding of riparian areas has been a means of restoring native species. However, due to similarity in germination requirements of cottonwoods and saltcedars, flooding may create an unwanted increase in the number of saltcedar seedlings. Therefore, we evaluated competitive aspects of these co-occurring species in an extant riparian habitat in the arid southwestern US. We measured effects of competition between cottonwood and saltcedar seedlings and among cottonwood seedlings during the first growing season following seedling establishment in 360, 0.5 × 0.5-m plots at the Bosque del Apache National Wildlife Refuge, New Mexico. We used five interspecific density treatments and five intraspecific density treatments. Cottonwood seedling biomass and height were twice that of saltcedar seedlings across all density treatments. As density of cottonwood increased, intraspecific competition increased in severity and biomass of cottonwood seedlings decreased. At 4 plants/0.25 m2, cottonwood seedlings had the greatest biomass; whereas, survival was highest at 10 plants/0.25 m2. Our results support greenhouse studies and suggest that if favorable germination conditions are established for cottonwood in floodplains, saltcedar seedlings that cogerminate could be outcompeted by native cottonwood seedlings.  相似文献   

20.
 We describe a protocol for Agrobacterium tumefaciens-mediated transformation of hybrid cottonwoods (Populus sections Tacamahaca Spach. and Aigeiros Duby). The protocol has allowed routine transformation of several economically important cottonwood hybrids (Populus trichocarpa Torr. & Gray×P. deltoides Bartr. ex. Marsh. and P. deltoides×P. nigra L.) that were previously difficult to transform. The procedure was applied to 11 different hybrid cottonwood genotypes and one P. deltoides genotype using kanamycin as the selection agent. Additional experiments showed a very strong interaction between auxin preculture and the effectiveness of various cytokinins for induction of shoot organogenesis. The data also demonstrated the superiority of Agrobacterium strain EHA105 over C58 and LBA4404 for T-DNA transfer based on transient assays with a reporter gene. Received: 16 June 1998 / Revision received: 5 February 1999 / Accepted: 14 April 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号